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Université de Lille

Abstract

This article presents two methods to sample uniform subtrees from graphs using
Metropolis-Hastings algorithms. One method is an independent Metropolis-Hastings and
the other one is a type of add-and-delete MCMC.

In addition to the theoretical contributions, we present simulation studies which con-
firm the theoretical convergence results on our methods by monitoring the convergence of
our Markov chains to the equilibrium distribution.
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1. Definitions

A graph is a heavily used data structure in the world of algorithms and there are numerous
applications of it in computer science like networks of communication, data organization,
computational devices and the flow of computation. Graphs have proven particularly useful
in linguistics in addition to the use of them in chemistry, physics, sociology and biology.
Let G(V,M) be a graph consists of V as its finite set of vertices and M is a finite set of ordered
pairs of the form (u, v) called edges. The graph is directed if the pair (u, v) is not the same
as (v, u), where (u, v) indicates that there is an edge from vertex u to vertex v, while it is
undirected if both pairs represent the same edge. Also, a graph is called regular if each vertex
has the same number of neighbours; i.e. every vertex has the same degree. A special case of
regular graphs is called complete graphs where any vertex in the graph is connected with all
other vertices. A graph is connected if for every pair (x, y) of distinct vertices there is a path
from x to y. A graph without any cycle is a forest; a tree T (VT ,MT ) is a connected forest
where the order of a tree is its number of vertices |VT | and the tree size is its number of edges
|MT |. For a rigorous presentation of graph properties we recommend (Bollobás 1979) and
(Bollobás 2001). Here we consider the uniform distribution over trees T (VT ,MT ) verifying
card(VT) = k + 1.
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2. Literature review

Many applications are generating very huge graphs with thousands and millions of vertices.
These large graphs are challenging to study because they need to run expensive algorithms
such as simulations in addition to that it is hard to get an impression of the graph topology
from visualization. Unfortunately, such activities on large graphs usually cost a lot of time
that is computed at least polynomially in the number of vertices. One way to reduce the
runtime is to reduce the graph size by sampling a structure from the large graph which ap-
proximates the original graph well.
Graph mining is a branch of data mining which is used for mining graph structures (Rehman,
Khan, and Fong 2012). It has gained much attention during the last years and finds its appli-
cations in many domains like: social and computer networks, bioinformatics and chemistry.
In the literature, various approaches for graph mining have been proposed for classification,
clustering and sampling. In general, the graph sampling methods, which are our concern,
are divided into three categories (Ahmed, Neville, and Kompella 2011): node sampling, edge
sampling and topology-based sampling.
Node sampling algorithm simply creates a representative structure by sampling the vertices
uniformly where the edges between the sampled vertices in the large graph are considered as
edges also in the sampled structure. A known related method is called random node-edge
sampling (Hu and Lau 2013) where vertices are uniformly sampled and edges that are incident
to these vertices are also uniformly sampled in the sample graph. Additionally, some node
sampling methods also consider the neighbors of the sampled vertices like the random node-
neighboursampling method (Leskovec and Faloutsos 2006) where all the edges that are linked
to the sampled vertices in the graph are sampled into the required structure. Moreover, many
of those methods were developed to use the graph topology information by integrating with
topology-based sampling methods like the random walk sampling (Yoon, Lee, Yook, and Kim
2007) and the Metropolis algorithm (Hübler, Kriegel, Borgwardt, and Ghahramani 2008),
which replaces some sampled vertices with other vertices, sample structure with properties
consistent with the graph.
Similarly, edge sampling builds a subgraph by sampling edges randomly. For instance, in ran-
dom edge sampling (Ebbes, Huang, Rangaswamy, and Thadakamalla 2008), the subgraph is
built from edges sampled randomly and uniformly. Another modified edge sampling method
is the induced edge sampling (Ahmed, Neville, and Kompella 2012) with both of its exten-
sions, the totally induced edge sampling and the partially induced edge sampling. The first
one applies the random edge sampling and obtains adjacent vertices from these edges, then
all edges attached to those vertices are chosen to the sampled graph. In contrast, partially
induced edge sampling applies the edge sampling where edges are sampled according to a
probability.
Various approaches that leverage tree mining algorithms were developed as well since trees
are one of the most well studied probabilistic structures in graphs. Over the past decade,
trees have found a surprising number of applications in Internet and computer science like,
for example, XML which is a markup language designed to store and transport data. For
instance, XML data is very popular because of the nature of its tree structure and as a result
it is necessary to develop methods that can treat and extract patterns from this type of data
like, for example, tracking down the common trees existing among a set of such data. Addi-
tionally, it has been heavily researched in biology and bioinformatic where trees are widely
used to represent various biological structures like glycans, RNAs, and phylogenies. For ex-
ample, Shapiro and Zhang (1990) studied the function of the RNA where the RNA structures
were collected in trees in order to compare any newly sequenced RNA to compare the simi-
larities in the topological patterns. Takigawa, Hashimoto, Shiga, Kanehisa, and Mamitsuka
(2010) represented glycans as directed trees in which nodes are monosaccharides and edges
are linkages and proposed an efficient method for mining frequent and statistically signifi-
cant subtrees from glycan trees. For a good survey of trees mining algorithms in biology, see
(Parthasarathy, Tatikonda, and Ucar 2010)
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The authors in a previous work (Hancock, Wicker, Takigawa, and Mamitsuka 2012) sampled
pathways of genes within significantly coordinated expression profiles. They aimed at identi-
fing the important metabolites which are driving the function of the network by comparing
these metabolites to the metabolites in sampled pathways. As a consequence, they have been
motivated to search for another bigger structure that can better identify these metabolites.
Although there are many known methods in literature to sample from a graph, most are
designed either to sample subgraphs that are representative to the original graph according
to the graph properties as in the work of (Hübler et al. 2008) or to sample frequent struc-
ture patterns as in (Yan and Han 2002) which are not our concern in this work, in addition
to the fact that using most of these techniques generally is not efficient to sample subtrees
specifically because these subtrees will represent a small proportion of the sampled stuctures.
Our contribution in this work is to present two techniques to sample trees according to a
distribution from a graph where the vertices are labelled, i.e the tree structure, a.k.a pattern,
is not taken into consideration in our method as well as the graph properties.

3. Sampling methods

Sampling uniformly subtrees of a given size that are obtained from an initial graph is not a
trivial problem. A way to solve this problem is to use Markov chain Monte Carlo (MCMC)
sampling (For general references on Markov chains and Markov chain Monte Carlo see (Ke-
meny and Snell 1983), (Robert and Casella 2009) and (Brooks, Gelman, Jones, and Meng
2011)). Here, for this purpose, we present a Metropolis-Hastings (MH) dynamics.
The MH algorithm is an iterative procedure that simulates a Markov chain. If the simulated
Markov chain is irreducible and aperiodic, as the configuration space of the chain is finite,
the algorithm is convergent. More precisely, this means that the outputs of the algorithm
are asymptotically distributed according to the unique invariant distribution of the simulated
Markov chain (Häggström 2002).
The principle of the MH algorithm is the following: let π be a distribution of interest and
consider xt the current state of the chain. A new candidate x∗ is proposed according to a
proposal distribution q(xt, x∗). The proposed candidate is accepted as the new state of the
chain, i.e xt+1 = x∗ with probability :

α =
π(x∗)

π(xt)

q(xt, x∗)

q(x∗, xt)
∧ 1 =

q(xt, x∗)

q(x∗, xt)
∧ 1

We present two methods for sampling uniformly trees with k edges from an undirected and
unweighted graph. The first method samples uniform trees according to an independent
Metropolis-Hastings, whereas the second method does it according to a non-independent
Metropolis-Hastings algorithm.
Our Markov chain (Xt) is produced through the transition kernel:

Xt+1 =

{
x∗ with probability = α
xt with probability = 1− α

For the independent method, we use a special case of the Metropolis-Hastings algorithm where
the candidate x∗ is independent of the present state of the chain xt so q(x∗, xt) = q(x∗) and
the transition kernel:

Xt+1 =

{
x∗ with probability α = q(xt)

q(x∗) ∧ 1

xt with probability 1− α

In what follows, first each method is detailed and then their convergence speeds are studied.

3.1. First method: independent uniform trees

In the following we present the proposal distribution for the independent sampler. This
method generates the candidate tree x∗ in the following way. A vertex vi1 is selected ran-
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domly from the original graph and receives a weight wi1 = k, next this weight wi1 is distributed
among all neighbours in the graph so that each vertex receives a weight, then vertices with
weight greater than 0 are selected as neighbours for the first vertex in the generated subtree.
The weight k represents the number of vertices we can connect for the whole subtree after
choosing a given vertex, this weight is distributed on the selected neighbours according to a
uniform multinomial distribution with equal probabilities. This process is conducted itera-
tively until no weight is left anywhere. Algorithm 1 presents the detailed steps to generate a
tree T , it is important to note that A is an ordered set where the last entered vertices are the
smallest in the ordering sense.

Algorithm 1 Generate a random tree T

uniform selection of v among V
T ← v
w(v)← k + 1
the ordered set of active vertices A← v
while A 6= ∅ do

select the first vertex v in A
A← A \ v
let n(v) = vi1 , . . . , vi|n(v)| be the neighbours of v in the graph not already selected in the tree

if n(v) = ∅ and w(v) > 1 then
the algorithm will stop and relaunch again from the beginning

else
the weight w(v) − 1 is distributed among n(v) using a multinomial law M(w(v) −
1, |n(v)|−1, . . . , |n(v)|−1)
for all v∗ ∈ n(v) do

if w(v∗) > 0 then
A← A ∪ v∗
T ← T ∪ v∗

end if
end for

end if
end while

To compute p(T ), the probability of generating a subtree T , start from any vertex v of T and
compute the probability of generating the subtree T starting from it. Algorithm 2 allows to
compute the probability of generating a subtree as detailed in its description. nT (v) denotes
the neighbours of v in subtree T . Also, p(x∗) must be computed to take into account all the
possible ways of generating x∗.

Algorithm 2 Compute the probability p(T ) of generating T

p(T )← 0
for all v ∈ T do
T
′ ← T \ v

compute w(v)
p← 1 and A← v
for all v ∈ A do
A← A \ v
p← p× (w(v)−1)!

w(vi)!...w(v|nT (v)|)!
1

|nT (v)|w(v)−1

A← A ∪ {v1 . . . vnT (v)}
end for
p(T )← p(T ) + p

end for

The weights used to compute the probability of generating a subtree are computed as shown
in algorithm 3.
The chain is clearly irreducible as each subtree has a positive probability of being sampled

at each step. This also implies the aperiodicity since it is always possible to stay at the same
state.
Bollobás (2001) showed that for r ≥ 2 and n ≥ 3, if Yi is the number of cycles of length at most
i in a r−regular graph generated by the Erdős-Rényi random graph, then Y3, Y4, ..., Yn are
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Algorithm 3 Compute w(v, T
′
)

w(v)← 1

for all vi ∈ nT (v) ∩ T ′ do
T
′ ← T

′ \ vi
compute weight w(vi)
w(v)← w(v) + w(vi)

end for

asymptotically independent Poisson random variables with mean λi = (r−1)i/2i. We assume
henceforth that these random variables follow a Poisson distribution, indeed in practical
applications the graph size is often large. Under these assumptions the following result gives
a bound on the speed of convergence for the independent Markov chain sampler.

Theorem 1. Assume that Yk + 1 is a Poisson distributed random variable representing the
number of cycles of length at most k + 1, then for a random r−regular graph in Erdős-Rényi
random graph model, where the vertex degree r ≥ 2 and each vertex is contained in a cycle of
length at least k + 1, we have for any starting state x:

‖Mm
x − π ‖2≤

1

4π(x)

(
1− k + 1

nrk(k+1)/2

(
(r − 1)k

2

(
r − 1

k + 1
− 1

k

)
− 2

√
(r − 1)k+1

α(k + 1)

))2m

with a probability larger than 1 − α, where Mm
x is the mth updated distribution and π is the

target distribution.

Proof. For the convergence, we can use the bound on the total variation distance:

‖Mm
x − π ‖2≤

1

4π(x)
(1− u(1))2m

with u(1) = min(p(x)/π(x)) (Liu 1996). As π(x) is the inverse of the number of subtrees, we
need a lower bound on the number of subtrees of a given size k in a graph.
The number of subtrees can be bounded considering that a tree is obtained whenever a cycle
of length k + 1 is deprived of an edge, in this way we can obtain k + 1 different subtrees of
size k. Moreover, if we can have c such cycles we are able of generating (k+ 1)c subtrees, this
is the way we follow to lower bound the number of subtrees although it is a fact that the true
number of subtrees in a graph is bigger than the number of subtrees generated in our way.
Let Yk+1 denote the number of cycles of length at most k+1. Let us denote by F the following
event: |Yk+1 − Yk − (E(Yk+1)− E(Yk))| < ε then the number of cycles of size exactly k+ 1 is
Yk+1 − Yk which verifies:

P (F ) ≥ P
(∣∣∣∣Yk+1 −

(r − 1)k+1

2(k + 1)

∣∣∣∣ < ε/2 ∩
∣∣∣∣Yk − (r − 1)k

2k

∣∣∣∣ < ε/2

)
⇔ P

(
FC
)
≤ P

(∣∣∣∣Yk+1 −
(r − 1)k+1

2(k + 1)

∣∣∣∣ < ε/2 ∩
∣∣∣∣Yk − (r − 1)k

2k

∣∣∣∣ < ε/2

)C
⇔ P (FC) ≤ P

(∣∣∣∣Yk+1 −
(r − 1)k+1

2(k + 1)

∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣Yk − (r − 1)k

2k

∣∣∣∣ > ε/2

)
−

P

(∣∣∣∣Yk+1 −
(r − 1)k+1

2(k + 1)

∣∣∣∣ > ε/2 ∩
∣∣∣∣Yk − (r − 1)k

2k

∣∣∣∣ > ε/2

)
⇒ P (FC) ≤ 2(r − 1)k+1

(k + 1)ε2
+

2(r − 1)k

kε2
using Chebyshev inequality

⇒ P (FC) ≤ 4(r − 1)k+1

(k + 1)ε2

⇒ P (F ) ≥ 1− 4(r − 1)k+1

(k + 1)ε2
(1)
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let ε =

√
4(r − 1)k+1

(k + 1)α
, (2)

then we can conclude that with probability larger than 1− α:∣∣∣∣Yk+1 − Yk −
(

(r − 1)k+1

2(k + 1)
− (r − 1)k

2k

)∣∣∣∣ ≤ 2

√
(r − 1)k+1

α(k + 1)

⇒
∣∣∣∣Yk+1 − Yk −

(r − 1)k

2

(
r − 1

k + 1
− 1

k

)∣∣∣∣ ≤ 2

√
(r − 1)k+1

α(k + 1)

Yk+1 − Yk ≥
(r − 1)k

2

(
r − 1

k + 1
− 1

k

)
− 2

√
(r − 1)k+1

α(k + 1)
(3)

Let S denote the set of all possible subtrees of size k that can be obtained from our graph. A
given tree of size k can be generated for the proposal distribution in k+1 different ways when
starting from any vertex in the tree. Additionally, each way involves l steps (l ∈ 1, . . . , k)
representing number of multinomial steps, at least 1 if all weights are distributed at once in
a star-like manner, and at most k if weights are given every time to a single vertex producing
thus a path of length k+ 1. As a consequence, each subtree has a proposal probability of the
form:

1

n

l∏
i=1

wi!

wi1! . . . wiri !

1

rwi
i

where i ≤ r

≥ 1

n

k∏
i=1

1

rwi
i

with wi = wi1 + · · ·+ wiri

≥ 1

nr
∑

i wi

≥ 1

n

1

rk(k+1)/2

Thus the probability p(T ) of generating a tree is lower bounded by:

1

n

k + 1

rk(k+1)/2
(4)

Gathering results of equations 3 and 4 we obtain:

‖Mm
x − π ‖2 ≤

1

4π(x)
(1− u(1))2m

≤ 1

4π(x)

(
1− k + 1

nrk(k+1)/2

(
(r − 1)k

2

(
r − 1

k + 1
− 1

k

)
− 2

√
(r − 1)k+1

α(k + 1)

))2m

Clearly, this bound goes to 0 while assuming that the graph is large; i.e the number of
vertices |V | = n is large. We assumed that each vertex is contained in a cycle of length k+ 1
to guarantee that the proposed subtree x∗ can be obtained from any of its vertices. In general,
the success rate s of algorithm 1 will be strictly lower than 1. It is worth to mention that
s is not the Metropolis-Hastings acceptance rate to avoid misleading interpretations. More
precisely, algorithm 1 failure results from a shortage of the number of required neighbours for
the selected vertex in comparison to the given weight of this vertex that will be distributed
among neighbours which will cause algorithm 1 to stop and start again from the beginning.
The success rate could be estimated as s ≈ (number of acceptances)/(number of steps)
which is normally close to 1 unless the border is large as on expander graphs for example.
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Theorem 2. Let Yk + 1 be the same random variable defined in Theorem 1 and s represents
the algorithm success rate, then for a random r−regular graph, where r ≥ 2, we have for any
starting state x:

‖Mm
x − π ‖2≤

1

4π(x)

(
1− s(k + 1)

nrk(k+1)/2

(
(r − 1)k

2

(
r − 1

k + 1
− 1

k

)
− 2

√
(r − 1)k+1

α(k + 1)

))2m

with a probability larger than 1 − α, where Mm
x is the mth updated distribution and π is the

target distribution.

Proof. Again, we use the total variation distance to bound the convergence:

‖Mm
x − π ‖2≤

1

4π(x)
(1− u(1))2m

with u(1) = min(p(x)/π(x)) (Liu 1996). If we ignore the constraint in Theorem 1 stating
that each vertex is contained in a cycle of length at least k+ 1 then it is possible at any step
during the process that the distributed weight among the chosen vertex is greater than the
number of neighbours for this vertex which will cause algorithm 1 to stop and start again
from another vertex. The probability of generating a subtree needs to be adjusted, for this,
first we compute it conditionally on the success of algorithm 1. It is bounded by

1

nc

k∏
i=1

wi!

wi1! . . . wir!

1

rwi
i

≥ 1

n

k∏
i=1

wi!

wi1! . . . wir!

1

rwi
i

≥ 1

n

k + 1

rk(k+1)/2

where c is the normalizing constant upper bounded by 1 as the distribution of weights is
constrained by the success of algorithm 1. Next, we can use again bound 3 on the number of
cycles as well as the success rate s to obtain:

‖Mm
x − π ‖2 ≤

1

4π(x)
(1− u(1))2m

≤ 1

4π(x)

(
1− s(k + 1)

nrk(k+1)/2

(
(r − 1)k

2

(
r − 1

k + 1
− 1

k

)
− 2

√
(r − 1)k+1

α(k + 1)

))2m

The convergence speed for this chain is O((s−1nr
k2

2 )).

Corollary 1. For the random r−regular graph in Theorem 1, with a probability larger than
1− α, the method restricted to path sampling verifies:

‖Mm
x − π ‖2≤

1

4π(x)

(
1− 2

nrk(k+1)/2

(
(r − 1)k

2

(
r − 1

k + 1
− 1

k

)
− 2

√
(r − 1)k+1

α(k + 1)

))2m

Proof. The only thing to do is to replace factor k + 1 by 2 in the proof of Theorem 1 in
equation 4 as there can be only two starting points for a path.

3.2. Second method: crawling uniform trees

As a first step, we initialize the algorithm by selecting a random vertex and adding k edges
greedily to build a tree of order k + 1. Following, the crawling method modifies the initial
subtree by shifting randomly one of its edges, i.e an edge is deleted randomly and another is
randomly added. The Metropolis-Hastings acceptance rate is:

q(xt, x∗)

q(x∗, xt)
∧ 1 with q(xt, x∗) =

{
1
2

1
|n

G
′ (xt)| if x∗ 6= xt

1
2 if x∗ = xt
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where nG′ (x
t) denotes the set of neighbours for the tree xt in the graph G

′
(V
′
, E
′
) representing

the Markov chain state space. Let nxt(vi) denotes the set of neighbour vertices inside the tree
xt for all vertices belonging to the tree xt, lxt represents the set of leaf vertices in the tree
which are vertices connected to only one neighbour vertex in the tree xt and finally let nG(vi)
the set of neighbours for the tree leaves inside the graph G(V,E) which don’t belong to the
tree xt. Algorithm 4 presents the steps to generate a tree x∗ from a randomly initialized tree
xt.

Algorithm 4 Generate a a tree xt+1

Require: A tree xt where VT = {v1, v2, . . . , vk+1} and ET = {e1, e2, . . . , ek}
Initialize lxt = {vi ∈ xt s.t |nxt(vi)| = 1}
Initialize nG(xt) = {vj ∈ V \VT s.t. e = (vi, vj) ∈ E where vi ∈ xt & vj /∈ xt}
while not mixed do

Sample vi in lxt

xt ← xt\{vi}
Update nG(xt)
Sample vj in nG(xt)

xt+1 ← xt ∪ {vj} with probability α← min
{

1, q(x
t,xt+1)

q(xt+1,xt)

}
xt+1 ← xt ∪ {vi} with probability 1− α

end while

This chain is aperiodic since q(xt, x∗) > 0 for all states x∗ which allow it to stay at the same
state with a positive probability. Also, it is irreducible as will be seen along the proof of
theorem 3.
In order to bound the mixing time of a Markov chain, we will use the second smallest eigen-
value λ1 by making the Markov chain lazy where a lazy chain stays in the current state at
each step with probability at least 1/2. Factor 1/2 is a sufficient condition for the transition
probability matrices to have only positive eigenvalues.
First, let us recall that the Cheeger constant for graph G(V,E) is defined as

h = min
S

|E(S, S̄)|
min{vol(S), vol(S̄)}

where vol(S) stands for the sum of degrees of vertices in S and |E(S, S̄)| for the number of
edges between S and S̄. Henceforth S will denote the subset of V realizing this minimum and
without loss of generality we consider that S = min{S, S̄} so that

h =
|E(S, S̄)|

vol(S)
.

Lemma 1. Let h represents the Cheeger constant for the graph G(V,E) and vol(V ) denotes
the sum of degrees of vertices in V , then there exists a set of paths Γ where b is the maximum
number of paths containing an edge e such that b ≤ bvol(V )

h c+ 1.

Proof. This is proven by contradiction. First let us recall that a path is a sequence of edges
which connect a sequence of distinct vertices. For convenience, c will stand for bvol(V )/hc.
Let us suppose that whichever the set of paths Γ there is always an edge e with at least c+ 2
paths containing it. Then, e is an edge between two vertices a and b. Let us suppose that
there is a path p between a and b with edges supporting less than c + 1 paths, then edge e
could have less than c+ 2 paths crossing it by replacing a path x→ a→ b→ y which crosses
e by the new path x → a → p → b → y. So in any path between a and b one will meet at
some point an edge supporting at least c+ 1 paths. The consequence of it, is that there is a
graph cut between a and b containing only edges with at least c + 1 paths. This graph cut
creates two subgraphs, A and B containing respectively a and b. We show now that this leads
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to a contradiction. Indeed, by definition of S

|E(S, S̄)|
vol(S)

≤ |E(A,B)|
vol(A)

if, without loss of generality, vol(A) ≤ vol(B)

⇒ vol(A)vol(B)

|E(A,B)|
≤ vol(S)vol(B)

|E(S, S̄)|

⇒ |A|.|B|
|E(A,B)|

≤
⌊

vol(V )

h

⌋
+ 1 (5)

By hypothesis, each edge in |E(A,B)| belongs to at least c + 1 paths and in particular e
supports c+2 paths. It is then immediate, that the mean number of paths per edge belonging
to |E(A,B)| is strictly greater than c+1 which is impossible when observing the last equation.
This concludes the proof.

Theorem 3. Let a be the maximum number of subtrees associated to a vertex , dmax is the
graph maximum degree, D is the graph diameter and λ1 is the second smallest eigenvalue on
the graph then for any starting state x such that Mm

x is the mth updated distribution and π
is the target distribution we have:

‖Mm
x − π ‖2≤

1

4π(x)

(
1− 1

K

)2m

with K ≤ 2a2dmaxk
2(k + 1)2(D + k)

(
2dmax
λ1

+ 1
)

.

Proof. Again, let G
′
(V
′
, E
′
) be the Markov chain state space or simply the graph of subtrees

with k edges. According to Sinclair (1992), the Markov chain has the following bound on its
second smallest eigenvalue:

λ1 ≤ 1− 1

K
with K = max

e
Q(e)−1

∑
γxy3e

|γxy|π(x)π(y)

where |γxy| stands for the length of the path γxy and Q(e) = π(e1)P (e1, e2) if e is the edge
(e1, e2).
K can be bounded in the following way

K ≤ max
e

1

π(e1)P (e1, e2)

∑
γxy3e

π(x)π(y)D′ where D′ is the diameter of G′(V ′, E′)

≤ π(x)b′D′max
e

1

P (e1, e2)
(6)

where P (e1, e2) is the transition matrix and b′ stands for the maximum number of paths
crossing an edge e in the graph G′(V ′, E′).
At this point, we have to make P (e1, e2) more explicit, indeed Q(e1, e2) is the Markov chain
related to the Metropolis-Hastings algorithm being used, that is:

P (e1, e2) =

(
q(e2, e1)

q(e1, e2)
∧ 1

)
q(e1, e2) where q(e1, e2) is the proposal law

= q(e1, e2) ∧ q(e2, e1)

≥ 1

2|nG′ (xt)|

≥ 1

2k2dmax
(7)

where the probability 1
2 is due to the laziness. Thus,

K ≤ 2π(x)k2dmaxb
′D′ (8)
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First, let us start by bounding the value of b
′
. Here we need to use conductance information

on the graph G(V,E) given by b. The set of paths Γ′ on G
′
(V
′
, E
′
) is derived from the set of

paths Γ in G(V,E) in the following way. To each vertex v ∈ V is associated the set of subtrees
containing it and denoted by T (v). So if we want to have a path between two subtrees s and
t, we look for vs ∈ V and vt ∈ V such that s ∈ T (vs) and t ∈ T (vt). Then, if there is a
path vs = v1 → v2 · · · → vn = vt between vs and vt, there is an associated path between s
and t, denoted by s = t(v1) → t(v2) → · · · → t(vn) where t(vi) ∈ T (vi). This is possible as
vi ∼ vi+1, so to obtain t(vi+1) connected to t(vi) it is enough to remove the farthest edge of
t(vi) to t(vi+1) and replace it by the edge vivi+1. By the way, this shows that D

′ ≤ D + k.
The additional term is needed because it may happen that the first subtree reaching vt is
different from t so that additional moves are needed, to a maximum of k. Now, if we denote
by a the maximum number of subtrees associated to a vertex we can bound b′ noting that
an edge e′ of G′(V ′, E′) will be crossed as many times as there are paths in Γ′ associated to
paths in Γ crossing edges vi, vj where vi is a vertex of s and vj a vertex of t. That makes
(k + 1)2 pairs multiplied by the number of times these pairs can be used, so:

b
′ ≤ b(k + 1)2a2. (9)

Then, the bound on b of lemma 1 can be injected and we get

b
′ ≤ (k + 1)2a2

(
vol(V )

h
+ 1

)
.

Besides, by Cheeger inequality λ1 ≤ 2h so that

b
′ ≤ (k + 1)2a2

(
2vol(V )

λ1
+ 1

)
. (10)

Consequently, injecting bound D′ ≤ D + k and equation 10 into 8 we get

K ≤ 2π(x)k2dmax(k + 1)2a2
(

2vol(V )

λ1
+ 1

)
(D + k)

≤ 2π(x)dmaxk
2(k + 1)2a2(D + k)

(
2dmaxπ(x)−1

λ1
+ 1

)
≤ 2dmaxk

2(k + 1)2a2(D + k)

(
2dmax
λ1

+ 1

)

4. Experimental evaluation

In this section we examine the theoretical results using simulations on three different types
of graphs: Erdős-Rényi graph, regular graph and a barbell graph variant. The barbell graph
consists of two connected grids, each grid contains a finite number of adjacent connected
vertices where the connections between any two adjacent vertices represent an undirected
edge. We were careful to generate grids with different structures for the same graph, i.e any
vertex in the first grid can be connected to another vertex only in a horizontal or vertical
direction so the maximum number of edges touching a vertex is 4 whereas any vertex in the
second grid can touch a maximum number of 8 neighbour vertices since it is possible for it
to connect also diagonally, this is justified because we want to detect the behaviour of the
sampling methods with different structures.
During the simulations, we sampled subtrees of size 5, 10 and 20 from graphs of size between
1000 and 1 million. To guarantee the efficiency of theses simulations, a burn-in period of size
1000 iterations was applied and we sampled only one sample each 1000 iterations.
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4.1. Sampling from Erdős-Rényi graph

Erdős-Rényi graph G(n, p) is constructed by connecting nodes randomly where each edge is
included in the graph with probability p independently from every other edge. In our graph,
we fixed the number of vertices and edges |V | = 60000 and |E| = 600000, respectively. This
graph is generated with p = (2|E|)/(|V ||V − 1|) ≈ 0.00033.
Figures 1 and 2 present the ACF plots of the diameter and the number of leaves for sampled
subtrees using both methods and for different subtrees sizes, respectively. For the same num-
ber of iterations, the convergence of the crawling method was quicker than the independent
method. It is also clear that the mixing time was longer when increasing the subtree size for
both methods.
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Figure 1: The ACF for the diameter of subtrees sampled using both methods
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Figure 2: The ACF for the number of leaves of subtrees sampled using both methods
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4.2. Sampling from r−regular graph

Both sampling methods were applied on a special case of graphs where all edges have the
same degree r to see the effect of the vertex degree on the convergence speed. In this graph,
we fixed the number of vertices |V | = 100000 and the degree r = 40.
Figures 3 and 4 present the ACF plots for the diameter and the number of leaves. The crawling
algorithm again converged quicker in all presented cases. Unlike the crawling method, the
mixing speed of the independent algorithm was slower when the subtree size increased which
confirms our theoretical result showing the effect of the size on the convergence speed of the
independent method.
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Figure 3: The ACF of the diameter of subtrees sampled using both methods
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Figure 4: The ACF plot for the number of leaves of subtrees sampled using both methods
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Figure 5 presents the ACF for the diameter of subtrees of the same size sampled from graphs
with different vertex degrees. When sampling from a 4−regular graph, it is clear that the
chain converged quickly unlike the case when we increased the degree, r = 40, then chain took
more time to converge. This result is compatible to the one achieved in the theoretical part
which proved the effect of the vertex degree r in the r−regular graphs on the convergence
speed of the independent method and it was assured that the convergence speed is at most
O(nrk

2/2).
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Figure 5: The ACF plot for the diameter of subtrees sampled by the independent methods
from two graphs with different vertex degree

A simulation has been performed on a complete graph, which is the worst case for the inde-
pendent method, in that case only star subgraphs have been produced.

4.3. Sampling from a barbell graph variant

This part was designed to study the effect of the graph’s bottleneck on the efficiency of the
presented sampling methods. Many cases were considered in this part to monitor the effect
of the bottleneck on the mixing time. More precisely, we connected both grids, to construct
the graph, by only one edge, 17 edges and then 34 edges and each grid consists of (174 ∗ 174)
vertices.
Although the ACF in the plots of the diameter presented in Figure 6 seems to converge when
sampling using the crawling method it is not in reality. This result was concluded after re-
viewing the sampled subtrees, indeed all subtrees were sampled only from the first grid of the
graph which means that the chain didn’t move to the second grid so the resulted sample does
not represent the whole set of graph subtrees of size k.
For the independent method, although it was successful to sample subtrees from this type of
graphs it is clear that the chain took more time to converge when increasing the number of
edges between both grids. The reason of this behaviour is that the structure of the graph is
more complicated for the independent method and to reach convergence the chain needs to
run for more iterations.
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Figure 6: The ACF for the diameter of subtrees sampled using both methods from a graph
consists of two different grids connected by only one edge, 17 edges and 34 edges respectively

From Figures 7 and 8 down below we can see the effect of the subtree size on the convergence
speed of the independent method. On the other side, we didn’t consider the plots of the ACF
when sampling using the crawling method because of the same reason clarified above which
is related to the bottleneck.
The crawling algorithm was more successful in sampling subtrees of different sizes from all
type of graphs except from the grid graph, the sampled subtrees originated from the first grid
and it was hard for the chain to move to the second grid. Moreover, we see that both methods
took more mixing time when we increased the subtree size.
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Figure 7: The ACF plot for the diameter of subtrees sampled using both methods
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Figure 8: The ACF plot for the number of leaves of subtrees sampled using both methods

5. Conclusion

We presented two Markov chains where the convergence speed for the independent chain is
O(s−1nrk

2/2) whereas it is O(λ−11 a2d2maxk
5) for the non-independent method which could be

very large when the bottleneck is narrow.
Considering the bound on the total variation distance in the crawling method different pa-
rameters appear, λ1 which is the second smallest eigenvalue that can be computed on the
graph G(V,E) and a the maximum number of subtrees associated to a vertex. Parameter a
is more difficult (impossible often in practice) to compute. Indeed, for a r−regular graph it
is obvious that for a tree of size k, a ≤ rk which can be large. So, for a general random graph
where a is known to be not too large then the crawling method could be better.
According to our simulations, the theoretical results were confirmed. The independent method
showed better performance only when sampling subtrees from a graph with a narrow bot-
tleneck whereas the crawling method was the best in the case of sampling from other types
of graphs. As a result, we recommend to use a combination of both methods for sampling
uniform subtrees, i.e to sample trees in two steps. Firstly one should sample subtrees globally
from the graph using the independent method and after that to sample locally through the
crawling method.

Acknowledgements We would like to show our gratitude to Prof. R. Stoica (Université
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