
AJS

Austrian Journal of Statistics
February 2020, Volume 49, 18–30.
http://www.ajs.or.at/
doi:10.17713/ajs.v49i2.907

Fast Approximate Complete-data k-nearest-neighbor
Estimation

Alejandro Murua
Département de mathématiques et de statistique

Université de Montréal
CP 6128, succ. centre-ville, Montréal

Québec H3C 3J7 Canada

Nicolas Wicker
Département de Mathématiques

Cité Scientifique
59655 Villeneuve d’Ascq

University of Lille

Abstract

We introduce a fast method to estimate the complete-data set of k-nearest-neighbors.This is
equivalent to finding an estimate of the k-nearest-neighbor graph of the data. The method relies on
random normal projections. The k-nearest-neighbors are estimated by sorting points in a number
of random lines. For very large datasets, the method is quasi-linear in the data size. As an
application, we show that the intrinsic dimension of a manifold can be reliably estimated from
the estimated set of k-nearest-neighbors in time about two orders of magnitude faster than when
using the exact set of k-nearest-neighbors.

Keywords: big data, dimension estimation, distance distribution, hash table, high dimensionality, sym-
metric k-nearest-neighbors.

1. Introduction

Let D = {x1, . . . , xn} ⊂ Rp, X ∈ Rp be a point of interest. In this work we are concerned with
the computation of the k-nearest-neighbors of X in D. Let ‖·‖ denote the Euclidean norm in Rp.
Suppose that instead of computing all distances ‖X−xi‖, i = 1, . . . , n, to obtain the exact k-nearest-
neighbors ofX , say k-NN(X) we are willing to sacrifice some precision and obtain an estimate of the
set k-NN(X). The goal is to reduce the number of computations needed to find k-NN(X), provided
that our estimate k̂-NN(X) is sufficiently close to k-NN(X). Our method consists of projecting the
data into a number, say m, of random projections so that we can recover k-NN(X) by searching for
the k-nearest-neighbors in m one-dimensional subspaces. To measure closeness, we adopt the notion
of ε-k-nearest-neighbors.
Definition 1.1. ε-k-nearest-neighbor. We will say that a point y is an ε-k-nearest-neighbor of X if
‖y −X‖ ≤ (1 + ε)‖x(k) −X‖, where x(k) is the k-nearest-neighbor of X .

Different methods to estimate the ε-k-nearest-neighbors are available. Locality-sensitive hashing (In-
dyk and Motwani 1998) is one of the earliest methods suggested in the literature. It is highly popular.
In this method, points are preprocessed and referenced by a hash-table so that a query point finds its
approximate nearest-neighbor by querying the hash table. This step takes order O(pn1/ε) operations.
The method has been refined by Gionis, Indyk, and Motwani (1999) by improving the query time
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to O(pn1/(1+ε)) operations. Shakhnarovich, Darrell, and Indyk (2006) introduced randomness in the
method, by estimating the hash function through random projections. Recently, Paulevé, Jégou, and
Amsaleg (2010) used k-means to develop a highly competitive local-sensitivity hashing method.

All these methods are designed for the purpose of performing a query with a new external point. How-
ever, in this work we are rather concerned with the task of finding the k-nearest-neighbors for each
point in D. For example, we are interested in applying our methodology to construct the k-nearest-
neighbor graph, a technique to built sparse graphs. For example, this graph is relevant when perform-
ing nonparametric regression (Altman 1992), intrinsic dimension estimation (Farahmand, Szepesvari,
and Audibert 2007), dimension reduction (Bingham and Heikki 2001), outlier detection (Hautamäki,
Kärkkäinen, and Fränti 2004), nonparametric clustering (Fränti, Virmajoki, and Hautamäki 2003),
such as hierarchical clustering or superparamagnetic (Potts model) clustering (Murua, Stanberry, and
Stuetzle 2008; Murua and Wicker 2014), for minimal spanning tree computation and density estima-
tion (Stuetzle 2003), for semi-parametric Bayesian regression with autologistic distribution (Murua
and Quintana 2017), and when performing Bayesian inference on complex data lying on a graph
(Chekouo, Murua, and Raffelsberger 2015). It is clear that in these applications, nearest neighbors
are searched for a dataset of size n, so applying the aforementioned methods would lead to a nearly
quadratic time procedure in n.

The paper is organized as follows. Section 2 gives the basic definition and principles to search for
k-NN using univariate projections. Section 2.3 introduces the main ideas and justifications for the
method implemented in this work. An application to intrinsic dimension estimation is shown in Sec-
tion 3. Section 4 contains some final thoughts about the procedure introduced in this work.

2. Method

Note that finding the nearest-neighbors in one-dimension is fairly trivial and fast if the data are already
sorted, which can be done in O(n log n) operations. The basic idea is to search for the k-nearest-
neighbors of the projection of X in each of the m subspaces. Let us denote by {xj(1), . . . , xj(k)} the
k-nearest-neighbors points to X in the j-th one-dimensional subspace, j = 1, . . . ,m. The search will
produce at most k ×m different points that are possible nearest-neighbors to X . The key idea is to
search for the k-nearest-neighbors of X among these points instead of among the entire data set D.
This would yield our estimate set k̂-NN(X). Note that this task requires the computation of the true
distances between X and the set of these points in Rp, which requires at most O(kmp) operations.
This method will be effective only if (1) the estimate set k̂-NN(X) is reasonably close to the true
set k-NN(X), and (2) km is much smaller than n. In what follows, Section 2.1, we show this it
is possible to accurately estimate the set of k-NN(x) for all x in a given dataset by just looking at
neighbors in one-dimensional projections. However, in order to make these ideas efficient, that is to
convey low computational cost, we show in Section 2.3 that it is more effective to restrict the search
of the k-NN(x) to a sufficiently small ball centered at x and of constant radius (that is, independent
of x). The method we have implemented, which is sketched in Algorithm 1, is based on this latter
methodology.

2.1. Preliminary results

Suppose that m projections a1, . . . , am are chosen at random from a Normal distribution N(0, Ip).
Suppose that

‖x1 −X‖ ≤ ‖x2 −X‖ ≤ · · · ≤ ‖xk −X‖ ≤ ‖xi −X‖, i ≥ k.

Define Yij = 1 if |a′j(X − x1)| < |a′j(X − xi)|, i ≥ 2, and let Yij = 0, otherwise. In order
to correctly find the first-NN of X using only one projection, we would need to have all Yij = 1,
i ≥ 2. Let θij = Prob(Yij = 1). Let Sim =

∑m
j=1 Yij . To correctly find the first-NN of X using

m projections, we need Sim > m/2 for all i ≥ 2. That is, we would like to have with very large
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probability, say 1− ε for some small value of ε,

Prob

(
S2m >

m

2
, . . . , Snm >

m

2

)
≥ 1− ε.

In general, we also would like to correctly find k-NN(X). Let the event Em(1) = { the first-NN of
X is correctly identified using m random projections }, and define the similar events Em(`) = { the
`-nearest neighbor of X is correctly identified using m random projections }, ` = 1, 2, . . . , k.

The following result says that we can get k-NN(X) with high accuracy provided that the number of
projections is large enough and that the points are well separated.
Theorem 2.1. Given ε > 0, we have

Prob
(
∩k`=1Em(`)

)
≥ 1− ε.

provided that the number of random projections m satisfies

m ≥ O
(

log(n/ε) + log(k/4)

)
. (1)

This result is a special case of a more general result shown in Section 2.2. Its proof follow very similar
steps as the proof of Theorem 2.3 below.

Algorithm 1 Method for finding the estimated k-nearest neighbors
Require: m, D = {x1, . . . , xn} (Preprocessing)

compute x̄ the center of x1, . . . , xn
for all j ∈ 1, . . . ,m do

select a Gaussian random direction aj ∼ N(0, Ip)
for all i ∈ 1, . . . , n do

project each point xi − x̄ on the space generated by aj producing coordinates wij
end for

end for
Require: the point of interest X (Finding the k-nearest-neighbors of X)

for all j ∈ 1, . . . ,m do
project the point X − x̄ on the space generated by aj producing coordinates Wj

compute the k-nearest-neighbors of Wj in the set {wij}ni=1

map the k-nn of Wj to the original points, say {xj(1), . . . , xj(k)} ⊂ D
end for
the estimated k-nearest neighbors of X are computed from the subset {xj(1), . . . , xj(k)}mj=1

The proof of Theorems 2.1 and 2.3 uses the following results.
Lemma 2.2. Let δ > 0, and let x, y be two arbitrary but different vectors in the sphere, Sp−1 of Rp,
with p large. Let a be a p-variate standard normal random vector, i.e., a ∼ Np(0, Ip). Then

|Cov(a′x, a′y)| = |x′y| < δ,

with probability larger than 1 − 4 exp(−pδ2/2). That is, in very high dimensions, the variables a′x
and a′y are nearly independent.

Proof. Let x⊥ be the orthogonal space of the vector x. Consider the equator E = x⊥ ∩ Sp−1 and the
set near the equator Aδ = {w ∈ Sp−1 : minz∈E‖w − z‖ < δ}. Let H+ and H− be the northern and
southern hemispheres of the sphere with equator E . Let λ(·) be the probability measure induced by
the Lebesgue measure in the sphere Sp−1. According to the Theorem for the measure concentration
for the sphere (Matoušek 2002, Section 14.1, pp. 330–332)

λ(Aδ) = λ({H+ ∪ Aδ}) + λ({H− ∪ Aδ})− 1 ≥ 1− 4 exp(−p δ2/2).
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Therefore, if y ∈ Aδ, and z ∈ E is such that ‖y − z‖ ≤ δ, we have

|Cov(a′x, a′y)| = |x′y| = |x′(y − z)| ≤ ‖x‖ ‖y − z‖ ≤ δ.

In words, this lemma says that for very large p, most of the points lie on the equator. Therefore, y
lies most likely in Aδ, and consequently, the angle α between the vectors x and y is nearly a straight
angle. This implies cos(α) = x′y ≈ 0.
Proposition 1. Let δ > 0, and let x, y, z ∈ Rp, with p large. Suppose that ‖x− y‖ < ‖x− z‖. Let a
be a p-variate standard normal random vector, i.e., a is a random projection. Given ε > 0, we have

Prob
(
|a′(x− y)|2 ≤ (1 + ε)|a′(x− z)|2

)
> 1/2 (2)

with probability larger than 1 − 4 exp(−pδ2/2). In fact the probability increases very fast with the
ratio ‖x− z‖2/‖x− y‖2. See Figure 1 below.

Proof. Note that Var(a′(x− y)) = Var((x− y)′a) = (x− y)′Var(a)(x− y) = ‖x− y‖2. Similarly
Var(a′(x− z)) = ‖x− z‖2. Hence, since a is normal, a′(x− y) ∼ N(0, ‖x− y‖2), and a′(x− z) ∼
N(0, ‖x−z‖2). Let v = a′(x−y)/‖x−y‖, u = a′(x−z)/‖x−z‖, and r(x, y, z) = ‖x−z‖/‖x−y‖.
We have

Prob(|a′(x− y)|2 ≤ (1 + ε)|a′(x− z)|2) = Prob
(
v2 ≤ (1 + ε) r2(x, y, z)u2

)
= Prob

(∣∣∣∣vu
∣∣∣∣ ≤ r(x, y, z)√1 + ε

)
.

In the Appendix, we show that w = u/v is distributed as a Cauchy distribution with density

f(w) =

{
π
√

1− ρ2
(

1 +
( w − ρ√

1− ρ2
)2)}−1

,

and distribution function arctan
(
(w − ρ)/

√
1− ρ2

)
/π + 1/2, with ρ = Cov(u, v) = (x − y)′(x −

z)/(‖x− y‖ ‖x− z‖). Therefore

Prob

(∣∣∣∣vu
∣∣∣∣ ≤ r(x, y, z)√1 + ε

)
=

1

π
arctan

(
r(x, y, z)

√
1 + ε− ρ√

1− ρ2

)
+

1

π
arctan

(
r(x, y, z)

√
1 + ε+ ρ√

1− ρ2

)
.

Note that for any w and ρ, we have

arctan

(
w√

1− ρ2

)
− arctan

(
w − ρ√
1− ρ2

)
=

∫ w/
√

1−ρ2

(w−ρ)/
√

1−ρ2

ds

1 + s2

≤ 1

1 + (w − ρ)2/(1− ρ2)
ρ√

1− ρ2
=

ρ
√

1− ρ2
1 + w2 − 2ρw

.

Similarly,

arctan

(
w + ρ√
1− ρ2

)
− arctan

(
w√

1− ρ2

)
=

∫ (w+ρ)/
√

1−ρ2

w/
√

1−ρ2

ds

1 + s2

≥ 1

1 + (w + ρ)2/(1− ρ2)
ρ√

1− ρ2
=

ρ
√

1− ρ2
1 + w2 + 2ρw

.
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Figure 1: Probabilities (vertical axis) given by the Cauchy distribution. The horizontal axis is r =
‖x− z‖/‖x− y‖.

Therefore, setting w = r(x, y, z)
√

1 + ε, we have

πProb

(∣∣∣∣vu
∣∣∣∣ ≤ r(x, y, z)√1 + ε

)
≥

2 arctan

(
r(x, y, z)

√
1 + ε√

1− ρ2

)
+

ρ
√

1− ρ2
1 + w2 + 2ρw

− ρ
√

1− ρ2
1 + w2 − 2ρw

= 2 arctan

(
r(x, y, z)

√
1 + ε√

1− ρ2

)
− 4wρ2

√
1− ρ2

(1 + w2)2 − 4ρ2w2
.

It is straightforward to show that for positive values of w, the function g(w) = w/{(1 + w2)2 −
4ρ2w2} = w/{1+w4 +2w2(1−2ρ2)} is maximized at w = 3−1/2[

√
(1− 2ρ2)2 + 3− (1−2ρ2)]1/2.

Hence, for small values ρ, the function g(w) ≤ 1/
√

3. Therefore, for small values of ρ,

πProb

(∣∣∣∣vu
∣∣∣∣ ≤ r(x, y, z)√1 + ε

)
> 2 arctan

(
r(x, y, z)

√
1 + ε

)
− 4√

3
ρ2
√

1− ρ2.

By Lemma 2.2, on the event Aδ, we have ρ ≤ δ with probability larger than 1 − 4 exp(−pδ2/2), In
this event 4ρ2

√
1− ρ2/

√
3 is of the orderO(δ2). Now using the facts that r(x, y, z)

√
1 + ε > 1, that

the function arctan(w) is strictly monotone, and that 2 arctan(1) = π/2, we obtain the desired result
for small enough values δ > 0.

2.2. A bound for the number of projections

Suppose that we have n points, x1, . . . , xn. Let a1, . . . , am ∈ Rp be m random normal projections.
We would like to correctly find k-NN(xi), i = 1, . . . , n. Let Ni,t = t-NN(xi) = {xi(1) . . . , xi(t)},
t = 1, . . . , k. Let θij(`) = Prob(|a′j(xi − xi(`))| < |a′j(xi − xh)| : h 6∈ N`). For simplicity, let
us assume that all θij(`) = θ for all i, j, `. Let the event Eim(1) = {1-NN(xi) is correctly identified
using m random projections }, and define the similar events Eim(`) = { the `-nearest neighbor of
xi is correctly identified using m random projections }, ` = 1, 2, . . . , k, and i = 1, . . . , n. By
Proposition 1, we may write θ = 1/2 + δ for some δ ∈ (0, 1/2]. The following result guarantees that
for a sufficiently large number of projections, our algorithm solves the ε-k-nearest-neighbor problem.
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Theorem 2.3. Let δ = 1/2− θ. Given ε > 0, we have

Prob
(
∩ni=1 ∩k`=1 Eim(`)

)
≥ 1− ε.

provided that the number of random projections m satisfies

m ≥
( 1

2δ2
− 2
)
O
(

2 log(n/ε) + log(k/4)
)
. (3)

Proof. First consider the case of the first-nearest-neighbor. Let b(θ) = (θ − 1/2)/
√
θ(1− θ). Us-

ing the normal approximation to the Binomial distribution (note that Sm may be approximated by a
Binomial(θ,m)), we need

Prob
(
S3m > m/2, . . . , Snm > m/2

)
= Prob

(
min
i≥3

Zi > −
√
mb(θ)

)
= 1− Prob

(
∪ni=3

{
Zi ≤ −

√
mb(θ)

})
≥ 1−

n∑
i=3

Prob
(
Zi ≤ −

√
mb(θ)

)
≥ 1− nProb

(
Z1 ≤ −

√
mb(θ)

)
≈ 1− nΦ

(
−
√
mb(θ)

)
,

where Zi denotes a standardized Binomial(θ,m) random variable, and Φ is the distribution function
of the standard normal. Now consider the general case. Using the Bonferroni inequality as above, we
have

Prob
(
∩ni=1 ∩k`=1 Eim(`)

)
≥ 1−

n∑
i=1

k∑
`=1

Prob(Ēim(`)),

where Ēim(`) denotes the complementary event of Eim(`), i = 1, . . . , n and ` = 1, . . . , k. Assuming
that k << n, each one of the terms in this sum may be approximated by n× Φ(−

√
mb(θ)). Hence,

Prob
(
∩ni=1 ∩k`=1 Eim(`)

)
≥ 1− kn2 × Φ

(
−
√
mb(θ)

)
.

Therefore, we may ask that kn2 × Φ
(
−
√
mb(θ)

)
≤ ε, which implies

−Φ−1
(
ε/(kn2)

)
≤
√
mb(θ).

Now, note that Φ−1(p) =
√

2(erf−1)(2p − 1), for 0 < p < 1, where erf(x) = 2√
π

∫ x
0 e

t2 dt. In
particular, one may use the approximation (Winitzki 2003, 2008)

erf−1(z) ≈ sign(z)

[{(
2/aπ + 1/2 log(1− z2)

)2 − 1/a log(1− z2)
}1/2

−
(
2/aπ + 1/2 log(1− z2)

)]1/2
,

where the constant a = 0.147. For very small z ∈ (−1, 0), one can easily show that the above
expression is approximately −

√
| log(1− z2)|. This is the case of interest for us, since we need to

evaluate this function at z = 2ε/(kn2)− 1. Note as well that log(1− z2) = log( 4ε
kn2 (1− ε

kn2 )) ≈=
− log(kn2/(4ε)). Using these approximations, we obtain

m ≥ 2

b2(θ)
O

(
log
(kn2

4ε

))
,

and hence (3).

Note that even though we just need m of O(log(n/ε)), the constant depending on θ may dominate.
For example for θ = 1/2 + δ, the term multiplying O(log(n/ε)) is δ−2. So in practice we may need a
large m = O(δ−2 log(n/ε)). Figure 2 displays the number of necessary projections as function of the
data size and the probability θ.
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Figure 2: Number of projections as a function of the probability θ. Here we have used k = 5.

2.3. k-NN enclosed in a ball

Note that the computations above based on quantities such as Sm involved O(n) one-dimensional
comparisons for each xi. Although this is much faster than O(n) p-dimensional comparisons for each
xi when p is very large, it will be much faster and use far less memory if the computations to find the
k-NN of the points where reduced to a few comparisons. This is the goal of this section. For example,
for each point xi and on each projection axis aj , it may be enough to just look at the univariate 2k-
symmetric nearest-neighbors (sNN, for short) of a′jxi. The idea is to compute the estimated k-NN(xi)
from its m 2k-sNN. With this method the estimated k-NN of the whole set of n points can be realized
in order O(nm[log(n) + k log(km) + kp]) as follows:

(i) Compute the m projections in O(nm) operations;

(ii) Sort the projected data in each line (projection) in O(mn log(n)) operations;

(iii) Take the 2k-sNN for each xi on each projection. Note that this is done very fast since the
projected data is already sorted. This takes O(mnk) operations;

(iv) Compute all real distances between xi and its m 2k-sNN. This takes O(nmkp) operations;

(v) For each xi, find its estimated k-NN from its m 2k-sNN. This is done in O(nmk log(mk))
operations.

Let a1, . . . , am be m random projections drawn from a Normal distribution N(0, Ip). An alternative
way of realizing the same idea is to replace the 2k-sNN for a subset of points that fall close to the
target point. Let z > 0. For each xi, define the subset Si(z) = {xh : |a′j(xi− xh)| < z for some j =
1, . . . ,m}. For the method to work well, it suffices that all the Si(z) contain about 2k points. So the
parameter z must be chosen to ensure this with high probability. For a given projection a, consider
the event Ai(z) = {x : |a′(xi − x)| ≤ z}. The distribution of the number of points xh ∈ D,
whose projections fall in the interval [−z, z] is Binomial with parameters n and probability of success
Prob(Ai(z)). The expected number of points whose projections fall in this interval is nProb(Ai(z)).
Equaling this to the desired number 2k, we get that z must satisfy Prob(Ai(z)) = 2k/n. The next
result calculates this probability.
Theorem 2.4. Suppose that the vector a ∼ N(0, Ip) and x is distributed with density fp(x). Let
Fp(z) =

∫
x Φ(‖x‖−1z) fp(x) dx, then z = F−1p

([
k
n + 1

2

])
satisfies Prob(|a′x| ≤ z) = 2k/n.

In particular, if x is distributed uniformly in a ball of radius R, then

z = G−1p
( πp/2Rp

pΓ(1 + p/2)

[k
n

+
1

2

])
,
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with Gp(z) =
∫ R
0 Φ(s−1z) sp−1ds.

Proof. Note that

Prob(|a′x| ≤ z) =

∫
x

∫ z

−z
p(v = a′x, x) dvdx =

∫
x

∫ z

−z
p(v
∣∣x)fp(x) dvdx

=

∫
x

(
2Φ(z/‖x‖)− 1

)
fp(x) dx = 2

∫
x

Φ
(
z/‖x‖

)
fp(x) dx− 1

If x is distributed uniformly in a ball of radius R, then

Prob(|a′x| ≤ z) =
2Γ(1 + p/2)

πp/2
pR−p

∫ R

0
Φ(s−1z) sp−1ds− 1.

This theorem gives the value of z. The next theorem establishes that our algorithm finds the k-NN of
the entire dataset with high probability. Let xi(1), . . . , xi(k) be the k-NN of the point xi, i = 1, . . . , n.

Assume that maxi,`{‖xi − xi(`)‖} ≤ r. Define the events Aji,`(z) = {|a′j(xi − xi(`))| ≤ z}, ` =
1, . . . , k.
Theorem 2.5. For any ε > 0,

Prob
(
∩ni=1 ∩k`=1 ∪mj=1A

j
i,`(z)

)
≥ 1− ε,

provided that m ≥ log(nk/ε)/ log(2Φ(z/r)− 1).

Proof: Recall that a′j(xi − xi(`)) ∼ N(0, ‖xi − xi(`)‖2). So that Prob(Aji,`(z)) = 2Φ(z/‖xi −
xi(`)‖)− 1 ≥ 2Φ(z/r)− 1, for all ` = 1, . . . , k, and i = 1, . . . , n. We have

Prob
(
∩ni=1 ∩k`=1 ∪mj=1A

j
i,`(z)

)
= 1− Prob

(
∪ni=1 ∪k`=1 ∩mj=1(A

j
i,`(z))

c
)

≥ 1−
n∑
i=1

k∑
`=1

m∏
j=1

(
1− Prob(Aji,`(z))

)

= 1−
n∑
i=1

k∑
`=1

m∏
j=1

2
(

1− Φ
(
z/‖xi − xi(`)‖

))
≥ 1− nk2m(1− Φ(z/r))m.

Therefore, to show the theorem, it is sufficient to ask nk2m(1 − Φ(z/r))m ≤ ε, which implies
m ≥ log(ε/(nk))/ log(2(1− Φ(z/r))).

How large is r? To answer this question, we need to know the distribution of the data (at least locally).
We consider the same setup introduced in the work of von Luxburg, Radl, and Hein (2014). For any
ε > 0, and x ∈ Rp, letBε(x) be the ball of radius ε centered at x. Suppose that the dataD ⊂ Rp is such
that support(D) verifies that for all x in its boundary, vol(Bε(x) ∩ ∂support(D)) ≥ αvol(Bε(x)),
for some 0 < α ≤ 1, where ∂support(D) denotes the boundary of support(D). Proposition 30 in
(von Luxburg et al. 2014) on the maximum distance between a point xi and its nearest k-th neighbor,
xi(k) states that:

Prob

(
max
i
‖xi − xi(k)‖ ≥ s

(k
n

)1/p
)
≤ n exp{−k/12}

where fmin > 0 is the minimum density in D, s = 2/(fminvol(B1(0))α)1/p. Assuming that the data
were generated with a uniform distribution, we have fmin = [vol(support(D))]−1. Concerning, α,
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we can easily bound it, if we assume that support(D) is a volume without spikes. For instance, if
support(D) is the unit ball, α can be made arbitrarily close to 0.5 (Li 2011). Therefore, if support(D)

is a ball of radius R, we may take r = 2R
(
2k
n

)1/p
, provided that k ≥ log n, and n is large.

3. Numerical application

As the algorithm only retrieves approximately the k-nearest neighbors of a set of points, it is impor-
tant to show that the obtained points are nevertheless useful for practical applications. The application
we have chosen is intrinsic dimension estimation. Different definitions can be given of the intrinsic
dimension which can be found in Kegl (2002), informally in the folklore it refers to the useful number
of parameters needed to describe the data. Various methods has been proposed, the correlation di-
mension estimation (Grassberger and I. Procaccia 1983), the capacity dimension (Kegl 2002) and the
maximum likelihood dimension estimation (Levina and Bickel 2004; Bouveyron, Celeux, and Girard
2011) among others. Recently, Farahmand et al. (2007) have proposed the following estimator of the
intrinsic dimension of a manifold at at point x

d̂(x) = log 2/ log
(
r̂k(x)/r̂dk/2e

)
where r̂`(x) represents the distance of x to its `-th nearest neighbor. To estimate the dimension
of the whole manifold, we simply compute the empirical mean of it : d̂ = 1

n

∑n
i=1 d̂(xi). Using

this estimator, we compare the estimation of the intrinsic dimension obtained by (a) using the exact
k-nearest neighbors, and (b) the approximate k-nearest neighbors yielded by our procedure. We
compared the estimators on several artificially generated datasets. These consisted of data drawn
from a uniform distribution over B1(0), the unit ball in Rp with p ∈ {5, 10, 20, 50}. The dataset sizes
were set to 105 or 106. The results, for the number of nearest neighbors equals to k = 10 or 30, and
the number of random projections equals to 10, 20 or 100, are displayed in Table 1. The table shows
the dimension estimations as well as the execution times.

Although the results are comparable in terms of quality, the execution times are largely in favor of
our approximate method; particularly, when the datasets contain a million points. As the number of
projection increases, the results yielded by the approximate k-nearest-neighbors method get closer
to the estimation given by the exact k-nearest-neighbor method. Also, when the number of neigh-
bors increases from 10 to 30, the results associated with the approximate k-nearest-neighbors method
improve with an increase in the number of projections. The best results for our approximate k-nearest-
neighbors algorithm are observed for 1 million point datasets, 10 neighbors and 100 projections.

The approximate k-nearest-neighbors method tends to underestimate the true dimension. A possible
explanation for this behaviour, is that the farther from a given point x we go, the less accurate the
estimation of its true `-nearest neighbor, for large ` ≤ k. This, in turn, has an effect on the formula for
estimation of the dimension. More specifically, there is a trailing error in the consecutive estimation
of the k-nearest-neighbors. Therefore, the error in the estimation of say, rk in the formula of the
dimension tends to be much larger than the error in the estimation of rdk/2e. This would produce
estimated ratios r̂k/r̂dk/2e > rk/rdk/2e. Consequently, the approximate k-nearest-neighbors estimate
of the dimension d̂ tends to be smaller than the estimate of dmade with the exact k-nearest-neighbors.
More specifically, let r̂k = rk + ek, and r̂dk/2e = rdk/2e+ edk/2e. Suppose that ek = edk/2e+ νk, with
νk > 0. Then the dimension will be underestimated if r̂k/r̂dk/2e > rk/rdk/2e. This holds if and only
if ek/edk/2e > rk/rdk/2e. Equivalently, one would need to have νk/edk/2e > (rk/rdk/2e) − 1 for the
dimension to be underestimated. This simple computation shows that underestimation may be absent
for well-separated (spread) data.

We have also tested our method on two different datasets for which we have a pretty good estimation
of the “true” intrinsic dimension. The first dataset is the MNIST (LeCun, Bottou, Bengio, and Haffner
1998) which consists in 60000 black and white images of size 28×28. Usually, the intrinsic dimension
deemed to be about 14 (Hein and Audibert 2014; Costa and Hero III 2006; Facco, d’Errico, Rodriguez,
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and Laio 2017). Here, with k = 30 neighbors and m = 100 projections we estimate the intrinsic
dimension to be 13.8 Using the exact k-neighborhood, the intrinsic dimension is estimated to be 16.2.
The computation of the approximate procedure took only 298 seconds, while the one that uses the
exact k-neighborhood took 3, 020 seconds, that is, more than ten times longer than the approximate
procedure.

The second dataset is the Dota 2 dataset collected on the UCI repository dataset website (Dheeru and
Karra Taniskidou 2017). Dota 2 contains 102, 944 Dota 2 computer game results. The games are
played by two teams of 5 players each. Each player can choose a hero among 113 possible heroes.
Given that a hero can only be chosen by one player, the 113-dimensional rows contain only 10 values
different from 0: −1 for one team and 1 for the other team; the value 0 is given to heroes that have not
been chosen by any of the teams. A reasonable guess for the intrinsic dimension is 10. In practice, we
got the estimates 7.5 with the exact k-nearest neighbors algorithm in 1, 221 seconds, and 9.3 with the
approximate k-neighborhood, in 83 seconds, for k = 10 and m = 100

Size dim k dimension timeE dimension timeA
exact k-NN (seconds) approx. k-NN (seconds)

Number proj. Number proj.
10 20 100 10 20 100

100K 5 10 8.2 166 5.5 5.8 6.4 6 12 59
100K 10 10 15.6 248 10.8 11.5 12.7 6 12 60
100K 20 10 28.7 355 18.9 20.4 23.2 6 13 62
100K 50 10 58.4 686 35.4 39.2 45.9 8 15 67
100K 5 30 5.6 322 3.8 4.0 4.3 18 40 221
100K 10 30 10.5 404 7.5 7.9 8.7 18 41 235
100K 20 30 19.2 498 13.0 14.1 15.9 19 42 222
100K 50 30 38.7 810 24.4 26.9 31.6 20 44 232
1M 5 10 8.3 22198 5.5 5.8 6.3 63 136 716
1M 10 10 16.0 30690 10.8 11.5 12.5 66 141 721
1M 20 10 29.7 41546 18.9 20.4 23.0 70 147 736
1M 50 10 62.4 66522 35.3 39.2 45.8 84 165 796
1M 5 30 5.6 32862 3.8 4.0 4.3 188 444 2635
1M 10 30 10.8 39273 7.5 7.9 8.6 190 491 2784
1M 20 30 20.0 49566 13.0 14.1 15.8 197 467 2789
1M 50 30 41.6 79428 24.4 26.9 31.4 218 495 2940

Table 1: Intrinsic dimension estimation results obtained using exact, random and approximate k-
nearest neighbors; timeE and timeA stand, respectively, for the exact and the approximate k-nearest
neighbors execution times.

4. Conclusion

An efficient algorithm for computing approximate k-nearest neighbors has been introduced in this
work. The method is easy to implement. It essentially comes down to performing random projections,
sorting points along these projection lines, and computing the distances to the nearest neighbors found
along these lines.

We have shown its efficiency with an application to dimension estimation based on k-nearest neigh-
bors. Dimensions have been estimated on artificial as well as real examples, such as the MNIST
and the Dota 2 games dataset which consists of more than 1 million observations. Our experiments
show that we still obtain very good estimates of the intrinsic dimensions while at the same time we
decrease the computing time to about two orders of magnitude. A potential improvement in perfor-
mance could be achieved by considering low-discrepancy sequences instead of random projections.
Low-discrepancy sequences, also known as quasi-random sequences, are such that any considered
subsequence has a distribution close to the uniform distribution. In our case, we would be interested
in using low-discrepancy sequences on the hypersphere (Wong, Luk, and Hen 1997). The idea is to
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explore the space of directions in a quasi-random way aiming at exploring it in a more systematic way
than just randomly. This is left for future work.
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Appendix

Let b = a′(x− y)/‖x− y‖, and d = a′(x− z)/‖x− z‖, where a ∼ Np(0, Ip), and x, y, z ∈ Rp. In
this section we show that the distribution of U = b/d is a Cauchy distribution. First, note that every
linear combination of b and d, say α1b + α2d = a′(α1(x − y) + α2(x − z)) is a Normal random
variable. Hence, (b, d) is a bivariate normal vector. Its mean is zero, and its variance-covariance

matrix is Σ =

(
1 ρ
ρ 1

)
, with ρ = (x− y)′(x− z)/(‖x− y‖ ‖x− z‖). Let (U, V ) = (b/d, d). By the

change of variable theorem, the density of (U, V ) is given by

f(U,V )(u, v) = f(b,d)(uv, v)

∣∣∣∣v u
0 1

∣∣∣∣ =
|v|

2π
√

1− ρ2
exp

{
− v2

2(1− ρ2)
(
u2 − 2ρu+ 1

)}
.

Note that u2 − 2ρu+ 1 ≥ 1− ρ2 is always strictly positive. Let σ2 = (1− ρ2)/(u2 − 2ρu+ 1). Our
goal is to find fU (u). This is given by

fU (u) =

∫
v

|v|
2π
√

1− ρ2
1

σ
√

2π
exp
{
− v2

2σ2
}
dv × σ

√
2π

==
2σ√

2π(1− ρ2)

∫ +∞

0

v

σ
√

2π
exp
{
− v2

2σ2
}
dv

=

√
2

π

σ2√
1− ρ2

∫ +∞

0

v√
2π

exp
{
−v

2

2

}
dv

=
σ2

π
√

1− ρ2
=

√
1− ρ2

π(u2 − 2ρu+ 1)

=
1

π
√

1− ρ2

(
1 +

(
u− ρ√
1− ρ2

)2
)−1

,

which is the Cauchy density with location ρ and scale
√

1− ρ2.
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