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Abstract

The At Risk of Poverty or Social Exclusion (AROPE) Rate is the key indicator for
monitoring the European Commissions 2020 Strategy poverty target. But the variance of
the AROPE Rate is not straightforward to estimate. Re-sampling methods can be used,
but they are difficult to adapt to complex sampling design, that are often used for the
surveys that provide the data source for estimating the AROPER. The presented work
fills a methodological gap by providing a linearisation of the AROPE Rate estimator that
can be used with well known variance estimators and therefore facilitate the reporting of
appropriate inference for this important indicator. The precision of the developed variance
estimators based on linearisation is assessed via simulation studies and compared with a
bootstrap variance estimator, as an alternative.
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1. Introduction

In 2010 the European Commission proposed with Europe 2020 its strategy for the development
of the economy of the European Union (EU) over the next 10 years. The target for social
inclusion was to lift at least 20 million people in the EU out of the risk of being poor or
socially excluded by 2020 (European Commission 2018). To operationalize this target an
indicator was defined as: At risk of poverty or social exclusion, abbreviated as AROPE, refers
to the situation of people either at risk of poverty, or severely materially deprived or living in a
household with a very low work intensity. The AROPE rate, the share of the total population
which is at risk of poverty or social exclusion, is the headline indicator to monitor the EU
2020 Strategy poverty target. (Eurostat 2018b)

By the definition above, AROPE is a combination of three different indicators, which are:

1. At risk of being poor, after social transfers: A person that has an equivalised disposable
income, after social transfers, below the poverty threshold, which is set at 60% of the
national median equivalised disposable income after social transfers (Eurostat 2018c).

2. Living under material deprivation: A person that is not able to afford, at least three of
the following nine items:
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� pay for rent, mortgage or utility bills

� keep their home adequately warm

� face unexpected expenses

� eat meat or protein regularly

� go on holiday

� a television set

� a washing machine

� a car

� a telephone

(Eurostat 2018e).

3. Living in a household with low work intensity: A persons living in a household where
the members of working age worked less than 20% of their total potential during the
previous 12 months (Eurostat 2018d).

If any of the above three indicators is positive for a person, AROPE is positive. The instru-
ments used to estimate the AROPE rate (AROPER) for monitoring the Europe 2020 poverty
target are the EU Statistics on Income and Living Conditions (EU-SLIC), sample surveys
that collect data on households and persons in the 28 European Union countries, Iceland,
Norway, Switzerland and Turkey (Eurostat 2018a). Hence statistical inference is needed to
test whether observed changes in AROPER estimates are significantly different from zero or
not. The purpose of this paper is to present an estimator for the sampling variance of the
AROPER estimator that can be applied under complex sampling designs, as they are common
for the EU-SILC surveys. Because the AROPER estimator is a non-linear function of the
observed data, its variance cannot be displayed in closed form and instead approximations to
the variance must be computed. The two common approaches to approximate the variance of
a non-linear estimator are linearisation and re-sampling (Münnich 2008). While re-sampling
techniques have to be adapted to the sampling design of the study, they are generic with
respect to the estimator. The opposite can be said about linearisation, where a linearised
version of the estimator has to be derived and then generic variance estimators can be used.

The proposed type of variance estimator in this work is based on linearisation using the
influence function of the AROPER estimator. This method has been popularized by Deville
(1999) and been used for statistical inference of various poverty and inequality measures
(Osier 2009). Linearisation is also the method for variance estimation mainly featured in the
Handbook on standard error estimation and other related sampling issues in EU-SILC (Berger,
Goedemé, and Osier 2013). Standard errors have been reported for AROPER estimates that
are based on variance estimates using linearisation (Eurostat 2013), but they assume the
poverty threshold to be a constant, not an estimate from the sample data, which it is.

Section 2 presents a linearisation of the AROPER estimator, that does not assume the poverty
threshold to be constant. Based on this linearisation a type of variance estimators is proposed
that can also be adopted for complex sampling designs. In Section 3 the precision of two
estimators based on linearisation is evaluated by a simulation study. For this the relative
bias and the coverage rate of corresponding confidence intervals are computed by repeated
sampling and estimation. As a comparison a non-parametric Bootstrap variance estimator is
also included in the simulation study. Finally Section 4 closes with some concluding remarks
and possible applications for the developed estimators.

2. Estimating AROPER

Consider a finite population U of N persons with an associated set of indices U = {k}Nk=1

from which a sample s ⊂ U of size n is selected. We define a sampling design as a probability



Austrian Journal of Statistics 35

distribution function P on a collection of subsets of U , called support S (Tillé (2006), p. 14).
That is, we have ∑

s∈S
P (s) = 1 . (1)

Further let

Ik =

{
1 if k ∈ s
0 else

(2)

and πk be the probability of including k into a sample s, i.e. πk = E(Ik) =
∑

s∈S IkP (s).
Also let πk l = E(IkIl) =

∑
s∈S IkIlP (s) be the probability of including k and l jointly into

a sample s. Every element k ∈ s has a survey weight wk associated with it. The principal
purpose of the survey weights is to estimate totals for population U . If wk = π−1k , the survey
weights are so called design weights and used in the Horvitz-Thompson Estimator for the
unbiased estimation of a population total (Särndal, Swensson, and Wretman 1992, p. 42)

The statistic of interest AROPER, which we will denote with µA, is defined as the population
mean of an indicator variable AROPE. As described in Section 1 the AROPE variable will
assume a value of one for person k ∈ U if any of the following indicator variables also assumes
a value one:

Lk = 1, if person k is living in a household with low work intensity, else Lk = 0

Mk = 1, if person k is living under material deprivation, else Mk = 0

Pk = 1, if person k is at risk of being poor, else Pk = 0

The indicator variable AROPE for person k ∈ U is then given by

Ak = Pk ∨ Lk ∨Mk

= 1− (1− Pk)(1− Lk)(1−Mk) .

Variables Lk and Mk are directly observable from the survey data. However Pk can only be
predicted, as the value of the poverty threshold is unknown.

Now we can write µA = τA/N , where

τA =
∑
k∈U

gkPk + (1− gk) ,

with
gk = 1− Lk −Mk + LkMk . (3)

An estimator for µA is given by a weighted sample mean (Särndal et al. 1992, p. 182) or
Hájek estimator (Hájek 1971):

µ̂A =
τ̂A

N̂
(4)

where

τ̂A =
∑
k∈s

wk

(
gkP̂k + (1− gk)

)
,

N̂ =
∑
k∈s

wk ,
(5)

and P̂k is determined by using the estimated poverty threshold based on the empirical equiv-
alised disposable income distribution of the sample.

In the following we consider two variables of interest. y, the equivalised disposable income of
a person after social transfers, and g, as defined for Equation 3 for all persons k ∈ U . The
value of (y, g) for person k is (yk, gk) ∈ R× [0, 1] ∀ k ∈ U .
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2.1. Linearisation of AROPER

We now linearise µ̂A following the approach of Deville (1999), by deriving its influence func-
tion. In contrast to the influence function as introduced by Hampel (1974), Deville (1999)
uses a finite discrete measure M for the size of the population and not a theoretical distribu-
tion function on which the functional is defined on. The statistic of interest is described by
statistical functional T of M , i.e. as T (M). The influence function of statistic T(M) at point
y ∈ R is then defined as

IF (T,M, y) = lim
ε→0

T (M + εδk(y))− T (M)

ε
, (6)

where δk(y) is the Dirac measure at point y ∈ R, with

δk(y) =

{
1 if y = yk and k ∈ U
0 else

and M =
∑

k∈U δk(yk).

To estimate T (M) estimator T (M̂) is used, a functional of stochastic measure M̂ , which
is associated with the survey weights {wk}nk=1, and close to the population size N (Goga,
Deville, and Ruiz-Gazen 2009).

For example, an estimator for a population total τ =
∑

k∈U yk for yk ∈ R ∀k ∈ U can be

written as an estimator M̂ of M . Because, τ =
∑

k∈U yk =
∫
U ydM =

∑
k∈U ykδk(yk) is a

functional of M . An obvious choice for an estimator M̂ would be M̂ =
∑

k∈swkδk(yk) = N̂ ,
(Deville 1999).

Now we describe τA and µA as statistical functionals of the following form

τA(M) =

∫
U
g1{y≤0.6·Qy(0.5,M)}dM +

∫
U

(1− g)dM

=
∑
k∈U

gk1yk≤0.6·Qy(0.5,M) +
∑
k∈U

(1− gk) ,

µA(M) =
τA(M)∫
U dM

=
τA(M)

N
,

with Qy(0.5,M) as the median of observations {yk}Nk=1. That is Qy(0.5,M) = F−1y (α =
0.5,M) with = F−1y (α,M) = inf{q ∈ R|Fy(q,M) ≥ α}, and

Fy(q,M) =

∫
U 1{y≤q}dM∫

U dM
(7)

=

∑
i∈U 1{yi≤q}

N
, (8)

and a fixed α ∈ (0, 1).

We are now looking for the influence function of µA(M). First we need to derive the influence
function of the first term in τA(M), the total of variable g for the part of the population for
which y ≤ 0.6 · Qy(0.5,M). For this we will follow the approach of Langel and Tillé (2011)
for deriving the influence function of the Quintile Share Ratio, an inequality measure. We
can write the influence function of a partial sum

Gy≤β·Qy(α,M) =
∑
k∈U

gk1{yk≤β·Qy(α,M)} (9)

with fixed 0 < α, β,< 1, at point yk as

IF (Gy≤β·Qy(α,M), yk,M) = gk1{yk≤β·Qy(α,M)} + βG̃′y≤β·Qy(α,M)IF (Qy(α,M), yk) (10)
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where G̃′y≤β·Qy(α,M) is the derivative of a smoothed function of Gy≤β·Qy(α,M). The influence

function for a quantile can be found in Osier (2009), with

IF (Qy(α,M), yk) = −
1{yk≤Qy(α,M)} − α
F̃ ′y(Qy(α,M))N

, (11)

where F̃ ′y(q) is the derivative of a smoothed function of Fy(q,M). However to avoid hav-
ing to derive smooth approximation to Gy≤β·Qy(α,M) and Fy(q,M), in order of compute
IF (Gy≤β·Qy(α,M), yk,M) we can use the same algebra as Langel and Tillé (2011). For this we
define

L(q) =
G̃y≤q
τg

, (12)

with τg =
∑

k∈U gk. Then we can write

L(q) =

∫ q
0

∫ 1
0 v dF̃g(v|y = u) dF̃y(u)∫∞
0 E(g|y = u) dF̃y(u)

=

∫ q
0 E(g|y = u) dF̃y(u)∫∞
0 E(g|y = u) dF̃y(u)

=
N
∫ q
0 E(g|y = u) dF̃y(u)

τg
,

where F̃g(v|y) is the smooth cdf of variable g conditional on y. Accordingly E(g|y = u) is the
conditional expectation of variable g given that y has value u. Hence

L′(q) =
N E(g|y = q)F̃ ′y(q)

τg
, (13)

given that L′(q)τg = G̃′y≤q we get

IF (Gy≤β·Qy(α,M), yk,M) = gk1{yk≤β·Qy(α,M)}

− β · τg L
′(β ·Qy(α,M))

N F̃ ′y(Qy(α,M))

(
1{yk≤Qy(α,M)} − α

)
= gk1{yk≤β·Qy(α,M)}

− β · E(gk|yk = β ·Qy(α,M))
(
1{yk≤Qy(α,M)} − α

)
.

(14)

Now we can write the influence function of µA(M) as

IF (µA, y,M) = IF (τA, y,M) /N (15)

where

IF (τA, y = yk,M) = gkPk

− 0.6 · E(g|y = β ·Qy(0.5,M)) (Pk − 0.5)

+ (1− gk) .
(16)

Note that Pk = 1{yk≤0.6·Qy(0.5,M)}.

We can express Estimator µ̂A in Equation 4 as functional

µA(M̂) =
τA(M̂)∫
s dM̂

, (17)

with τA(M̂) = τ̂A and
∫
s dM̂ = N̂ , as described in Equations 5. As such we can write its

influence function as

IF (µ̂A, y,M) = (IF (τA, y,M)− µA) /N . (18)
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2.2. Variance estimation

If zk is the value of the influence function of estimator in Equation 18 at point y = yk, then
under asymptotic conditions Deville (1999) shows that the variance of µ̂A can be approximated
by

V

(∑
k∈s

wkzk

)
. (19)

Values zk are not observable, as the influence function in Equation 18 contains unknown
quantities. Thus the function in Equation 18 has to be estimated, by replacing these unknown
quantities with suitable estimates. As an estimator for the values of influence function in
Equation 16 we use

v̂k = gkP̂k

− 0.6 · Ê(gk|yk = 0.6 · Q̂y(0.5, M̂))
(

P̂k − 0.5
)

+ (1− gk)

(20)

where P̂k = 1{yk≤0.6·Q̂y(0.5,M̂)}. Further, Q̂y(0.5, M̂) = F̂−1y (0.5, M̂) with F̂−1y (0.5, M̂) =

inf{y ∈ R|F̂y(q, M̂) ≥ 0.5} and F̂y(q, M̂) =
∑

k∈swk1{yk≤q}/N̂ . Ê(g|y = 0.6 · Qy(0.5,M))
is the estimated conditional probability for gk = 1, given that yk is equal to the estimated
poverty threshold. This probability can be estimated using, for example, a generalized linear
model or a generalized additive model for binomial response data. Both of these models to
estimate E(g|y = 0.6 · Q̂y(0.5, M̂)) are evaluated in the simulation study in Section 3.

Now we can construct the following estimator for the values of influence function of µ̂A

ẑk =ÎF
(
µ̂A, y = yk, M̂

)
=
(
ÎF
(
τ̂A, y = yk, M̂

)
− µ̂A

)
/N̂

= (v̂k − µ̂A) /N̂ .

(21)

In the case where wk = π−1k ∀ k ∈ U , we can estimate V
(∑

k∈swkẑk
)

by using the variance
estimator for the Horvitz-Thompson estimator of a total (Särndal et al. 1992, Section 2.3),
which is given by

V̂

(∑
k∈s

wkẑk

)
=
∑
k∈s

∑
l∈s

(πk l − πkπl)
πk l

ẑk
πk

ẑl
πl

(22)

For a Simple Random Sample the estimator in Equation 22 can be written as

N2
(

1− n

N

) s2ẑ
n

(23)

with s2ẑ =
∑

k∈s(ẑk − ẑ)2/(n− 1) and ẑ =
∑

k∈s ẑk/n.

For complex sampling designs their exist numerous approximations to the variance of a
Horvitz-Thompson estimator, that can be estimated without having to know the second-
order inclusion probabilities πk l (Matei and Tillé 2005). This gives this variances estimation
strategy based on linearisation much flexibility towards its application under different complex
sampling designs. If the wk’s are calibration weights, as described by (Deville and Särndal
1992), which is common in many surveys, e.g. to adjust for Unit-Nonresponse, the ẑk’s in
Equation 22 can be replaced by the corresponding residuals of the estimated regression of
ẑk on the auxiliary variables used in the calibration. Although to count for the randomness
of the response process a different kind of variance estimator should be used (Särndal and
Lundström 2005, Chapter 11).
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3. Monte-Carlo simulation study

We conduct a design-based simulation study to evaluate the precision of two variance es-
timators for µ̂A that are based on linearisation as described in Equation 21. One where
E(g|y = 0.6 · Qy(0.5,M)) is estimated by generalized linear model and one where a gener-
alized additive model is used. The simulation study is implement using the R language (R
Core Team 2018). To estimate E(g|y = 0.6 ·Qy(0.5,M)) with the generalized linear model the
svyglm function from the survey package was used (Lumley 2016). For the estimation with the
generalized additive model the gam function from the mgcv package was used (Wood 2018).
For both models the only predictor variable is the income variable y, where for the generalized
additive model a regression spline smoother was used on the income. As a comparison we also
include in the study a naive variance estimator, which ignores the variability of the estimated
poverty threshold, and a non-parametric bootstrap. The bootstrap variance estimator was
implement using the boot function from the boot package (Canty and Ripley 2017).

3.1. Synthetic EU-SLIC data

To generate variable y for a finite population we use the equivalised household income variable
in the data set eusilc from the R-package laeken (Alfons and Templ 2013). The eusilc data set
is synthetic and was generated based on the Austrian EU-SILC survey of 2006. It has 14827
observations. To generate a population larger than this we sample from the data by a Simple
Random Sample with replacement with a sample size equal to the desired population size.
A log-norm distributed error term is added to each selected equivalised household income to
reduce the heaping in the generated empirical income distribution. To generate g a logistic
model is used, where the probability for gk = 1 depends on yk, that is

E(gk) =
e8.4·10

−1+6·10−5·yk

(1 + e8.4·10−1+6·10−5yk)
. (24)

The value of gk is then generated as a realisation from a Bernoulli distribution. The positive
relation between yk and E(gk) in Equation 24 is motivate be the definition of gk in Equation
3. Using the Fréchet inequalities we know that

max(E(Lk) + E(Mk)− 1, 0) ≤ E(LkMk) ≤ min(E(Lk), E(Mk))

from which follows that E(LkMk)−E(Lk)−E(Mk) ≤ 0. Further, it is plausible to let E(Lk)
and E(Mk) decrease with an increasing income and vice versa, thus introducing a positive
dependency between E(gk) and yk. To evaluate the asymptotic properties of the estimators
we generate populations of different sizes but hold the sampling fraction constant at 0.1%, i.e.
the sample size will change proportionally to the population size. From each of the different
populations we take repeated samples, using Simple Random Sampling. Two measures are
used to evaluate the precision of the variance estimates, the relative bias and the coverage
rate of the confidence intervals. We define the relative bias for variance estimator V̂ (µ̂A) as

rb(V̂ (µ̂A) =
E(V̂ (µ̂A))− V (µ̂A)

V (µ̂A)
.

We use a Monte-Carlo approximations to calculate the relative bias of our variance estimators,
where E(V̂ (µ̂A)) is approximated by the mean value of variance estimates from 1000 samples
and V (µ̂A) by the variance of point estates µ̂A from 10000 samples. A higher number of
samples to approximate V (µ̂A) is chosen because the convergence for V (µ̂A) is thought to be
slower than for E(V̂ (µ̂A)). The coverage rate is defined as

cr(V̂ (µ̂A), µ̂A) = Pr

(
µA ∈

[
µ̂A ± t0.975

√
V̂ (µ̂A)

])
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Table 1: Simulation results: synthetic EU-SLIC data

N rb cr

V̂glm V̂gam V̂naive V̂boot V̂glm V̂gam V̂naive V̂boot
105 0.04944 0.05211 0.13058 0.07459 0.960 0.959 0.957 0.954
106 0.04559 0.04568 0.14123 0.01891 0.960 0.960 0.971 0.950

5 · 106 0.04901 0.04903 0.14194 0.01905 0.956 0.956 0.965 0.950
107 0.03886 0.03887 0.13169 0.02117 0.957 0.957 0.961 0.949

where t0.975 is the 97.5% quantile of the standard normal distribution. The coverage rate
is then approximated by the proportion of the 1000 sample for which the above described
confidence interval include the true value µA.

The first 4 columns of Table 1 contain the relative biases and the last 4 the coverage rates
that were obtained from the simulation study. Column labels V̂glm, V̂gam, V̂naive, and V̂boot
correspond to the different variance estimate. V̂glm and V̂gam are variances estimators as

described in Equation 23 with E(g|y = 0.6 · Q̂y(0.5, M̂)) estimated by a generalized linear
model and generalized additive model, respectively. The naive variance estimator V̂naive has
the same form as the estimator in Equation 23, but instead of ẑk the estimated AROPE
indicator variable Âk = gkP̂k+(1−gk) is used. Estimator V̂boot is a non-parametric bootstrap
variance estimator, using a Simple Random Sample with replacement of same size as the
sample size and with 99 replications. The rows of Table 1 correspond to population sizes,
105, 106, 5 · 106, and 107 respectively.

If we look at the relative bias of the variance estimates we see that none of the them are
negative and that the naive variance estimator has by far the largest bias. For the smallest
sample size of 100, corresponding to the population of size 105, estimators V̂glm, V̂gam, and

V̂boot have very similar relative biases with the estimators based on linearisation showing a
slightly lower bias. With an increasing population and sample size the bias of V̂boot reduces,
but for V̂glm, V̂gam, it stays stable and only reduce for the largest population. For populations
larger than 105 the relative bias of the two estimators based on linearisation is larger than
for the bootstrap estimator. Both appear not to converge to the true variance, or only very
slowly. However the relative bias of V̂glm and V̂gam appears to be bounded for larger sample
sizes (e.g. n > 1000), at or below 5%, which can be regarded as low and enables reasonable
inference for µA, as is shown by the corresponding coverage rates. The coverage rate for
V̂boot for all populations is almost right on the target value 0.95. For estimators V̂glm and

V̂gam the coverage rates are slightly higher, but still close to 0.95. Estimator V̂glm and V̂gam
preform almost identical, which is to be expected given the relationship between gk and yk,
as described in Equation 24.

In Section 3.2 a more complex data structure is examined, where the dependency between
yk and gk is not model directly. Instead Lk is modelled based of the working month for a
household, on which yk depends as well. Material deprivation Mk will directly model after yk.

3.2. Full synthetic data

To generate the three indicator variables that the AROPE indicator is composed of, a pop-
ulation of persons is generated with households specific variables. At first a household size
variable is generated by drawing from a multinomial distribution. Then working months are
associated with the household size. Possible values for working month per household mem-
ber are 0, 3, 6, 9, 12. If the combined working months of the household of person k are
below 20% of its maximal working months, 12 times the household’s size, then Lk = 1, else
Lk = 0. The income variable yk is modelled after the working months of the household.
Average monthly earnings are generated from an exponential distribution with mean 1.700.
The average monthly earnings are then multiplied by the working months of a household
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to generate its yearly income. Then the household income is equivalised in relation to the
household size to generate yk. If the household is of size 1 it remains unchanged, for size 2 the
household income is divided by 1.5, and for each additional households member the scaling
factor increases by 0.5. If the household of person k has an equivalised income below 60% of
the median equivalised income for all households Pk = 1, else Pk = 0. The indicator variable
for living under material deprivation is directly dependent on yk, with E(Mk) = 1/(yk+1)0.25.
The value of Mk is generated as a realisation of a Bernoulli distribution.

Table 2: Simulation results: full synthetic data

N rb cr

V̂glm V̂gam V̂naive V̂boot V̂glm V̂gam V̂naive V̂boot
105 0.11697 0.08280 0.91234 0.24923 0.956 0.955 0.987 0.969
106 0.11489 0.06337 0.92957 0.10707 0.949 0.941 0.994 0.947

5 · 106 0.10029 0.04881 0.90661 0.05046 0.961 0.953 0.995 0.956
107 0.09083 0.03954 0.89039 0.02585 0.961 0.957 0.991 0.950

Table 2 shows the results of the simulation study for the fully synthetic population. The study
was implemented the same way as the simulation with the synthetic EU-SILC data in Section
3.1. The naive variance estimator V̂naive also over estimates, however to a larger extent than
in the previously described study in Section 3.1. The consequence of this over estimation
is shown in the corresponding coverage rates, which are close to one for all populations,
but the smallest. If we look a the variances estimators based on linearisation, V̂glm and

V̂gam, we see that the relative bias for V̂glm is higher for all populations. The generalized

additive model seems more apt for modelling the relationship between gk and yk, with V̂gam
performing well even for low samples sizes. If we compare V̂gam with V̂boot we see that for two
smallest population the linearisation method is more precise than the re-sampling method.
For population size 5 · 106, the relative bias of both estimators is very similar and only for
the largest population size V̂boot outperforms V̂gam. The coverage rates for V̂boot are also
similar to V̂gam, apart from the smallest population, where the much higher bias of the re-
sampling method leads to a coverage rate of 0.969 compared to 0.955 for V̂gam. For the
smaller population sizes it can be observed that coverage rates are still close to their target
value despite a high bias of some variance estimators. This can be explained by the fact that
the distribution of point estimator µ̂A is not close enough to normality, e.g. the t0.975 quantile
might not be appropriate for the confidence intervals. The two error sources, biased variance
estimate and inappropriate confidence intervals seem to cancel each other out. For larger
sample and population sizes the normal approximation of the point estimator works better
and more precise variance estimators also lead to better coverage of the confidence intervals.

4. Conclusions

Deville (1999) linearisation technique, using influence functions, has been used to derive a
class of variance estimators for the AROPER estimator. Two variance estimators based
on linearisation have been proposed that can be applied to sample surveys with complex
sampling designs. Both estimators haven been tested in two simulation studies and compared
against alternative variance estimators. A naive approach, which ignores the complexity of
the measure that AROPER is based on, and a bootstrap re-sampling method. The estimator
based on the naive approach has been identified as inadequate for estimating the variance of
the AROPER estimator. The results form the simulation studies for the estimators based on
linearisation validate the method, showing that they can be used to making adequate inference
for the AROPER indicator. Compared to the bootstrap method linearisation preforms better
for small sample sizes (e.g. n=100). However the re-sampling method converges faster, while
the linearisation method shows a positive bias that appears to bound around 4% in both
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simulation studies.

Both simulation studies in Section 3 use simple random sampling and not a complex sampling
design. This was done to have a straightforward comparison between the different variance
estimators. A complex sampling design will affect the variance of estimators in their own way,
making it harder to attribute the asymptotic behaviour of variance estimators to the variance
estimation technique (e.g. linearization or re-sampling) alone (Helga and Eckmair 2016).
However, simulation studies with complex sampling designs would be a welcome addition to
the presented simulation studies. In particular it would be of interest to evaluate how the
estimation of E(g|y = 0.6 ·Qy(0.5,M)) is affected by complex sampling designs.

Of the two estimates based on linearisation that have been considered, the estimator that
uses a generalized additive model seem to be more adequate for modelling the relationship
between variable gk, as defined in Equation 3, and the income variable yk. Thus the additional
computational effort of using a generalized additive model, compared to a generalized linear
model, seems to be justified. For surveys that have unequal weights there are estimators
that allow for the usage of survey weights when estimating a generalized linear or generalized
additive model. For example, the R functions mentioned at the beginning of Section 3 to
estimate both model types allow for the usage of weighted data.

Variance estimators based on linearisation are not only flexible with regard to the sampling
design but it is also straightforward to use for domain estimates. For surveys with complex
sampling designs variance estimation can be made possible by providing re-sampling weights.
However these re-sampling weights are usually constructed to do inference on the population,
not on a subset of it. Their usability for domain estimation has to be built in when they
are constructed. For linearisation methods this limitation does not apply and the method
developed in this article is applicable as long as the design weights of a survey are known.
Also for the estimation of change the developed linearisation of the AROPER estimator can
easily be used in the variance of change estimators presented by Berger (2004) and Berger
and Priam (2016), to assess whether an observed change in AROPER estimates is significant
or not. Thus the method presented in this paper is considered a valuable addition to the tool
set of analysts who want to report for the AROPER indicator confidence intervals, significant
change over time, or inference for certain population domains.
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