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Abstract

For multi-way contingency table, Bhapkar and Darroch (1990) considered the marginal
symmetry model for order h. The present paper proposes a marginal cumulative logistic
model for order h. When h = 1, this model reduces to the marginal logistic model (Agresti
2013). It also gives a theorem that the marginal symmetry model for order h holds if and
only if (i) the marginal cumulative logistic model for order h, (ii) the marginal moment
equality model for order h, and (iii) the marginal symmetry model for order h − 1 hold.
A special case of this theorem with h = 1 is identical to the result of Tahata, Katakura,
and Tomizawa (2007).
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1. Introduction

Consider an rT contingency table (T ≥ 2). Let Xk (k = 1, . . . , T ) denote the kth variable.
Denote the hth-order (1 ≤ h < T ) marginal probability Pr(Xs1 = i1, . . . , Xsh = ih) by pshi ,
where sh = (s1, . . . , sh) and i = (i1, . . . , ih) with 1 ≤ s1 < · · · < sh ≤ T and ik = 1, . . . , r (k =
1, . . . , h). For a fixed h (1 ≤ h < T ), the hth-order marginal symmetry (MT

h ) model is defined
by

pshi = pshj = pthi ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and for any sh = (s1, . . . , sh) and
th = (t1, . . . , th) with 1 ≤ t1 < · · · < th ≤ T and ik = 1, . . . , r (k = 1, . . . , h) (Bhapkar and
Darroch 1990; Tomizawa and Tahata 2007). This model indicates the structure of symmetry
and homogeneity of hth-order marginal distribution.

For the case of h = 1, the MT
h model is expressed as

p
(1)
i = · · · = p

(T )
i (i = 1, . . . , r),

where p
(k)
i = Pr(Xk = i). For instance, see Stuart (1955), Bishop, Fienberg, and Holland

(1975, p.303) and Agresti (2013, p.439). This model indicates the homogeneity structure of
first-order marginal distribution.
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For the multi-way table with ordinal categories, several studies considered the marginal cu-
mulative probability in order to discuss the inhomogeneity of first-order marginal distribu-

tion. Let F
(k)
i denote the first-order marginal cumulative probability and let L

(k)
i denote

the first-order marginal cumulative logit of Xk for i = 1, . . . , r − 1, k = 1, . . . , T ; namely,

F
(k)
i = Pr(Xk ≤ i) and L

(k)
i = logit

(
F

(k)
i

)
= log

(
F

(k)
i /

(
1 − F

(k)
i

))
. The marginal cumula-

tive logistic (MLT ) model is defined by

L
(k)
i = L

(1)
i − ∆k (i = 1, . . . , r − 1; k = 1, . . . , T ),

where ∆1 = 0 (Agresti 2013, p.442). A special case of this model obtained by putting{
∆k = 0

}
is the MT

1 model. For instance, when T = 2, see McCullagh (1977). Consider the

marginal mean equality (MET ) model defined by

E(X1) = · · · = E(XT ).

Agresti (2013, p.440) discussed the decomposition of model. That is, generally suppose that
model H3 implies models H1 and H2, model H3 holds if and only if both models H1 and H2 hold.
This enables us to see that assuming that model H1 holds true, the hypothesis that model
H3 holds is equivalent to the hypothesis that the model H2 holds, and the decomposition
of model should be useful to observe the reason for its poor fit when model H3 does not
fit the data well. Tahata et al. (2007) noted that for an rT table, the MT

1 model holds if
and only if both the MLT and MET models hold. For T = 2, see Miyamoto, Niibe, and
Tomizawa (2005). For order h with 1 ≤ h < T , denote the hth-order marginal cumulative
probability Pr(Xs1 ≤ i1, . . . , Xsh ≤ ih) by F sh

i , where sh = (s1, . . . , sh) and i = (i1, . . . , ih)
with 1 ≤ s1 < · · · < sh ≤ T and ik = 1, . . . , r (k = 1, . . . , h). Note that when some ik equal
to r, F sh

i reduces to the marginal cumulative probability for lower order. For example, when
ih = r, Pr(Xs1 ≤ i1, . . . , Xsh ≤ r) = F

sh−1

i . Then, the MT
h model may be expressed as

F sh
i = F sh

j = F th
i ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih), where ik = 1, . . . , r (k = 1, . . . , h) and
for any sh = (s1, . . . , sh) and th = (t1, . . . , th). Since F sh

i reduces to the marginal cumulative
probability for lower order in case where some ik equal to r, the MT

h model may also be
expressed as

F sl
i = F sl

j = F tl
i (l = 1, . . . , h),

for any permutation j = (j1, . . . , jl) of i = (i1, . . . , il), where ik = 1, . . . , r − 1 (k = 1, . . . , l)
and for any sl = (s1, . . . , sl) and tl = (t1, . . . , tl). In order to emphasize, hereafter we refer
to the r − 1 as r − 1 in this paper. Note that if the MT

h model holds, then the MT
h−1 model

holds, but the converse does not always hold. Hence we are interested in proposing the model
we need in order that the MT

h model holds when the MT
h−1 model holds. The MLT model

focuses on the fixed (h = 1) order marginal distributions, and describes the inhomogeneity

structure based on the logits of
{
F

(k)
i

}
. Focusing on the hth-order marginal distribution, we

are interested in the symmetry and inhomogeneity structure based on the logits of
{
F sh
i

}
.

Furthermore, we are also interested in the decomposition of the MT
h model, which is the

generalization of the result given by Tahata et al. (2007). The decomposition for the MT
h

model should be useful to explore the reason for the poor fit of the MT
h model when the MT

h

model does not hold for analyzing the data.

In this paper, we propose a marginal cumulative logistic model of general order, and give
a decomposition of the MT

h model by using the proposed model. Section 2 proposes the
hth-order marginal cumulative logistic model. Section 3 gives the decompositions of the MT

h

model. Section 4 presents the goodness-of-fit test. Section 5 shows some examples. Finally,
Section 6 provides concluding remarks.
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2. Models

For a fixed h (1 ≤ h < T ), consider a model defined by

Lsh
i = Llh

i − ∆sh and Lsh
i = Lsh

j ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and lh = (1, . . . , h), where ik =
1, . . . , r − 1 (k = 1, . . . , h) and for any sh = (s1, . . . , sh) with 1 ≤ s1 < · · · < sh ≤ T ,

Lsh
i = logit

(
F sh
i

)
= log

(
F sh
i

1 − F sh
i

)
,

where ∆lh = 0. We shall refer to this model as the hth-order marginal cumulative logistic

(MLT
h ) model. This model indicates that the odds of

{
F lh
i

}
is exp(∆sh) times higher than

the odds of
{
F sh
i

}
, and the symmetry structure of

{
F sh
i

}
holds. For a fixed h (1 ≤ h < T ),

by putting Llh
i = θi; that is

F lh
i =

exp(θi)

1 + exp(θi)
,

the MLT
h model can be expressed as a logistic function, for any sh = (s1, . . . , sh),

F sh
i =

exp(θi − ∆sh)

1 + exp(θi − ∆sh)
and F sh

i = F sh
j ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih), where ik = 1, . . . , r − 1 (k = 1, . . . , h)
and ∆lh = 0. Therefore this model states that

{
F lh
i

}
is a location shift of

{
F sh
i

}
on a logistic

scale. When h = 1, the MLT
h model is identical to the MLT model.

For a fixed h (1 ≤ h < T ), consider a model defined by

E (Xs1 · · ·Xsh) = E (X1 · · ·Xh) ,

for 1 ≤ s1 < · · · < sh ≤ T . We shall refer to this model as the hth-order marginal moment
equality (MET

h ) model. When h = 1, the MET
h model is identical to the MET model.

3. Decompositions of the marginal symmetry model

Tahata et al. (2007) showed the decomposition of the MT
1 model. We shall consider the de-

composition of the MT
h model for an rT table. Let X∗

k = r + 1 −Xk for k = 1, . . . , T . First,
we obtain the following lemma.

Lemma 1. For order h (1 ≤ h < T ), when the MT
h−1 model holds, the MET

h model can be
expressed as

E
(
X∗

s1 · · ·X
∗
sh

)
= E (X∗

1 · · ·X∗
h) ,

for any 1 ≤ s1 < · · · < sh ≤ T .

Proof.

E
(
X∗

s1 · · ·X
∗
sh

)
= (r + 1)h + (−1)1(r + 1)h−1

h∑
l=1

E(Xsl)

+ (−1)2(r + 1)h−2
∑∑

l<m

E(XslXsm) + · · · + (−1)hE (Xs1 · · ·Xsh) ,

for any 1 ≤ s1 < · · · < sh ≤ T . Since the MT
h−1 model holds, all the MET

k models hold

for k = 1, . . . , h − 1. Thus when the MT
h−1 model holds, the MET

h model is identical to the
equation,

E
(
X∗

s1 · · ·X
∗
sh

)
= E (X∗

1 · · ·X∗
h) ,

for any 1 ≤ s1 < · · · < sh ≤ T .
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From Lemma 1, we obtain the following theorem.

Theorem 1. For a fixed h (1 ≤ h < T ), the MT
h model holds if and only if all the MLT

h ,
MET

h , and MT
h−1 models hold, where the MT

0 model indicates the saturated model.

Proof. If the MT
h model holds, then the MLT

h , MET
h , and MT

h−1 models hold. Assuming that

for a fixed h, the MLT
h , MET

h , and MT
h−1 models hold, then we shall show that the MT

h model
holds. It is easily seen that

E (X∗
1 · · ·X∗

h) =
r∑

i1=1

· · ·
r∑

ih=1

F lh
i ,

where i = (i1, . . . , ih) and lh = (1, . . . , h). From Lemma 1, we have

r∑
i1=1

· · ·
r∑

ih=1

(
F sh
i − F lh

i

)
= 0,

for any sh = (s1, . . . , sh). Since the MT
h−1 model holds, the aforementioned equation is also

expressed as
r−1∑
i1=1

· · ·
r−1∑
ih=1

(
F sh
i − F lh

i

)
= 0.

Moreover, since the MLT
h model holds, we obtain

r−1∑
i1=1

· · ·
r−1∑
ih=1

(
exp(θi − ∆sh)

1 + exp(θi − ∆sh)
− exp(θi)

1 + exp(θi)

)
= 0,

for any sh = (s1, . . . , sh), where Llh
i = θi. Thus

(exp(−∆sh) − 1)
r−1∑
i1=1

· · ·
r−1∑
ih=1

exp(θi)

(1 + exp(θi − ∆sh))(1 + exp(θi))
= 0.

Since
r−1∑
i1=1

· · ·
r−1∑
ih=1

exp(θi)

(1 + exp(θi − ∆sh))(1 + exp(θi))
> 0,

we obtain ∆sh = 0 for any sh = (s1, . . . , sh). Namely, we see

F sh
i = F sh

j = F th
i ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih), where ik = 1, . . . , r − 1 (k = 1, . . . , h)
and for any sh = (s1, . . . , sh) and th = (t1, . . . , th). Since the MT

h−1 model holds, we obtain

F sh
i = F sh

j = F th
i ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih), where ik = 1, . . . , r (k = 1, . . . , h) and
for any sh = (s1, . . . , sh) and th = (t1, . . . , th). Namely, the MT

h model holds.

We note that Theorem 1 is the generalization of the result given by Tahata et al. (2007).
Also, we obtain the following corollary from Theorem 1.

Corollary 1. The MT
T−1 model holds if and only if all the MLT

h models for 1 ≤ h < T and
all the MET

h models for 1 ≤ h < T hold.
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4. Goodness-of-fit test

Let ni1...iT denote the observed frequency in the (i1, . . . , iT )th cell of the rT table. Assume
that a multinomial distribution is applied to the rT table. The maximum likelihood estimates
(MLEs) of the expected frequencies under each model can be obtained by the Newton-Raphson
method in the log-likelihood equations. Each model can be tested for the goodness-of-fit using,
for example, the likelihood ratio chi-squared statistic (denoted by G2) with the corresponding
degrees of freedom (df). The test statistic G2 for model H is given by

G2(H) = 2

r∑
i1=1

· · ·
r∑

iT=1

ni1...iT log

(
ni1...iT
m̂i1...iT

)
,

where m̂i1...iT is the MLE of expected frequency mi1...iT under model H. Table 1 lists df for
each model. We note that the number of df for the MT

h model is equal to the sum of those
for the decomposed models.

Table 1: Numbers of degrees of freedom for models applied to the rT table.

Models Degrees of freedom

MT
h

h∑
u=0

(
T

u

)
(r − 1)u −

h∑
u=0

(
r − 2 + u

u

)

MLT
h

[
(r − 1)h −

(
r − 2 + h

h

)]
+

[(
T

h

)
− 1

] [
(r − 1)h − 1

]

MET
h

(
T

h

)
− 1

Akaike (1974) information criterion (AIC) is used to choose the preferable model among
different models which include non-nested models. For details see Konishi and Kitagawa
(2008). Since only the difference between AIC’s is required when two models are compared,
it is possible to ignore a common constant of AIC. We may use a modified AIC defined by

AIC+ = G2 − 2(number of df).

Thus, for the data, the model with the minimum AIC+ is the preferable model. This criterion
will be used in the next section.

5. Examples

Consider the data in Tables 2 and 3, taken from the 2016 General Social Survey (Smith,
Davern, Freese, and Hout 2018) conducted by the National Opinion Research Center at the
University of Chicago. These describe the cross classifications of subject’s opinions regarding
government spending on Education (X1), Environment (X2), and Assistance to the poor (X3)
in 1984 and 2016, respectively. The common response categories are (1) ‘too little’, (2) ‘about
right’, and (3) ‘too much’.

5.1. Analysis of Table 2

Table 4 gives the values of G2 and AIC+ for the data in Table 2, and shows that all models
fit the data well since these models are accepted at the 0.05 significance level. Since these
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Table 2: Opinions about government spending in 1984 from the 2016 General Social Survey
(Smith et al. 2018). (Parenthesized values are the maximum likelihood estimates of the
expected frequencies under the ML3

2 model.)

Assistance to the poor (X3)
Education (X1) Environment (X2) (1) too little (2) about right (3) too much

(1) too little (1) too little 152 34 14
(152.06) (38.60) (12.28)

(1) too little (2) about right 45 20 8
(34.94) (21.98) (5.72)

(1) too little (3) too much 19 2 2
(17.93) (2.00) (2.02)

(2) about right (1) too little 34 19 4
(40.51) (18.54) (3.58)

(2) about right (2) about right 18 26 7
(16.65) (25.81) (5.26)

(2) about right (3) too much 5 3 2
(5.42) (2.57) (2.02)

(3) too much (1) too little 4 4 5
(5.14) (5.59) (5.06)

(3) too much (2) about right 9 1 6
(11.15) (2.06) (6.07)

(3) too much (3) too much 2 2 1
(2.02) (2.02) (1.01)

Table 3: Opinions about government spending in 2016 from the 2016 General Social Survey
(Smith et al. 2018). (Parenthesized values are the maximum likelihood estimates of the
expected frequencies under the ML3

1 model.)

Assistance to the poor (X3)
Education (X1) Environment (X2) (1) too little (2) about right (3) too much

(1) too little (1) too little 612 110 30
(612.35) (106.04) (32.37)

(1) too little (2) about right 134 55 11
(133.13) (52.66) (11.78)

(1) too little (3) too much 51 11 11
(51.61) (10.72) (12.02)

(2) about right (1) too little 85 30 6
(89.46) (30.36) (6.84)

(2) about right (2) about right 46 43 9
(48.05) (43.21) (10.17)

(2) about right (3) too much 9 11 5
(9.59) (11.26) (5.77)

(3) too much (1) too little 12 8 3
(10.88) (7.01) (2.91)

(3) too much (2) about right 16 16 8
(14.41) (13.94) (7.71)

(3) too much (3) too much 13 8 13
(11.91) (7.08) (12.76)
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models are including non-nested models, we use AIC+ to choose the preferable model. Since
the ML3

2 model has a minimum AIC+ value, the ML3
2 model is the preferable model among

the models. Thus it is inferred that there is a symmetry structure but not homogeneity for
second-order marginal distribution. With regard to the inhomogeneity structure, the MLEs
of parameters exp(∆(1,3)) and exp(∆(2,3)) under the ML3

2 model are exp(∆̂(1,3)) = 0.98 and

exp(∆̂(2,3)) = 1.05. For the inhomogeneity structure, the ML3
2 model provides, for example,

the odds that the opinions of education and the environment are both ‘too little’ instead of
neither ‘too little’ are estimated to be 0.98 times higher than the odds that the opinions of
education and assistance to the poor are both ‘too little’ instead of neither ‘too little’. We can
obtain similar results although the details are omitted. This indicates that there is location
shift on a logistic scale between the marginal distribution for the opinions of education and
the environment and that of education and assistance to the poor. With regard to the case
of the environment and assistance to the poor, it can be interpreted in the same way to the
case of above.

Table 4: Values of the likelihood ratio chi-squared statistic G2 and AIC+ for the models
applied to Table 2.

Applied models Degrees of freedom G2 AIC+

M3
2 13 21.08 −4.92

ML3
2 7 8.30 −5.70(min)

ME3
2 2 0.70 −3.30

M3
1 4 9.40 1.40

ML3
1 2 5.49 1.49

ME3
1 2 3.47 −0.53

(min) means a minimum AIC+.

5.2. Analysis of Table 3

Table 5 gives the values of G2 and AIC+ for models applied to the data in Table 3. These
show that the ML3

1 model fits the data well although the other models fit the data poorly. We
see that the poor fit of the M3

2 model is due to the lack of the ME3
2, ME3

1, and ML3
2 models

rather than the ML3
1 model from Corollary 1. Therefore, it is inferred that the poor fit of

the M3
2 model is caused by the influence of the lack of structure of (i) the equality of the

second-order moments of (X1, X2), (X1, X3) and (X2, X3), (ii) the equality of means of X1,
X2 and X3, and (iii) the ML3

2 model. Under the ML3
1, the MLEs of parameters exp(∆(2)) and

exp(∆(3)) are exp(∆̂(2)) = 1.55 and exp(∆̂(3)) = 1.17. Thus, under the ML3
1 model, the odds

that the opinion is ‘too little’ instead of not ‘too little’ are estimated to be 1.55 times higher
in education than in the environment. In a similar manner, we can see that the odds for the
opinion of education is also estimated to be 1.55 times higher than that of the environment
in either cases. Furthermore, we can interpret that there is location shift on a logistic scale
between the marginal distribution for the opinions of education and that of the environment.
With regard to the case of the education and assistance to the poor, it can be interpreted in
the same way to the case of above.

6. Concluding remarks

In this paper, (i) we have proposed the MLT
h model, and (ii) given the decomposition of the

MT
h model. The MLT

h model is the extension of the MLT model discussed by Agresti (2013,
p.442), and the decomposition by using the MLT

h model is the generalization of the result
given by Tahata et al. (2007). The decomposition for the MT

h model should be useful to
explore the reason for the poor fit of the MT

h model when the MT
h model does not hold for
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Table 5: Values of the likelihood ratio chi-squared statistic G2 and AIC+ for the models
applied to Table 3.

Applied models Degrees of freedom G2 AIC+

M3
2 13 57.95* 31.95

ML3
2 7 25.99* 11.99

ME3
2 2 28.47* 24.47

M3
1 4 43.41* 35.41

ML3
1 2 2.24 −1.76(min)

ME3
1 2 38.20* 34.20

*significant at the 0.05 level.
(min) means a minimum AIC+.

analyzing the data. Meanwhile, Theorem 1 also leads to Corollary 1 that decomposes for the
MT

h model into more models. The decomposition for the MT
h model into more (three or four)

models rather than into two models would be useful for exploring the reason for the poor fit
in more details when the MT

h model does not fit well. In practice, Corollary 1 reveals the
origin of the poor fit of the M3

2 model (see Section 5.2.).
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