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Abstract

In this paper, the performance of outlier detection methods has been evaluated with
symmetrically distributed datasets. We choose four estimators, viz. modified Stahel-
Donoho (MSD) estimators, blocked adaptive computationally efficient outlier nominators,
minimum covariance determinant estimator obtained by a fast algorithm, and nearest-
neighbour variance estimator, which are known for their good performance with elliptically
distributed data, for practical applications in national survey data processing. We adopt
the data model of multivariate skew-t distribution, of which only the direction of the main
axis is skewed and contaminated with outliers following another probability distribution
for evaluation. We conducted Monte Carlo simulation under the data distribution to
compare the performance of outlier detection. We also explore the applicability of the
selected methods for several accounting items in small and medium enterprise survey
data. Accordingly, it was found that the MSD estimators are the most suitable.
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1. Objective

In this paper, we discuss the performance of multivariate outlier detection methods applied
on asymmetric data. Asymmetric multivariate t-distribution is adopted for the population
probability distribution for evaluation. The targeted multivariate probability model of no-
outlying data is unimodal and asymmetric. Outliers here are defined to be the observations
which cannot be regarded as following the identical distribution with non-outlying data in
the same dataset. We also examine the practical implementation of the proposed methods in
the data processing of national survey statistics.

A univariate outlier detection approach like the box plot is commonly used during production
of traditional statistical tables in national statistical offices (NSOs), since it is easy to process
and understand. On the other hand, multivariate methods have apparently not been widely
used yet. A primary reason is that multivariate methods are often computationally burden-
some, and it is more difficult to evaluate the outcome. Furthermore, the outliers detected
by multivariate methods may vary with different methods, or even with a same methods
using different random seeds. Meanwhile, the need for a multivariate method is increasing
as microdata have become important in addition to statistical tables. While values in tables
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are aggregated and relations between variables become less visible, microdata preserve such
relations. This is what makes microdata useful to users. Therefore, it is important to remove
outliers in microdata, which affect the relations between variables. Removing outliers prevent
erroneous estimations, diminishes the risk of disclosure and also helps to obtain statistical
tables in good quality. A multivariate method is necessary for detecting outliers based on the
relations between variables.

In recent decades, more sophisticated and computationally burdensome multivariate meth-
ods have been proposed, along with the development of robust statistics and information
technology. A comprehensive research project on the editing and imputation of official statis-
tics, known as EUREDIT, was launched in 2000. It was funded by Eurostat and involved
professionals of European national statistics offices and academics. Several modern multi-
variate outlier detection methods, such as modified Stahel-Donoho (MSD) estimators (Stahel
(1981), Donoho (1982)), the blocked adaptive computationally efficient outlier nominators
(BACON) proposed by Billor, Hadi, and Velleman (2000), minimum covariance determinant
estimator obtained by a fast algorithm (Fast-MCD) by Rousseeuw and Driessen (1999), and
Kosinski methods Kosinski (1998) were examined by Béguin and Hulliger (2003). The re-
sults suggest that there is no panacea for multivariate outlier detection. Each method has
its own characteristics and it applies to suitable data. Wada (2004) compared BACON,
neatest-neighbour variance estimator (NNVE) by Wang and Raftery (2002), and Fast-MCD
estimator using asymmetrically contaminated normal and skew-t data in addition to some fa-
mous datasets for outlier detection, such as Hertzsprung-Russell (Rousseuw and Leroy 1987),
Bushfire (Campbell 1989), Ionosphere from the UCI Machine Learning Repository, to find
the difference among these methods. The results show that all those methods are tolerant
to skewness. BACON is basically superior to the other two methods and tends to maintain
its robustness with skewed data. Fast-MCD essentially follows BACON but, compared to
BACON, tends to maintain its robustness with heavy-tailed data. NNVE is suitable for data
with contamination of larger variance.

Since the MSD estimators were unavailable in R unlike other methods mentioned above, Wada
(2010) implemented the MSD estimators based on Franklin and Brodeur (1997) together with
the improved estimators suggested by Béguin and Hulliger (2003). The results confirmed
that the suggestions improve performance of the estimators, while they suffer from the curse
of dimensionality as one of the suggestions is to increase number of orthogonal bases for
projection exponentially along with p. Therefore, the improved MSD function can compute
up to 11 variables with a size of 100 observations on a 32-bit PC. Wada and Tsubaki (2013)
made the function parallelised and confirmed with up to 20 variables that the parallelised
MSD function has performance equivalent to that of single core MSD. The parallelised MSD
can cope with larger datasets with more than 20 variables. However, we use the single-core
version of MSD here since our targeted datasets described in section 4 has six variables. The
single-core version is also computationally more efficient than the parallelised one.

In section 2, we explain the features of the four selected methods, then describe random data
for evaluation and summarise the results in section 3. The Monte Carlo simulation shows
that, with skewed data, MSD is better than the other methods. Further, an attempt at
implementation of a multivariate outlier detection method in official statistics is described in
section 4. It is supposed to be used for removing outlying observations from possible donors
in each imputation class for ratio hot deck imputation with edit constraints. Transformation
before outlier detection is also discussed. We confirmed that MSD has a good performance
with skewed data and can cope with datasets having six variables in the implementation of
the targeted survey data processing as described in section 5.

2. Multivariate outlier detection methods for evaluation

We chose the following four methods with high breakdown points, high efficiency, and affine
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or scale equivariance and currently available in R. All of them estimate a robust mean vector
and covariance matrix, although the methodologies vary. Outliers are then judged by the
Mahalanobis distance based on the estimated mean vector and the covariance matrix.

2.1. MSD estimators

The MSD estimators are a combination of the Stahel-Donoho (SD) estimators (Stahel (1981),
Donoho (1982)) and projection pursuit (PP) (Patak 1990). The estimators achieve orthogonal
equivariance and sufficient robustness due to their high breakdown points.

For estimating a robust mean vector and covariance matrix, the SD estimators project ob-
servations onto randomly generated orthogonal bases. As multivariate data are translated
into one-dimensional data by projection, the problem is reduced to the estimation of a one-
dimensional location and a scale. Possible outliers are determined to be those observations
for which the following function exceeds a given threshold, and these are then downweighted:
|xi−median|/MAD, where MAD is the median absolute deviation, and xi is a one-dimensional
projected observation.

The MSD estimators use the SD estimators as the initial robust mean vector and covariance
matrix. These are then used for a principal component analysis of the PP results; the principal
components are regarded as ”interesting”directions in which to find outliers. Projection to the
principal components also eliminates any correlation between the variables. Possible outliers
are downweighted in the same manner as the SD estimators. The final mean vector and
covariance matrix are then derived. Outliers are determined by their Mahalanobis distance.

Franklin and Brodeur (1997) describe how the MSD estimators are adopted for the Annual
Wholesale and Retail Trade Survey (AWRTS) of Statistics Canada. Béguin and Hulliger
(2003) then suggest a few improvements including skipping data centering in the implemen-
tation of Franklin and Brodeur (1997).

Wada (2010) implemented both the original and improved MSD estimators and confirmed that
the suggestions made by Béguin and Hulliger (2003) improves the performance of the original
estimators adopted by Statistics Canada. However, the application of the improved version is
limited to datasets with a small number of variables as described in the previous section. Wada
and Tsubaki (2013) enabled the estimator to be applicable to larger datasets by parallelisation
and confirmed that the parallelised function maintains equivalent performance by a simulation
study using the random variables following a multivariate normal distribution with asymmet-
ric contamination. The code is provided together with the not-parallelised version suggested
by Béguin and Hulliger (2003) in a public repository (https://github.com/kazwd2008/MSD/
and https://github.com/kazwd2008/MSD.parallel/) for further evaluation.

We adopted the msd function implemented by Wada (2010) which is available at https:

//github.com/kazwd2008/MSD. It is the improved MSD estimators suggested by Béguin and
Hulliger (2003). The function returns a robust mean vector and a covariance matrix. And
then observations are flagged as potential outliers if their Mahalanobis distances exceed the
significance level of 0.999 based on the F distribution with p and (n− p) degrees of freedom
based on Franklin and Brodeur (1997).

2.2. BACON

Billor et al. (2000) proposed BACON, which is named after Francis Bacon. BACON has a
high breakdown point and is nearly affine equivariant. It is based on an earlier idea (Hadi
(1992); Hadi and Simonoff (1994, 1997)) that finds a good subset of the data without outliers,
and then increases it by adding tested observations. BACON improved Hadi’s method (Hadi
and Simonoff 1994) by adding multiple observations at each step, which is computationally
much more efficient.

The algorithm is shown in Billor et al. (2000), and there are two ways to select the initial
subset. Version 1 adopts nonrobust, but affine equivariant Mahalanobis distances, and version
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2 uses Euclidean distances from coordinate-wise medians, which are robust but not affine
equivariant. The default setting is the latter, and we used it in our evaluation. Since the
consecutive iteration process for increasing the subset is robust and affine equivariant, the
breakdown point of the entire procedure is approximately 40%. Cédric Béguin developed
an original S-PLUS function named BEM and published the code in Béguin and Hulliger
(2003). Béguin and Hulliger (2003) compared BEM with Kosinski methods (Kosinski 1998),
and found the result to be Version 2, Kosiniski and Version 1 in an decreasing order of
performance.

Masato Okamoto of the Ministry of Internal Affairs ported BEM to R, and it was also used
by Wada (2004) and Wada and Tsubaki (2013). The details of the modifications from the
original S-PLUS code are available at https://github.com/kazwd2008/BEM/.

We use the BEM function ported by Okamoto with its default settings, which is based on
Béguin and Hulliger (2003) and described in Wada and Tsubaki (2013). The size of the
initial subset is 3 × p, where p is the number of variables and the initial subset is selected
by Version 2. BEM estimates a robust mean vector and covariance matrix, and the outliers
are judged by their Mahalanobis distances with a significance level of 0.99 based on the chi
square distribution with p degree of freedom.

2.3. Fast-MCD estimator

The MCD estimator is proposed by Rousseeuw (1984). Rousseeuw (1984) also introduced
the minimum volume ellipsoid (MVE) estimator, which has an equivalent high breakdown
point with MCD. MCD is statistically more efficient (Rousseeuw and Driessen 1999) because
of its asymptotic normality and has a higher convergence rate (Davies 1992) than MVE. In
addition, MCD is affine equivariant.

The idea of MCD is to find h observations (with n/2 ≤ h ≤ n) whose classical covariance
matrix has the lowest determinant from size n of the targeted dataset. Then its location
estimator is the average of these h observations, and the scatter is their covariance matrix.
The problem of the algorithm is how to find the h observations and the usage of MCD had
been limited to small datasets, such as a few hundreds observations with a few variables, due
to its heavy computation, until Rousseeuw and Driessen (1999) introduced a fast algorithm
to overcome this problem.

The basic ideas behind the fast algorithm is the procedure to generate initial estimates,
which consists of the C-step, selective iteration, and nested extensions. Please see Rousseeuw
and Driessen (1999) and Todorov and Filzmoser (2009) for the detailed algorithm. Pison,
Van Aelst, and Willems (2002) proposed the finite sample bias correction.

We adopted covMcd function in rrcov package distributed by CRAN (http://cran.r-project.
org). The function was prepared by Valentin Todorov based on the code of S-plus for the
Fast-MCD algorithm implemented by Rousseeuw and Driessen. The algorithm is presented
in Rousseeuw and Driessen (1999) and the finite sample correction step by Pison et al. (2002)
is added. We used it with the default settings; i.e., the size of the subset is h = (n+ p+ 1)/2
so that the MCD estimator has a highest breakdown point. The number of subsets used for
initial estimates is 500.

2.4. NNVE

NNVE was proposed by Wang and Raftery (2002). It uses the standardized Euclidean dis-
tance from an observation and its k-th nearest neighbour as a measure of the outlyingness
of that observation. The idea of NNVE is based on the nearest-neighbour cleaning (NNC)
procedure introduced by Byers and Raftery (1998), which regards the data as a mixture of
two different gamma distributions (Wang and Raftery 2002). One distribution consists of
correct data and the other consists of outliers. An expectation-maximization (EM) algorithm
is used to estimate the mean vectors and covariance matrices of these distributions and the
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proportions of the mixture. NNVE is scale equivariant, but not affine equivariant. NNC
outperformed MVE, especially when the proportion of outliers was very large. However, the
NNC underestimated the covariance of correct data when there were no outliers. NNVE over-
comes this weak point of NNC by adding some artificial outliers. It also performs well when
the correct data do not follow an elliptically symmetric distribution.

The NNVE function cov.nnve in the package covRobust developed by Wang and Raftery
(2002) is distributed by CRAN (http://cran.r-project.org). The function cov.nnve eval-
uates each observation to determine whether it is an outlier. We used the default settings,
and therefore, 12 was adopted as the number of nearest neighbours.

3. Evaluation with random data

The purpose of the comparison in this section is to figure out which methods perform well
with skewed and long tailed data by Monte Carlo simulation.

3.1. Random datasets

Peña and Prieto (2001) used datasets consisting of random variables following a multivariate
normal distribution with asymmetric contamination, since many outlier detection procedures
often have difficulty coping with this model:

(1− α)Np(0,R) + αNp(δe1, λI), (1)

where the first and second terms represent normal data and outliers, respectively; α is the
fraction of contamination (i.e. the rate of outliers); p is the number of variables; R is the
correlation matrix in which all the correlations between variables have the same value r; δ
denotes the distance between the normal data and the outliers; e1 is the first unit vector;
and λ is the variance of the outliers. Wada and Tsubaki (2013) also adopt the model (1) and
evaluate their MSD estimators together with NNVE and BACON. The results show BACON
is the most efficient and has better performance with datasets without correlation between
variables; however, MSD performs better with datasets having high correlation. Further,
BACON is computationally the most efficient; NNVE takes more time with a larger data
size, while Fast-MCD, and especially MSD increases processing time when the number of
variables increases.

Wada (2004) extended the model (1) from an asymmetrically contaminated normal distribu-
tion to a skew-t distribution as follows:

(1− α)STp(0,R, ηe1, Df) + αNp(δe1, λI), (2)

where STp is the p-dimensional skew-t distribution, η is the skewness of the first axis, and
Df is the number of degrees of freedom. This type of dataset has longer tails than the data
from a normal distribution, and it is asymmetric even if there are no outliers.

The multivariate skew-t distribution can be regarded as the distribution of the sample mean
vector for random samples from a mixture of multinormal populations. The expected value
vector of the mixture of multinormal populations has a joint multinormal distribution and the
covariance matrix has an independent joint Wishart distribution (Ando and Kaufman 1965).

We also adopt the model (2), since most survey data have asymmetric distribution. To make
a distribution symmetry, a transformation such as Box-Cox power transformation (Box and
Cox 1964) is commonly used. However, the Box-Cox transformation is not outlier robust,
and moreover, different transformation among variables in a dataset alters their correlations.
We add up to 40% outliers in this study. Other values that we used for the parameters are
shown in Table 1.

http://cran.r-project.org
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Table 1: Settings for the contaminated skew-t datasets

Parameter Explanation Values in the simulations
α Rate of outliers 0, 0.1, 0.2, 0.3, 0.4
r Correlations between variables 0.4, 0.8
p Number of variables 10
δ Distance between the normal data and the outliers 10, 100
λ Variance of the outliers 1, 5
η Skewness of the first axis 0, 1, 5, 10
Df Degrees of freedom of the t-distribution 2, 10,∞

3.2. Results of the random datasets

The results for the datasets obtained using model (2) are shown as Table 2, with a coloured
bar added to each cell of the ”Total rate” to clarify its magnitude. Please note that model (2)
with η = 0 and Df =∞ actually corresponds to the model (1).

As an overall tendency, MSD appears to be better than BACON, followed by Fast-MCD and
NNVE. BACON could be better when there is considerable contamination. A decrease in the
degree of freedom strongly affects all four methods, while an increase in skewness does not
have a significant effect. BACON is the most affected by the degree of freedom, and NNVE
is the least.

Regarding the evaluation by the random dataset shown in Table 1, MSD appears to be the
most promising candidate among the four methods for a wide variety of situations. The next
section describes the further evaluation of these methods conducted using an actual survey
data.

4. Application to a survey data

In this section, we attempt the practical application of the multivariate outlier detection meth-
ods in the survey data processing of the Unincorporated Enterprise Survey in Japan. MSD
is the most promising candidate in terms of outlier detection capability for skewed and long
tailed multivariate data; however, it is a kind of brute force algorithm that is computation-
ally expensive. We compare MSD and BACON, which is the most computationally efficient
method among the four methods, and consider the data transformation prior to the outlier
detection process. In addition, We measure their processing time with a larger dataset.

4.1. Unincorporated Enterprise Survey

The Unincorporated Enterprise Survey is one of the fundamental statistical surveys based on
the Statistical Act in Japan. This survey aims to clarify the actual conditions of business
management in unincorporated establishments engaged in manufacturing, wholesale and retail
trade, accommodations and food services, or providing services, and to obtain basic data on
the trends in business and for the promotion of small and medium-sized enterprises.

The survey covers about 4, 000 establishments, and questionnaires are distributed and col-
lected by statistical enumerators until year 2018. A major change is planned in the survey
from 2019. The coverage will be extended to broader industries, and the number of samples
will be ten times larger. Questionnaires will be sent to sampled establishments via mail.

The response rate of the survey is almost 100% at present, and there is no formal imputation
process in the current survey data processing system. However, the response rate of a mail
survey is typically expected to be lower compared to that collected by enumerators. A study
on imputation for the renewed survey is currently under way to prepare for the major change
after 2019. These variables have edit constraints that the sum of the total expenses [06] and
ending inventory [09] is equivalent to the sum of beginning inventory [07], purchases [08],
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and operating expenses [10], for an example. Ratio hot-deck imputation (Memobust project
team 2014, e.g.) is a promising method of preparing figures that satisfies the above mentioned
relation between the variables. For ratio hot-deck imputation, the nearest-neighbour of the
observation with missing values in the same imputation class becomes the donor observa-
tion. The corresponding values in the donor observation to the missing recipient variables
are imputed after necessary adjustments. The multivariate outlier detection step is consid-
ered prior to donor selection. The detected outlying observations in each imputation class
are excluded from donor candidates so that extreme values are not used to impute missing
recipient observations. This helps in obtaining good complete datasets, which leads to sound
statistics.

We chose the enterprise accounting items with correlations as shown in Table 3 for the ex-
periment in this section. The number of variables is supposed to be equal or more than the
maximum number in practical application of outlier detection to clean hot-deck donor can-
didates in the course of survey data processing from 2019. Their fundamental statistics and
correlations regarding manufacturing industry are shown in Table 4 and 5, respectively. Sales
[05] and Total expenses [06] tend to have the biggest figures and highly correlated with other
variables except for beginning inventory [07] and Ending inventory [09]. Those two variables
are highly correlated to each other; however, both of them have lower correlations with other
variables. As the skewness and kurtosis of a normal distribution are zero, all these variables
have very high skewness and kurtosis.

Table 3: Target variables

No. Variables
05 Sales
06 Total expenses
07 Beginning inventory (Inventory as of last December 31)
08 Purchases
09 Ending inventory (Inventory as of last December 31 before last)
10 Operating expenses

Table 4: Fundamental statistics of the manufacturing industry

No. Variables Min. Q1 Median Mean Q3 Max Skewness Kurtosis
05 Sales 185 5,262 11,364 20,353 22,467 761,461 11.18 154.67
06 Total expenses 67 3,452 7,930 17,428 18,886 760,180 11.56 164.37
07 Beginning inventory 1 100 305 1,875 1,022 134,000 12.06 155.87
08 Purchases 5 958 2,911 8,185 6,041 498,602 11.87 167.00
09 Ending inventory 1 100 326 1,875 1,032 140,100 12.18 158.51
10 Operating expenses 50 1,930 4,623 9,243 11,261 261,578 9.03 116.44

Table 5: Correlations of the variables in the manufacturing industry

Variables Pearson Spearman
No. 05 06 07 08 09 10 05 06 07 08 09 10
05 1.00 0.99 0.79 0.98 0.78 0.94 1.00 0.96 0.44 0.83 0.43 0.90
06 0.99 1.00 0.80 0.98 0.78 0.95 0.83 0.85 0.49 1.00 0.48 0.68
07 0.79 0.80 1.00 0.81 1.00 0.75 0.44 0.47 1.00 0.49 0.95 0.41
08 0.98 0.98 0.81 1.00 0.79 0.88 0.43 0.45 0.95 0.48 1.00 0.39
09 0.78 0.78 1.00 0.79 1.00 0.73 0.90 0.95 0.41 0.68 0.39 1.00
10 0.94 0.95 0.75 0.88 0.73 1.00 0.96 1.00 0.47 0.85 0.45 0.95
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4.2. Data transformation and settings of outlier detection

As the target variables are highly skewed enterprise accounting items, it is evident that they
require transformation prior to the outlier detection step to make the data close to an elliptical
distribution. Figure 1 shows the box plots of the transformed data for the manufacturing
industry as an example with no transformation, base 10 log, square root, and forth root
transformation. The lambda values of the Box-Cox transformations are listed in Table 6.
The suitable transformation depends on each variable. These variables are larger than zero,
and they are less likely to have extremely small values. Therefore, the suitable transformation
could be either the square root or the fourth root transformation. They are also better than
the log transformation as they provide the advantage of being able to treat zero data.

Figure 1: Box plots after transformation of the manufacturing industry

Table 6: Lambda of the Box-Cox transformations in the manufacturing industry

Variables 05 06 07 08 09 10
Lambda 0.321 0.336 0.152 0.151 0.246 0.317

The BEM function is used for BACON, and msd of the single core version is used for MSD.
Their default settings are adopted except for the significance level of BACON, which is 0.999
as same as MSD. The evaluation is conducted on a virtual PC with a 3GHz Xeon processor
and 2GB memory available on R.

4.3. Results obtained with the survey data

The number of outliers detected in the manufacturing industry is shown in Table 7. The result
suggests that the forth root transformation is the best among the others as it detects fewer
outliers than others. MSD still tends to detect fewer outliers compared to BACON with a
significance level of 0.999; however, the detected outliers exceed 7%. Thus, further adjustment
of the thresholds used to determine outliers may be necessary. Figure 2 shows the scatter
plot matrix with the outliers detected by MSD coloured in red. The upper triangular matrix
shows the outliers detected using the square root transformation, and the lower triangular
matrix shows those detected using the forth square root transformation. Figure 3 is another



Austrian Journal of Statistics 9

scatter plot matrix of the same data and same outliers; however, the matrix is displayed
with respective transformations. It is apparent that the forth square root transformation
makes the data distribution closer to the multivariate normal compared to the square root
transformation. Therefore, Figure 3 endorses that the less the elliptical model fits data, the
more outliers dtected as well as Figure 1 of the univariate case. A stronger transformation
tends to detect the outliers in smaller figures.

Table 7: Number of outliers detected with transformation in the manufacturing industry

Method
Transformation for Manufacturing
outlier detection No. %

All data (greater than zero) 390 –

MSD
Square root 47 12.05%
Biquadratic root 28 7.18%
Log (base 10) 41 10.51%

BACON
Square root 63 16.15%
Biquadratic root 49 12.23%
Log (base 10) 53 13.59%

Figure 2: Outliers detected by MSD estimators in the manufacturing industry
(without transformation)

Notes: Outliers shown in red in the upper triangular matrix are detected
using square root transformation, and those in the lower triangular matrix are
detected using biquadratic root transformation. The scatter plots are shown
without any transformation.
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Figure 3: Outliers detected by MSD estimators in the manufacturing industry
(with square root biquadratic root transformation)

Notes: Outliers shown in red in the upper triangular matrix are detected
using square root transformation, and those in the lower triangular matrix
are detected using biquadratic root transformation as same as Figure 2. The
scatter plots are also shown with respective transformations.

We also made another experiment with the same dataset of the manufacturing industry to
confirm the effect of cleaning donor candidates. The dataset contains no missing data and
consists of 390 observations. We randomly extracted 20% of the observations, imputed them
using the remaining 80% of the donor candidates, and evaluated their sum of deviations
between true and imputed values to see if removing outliers from the donor candidates reduce
the deviations.

Let the six variables of the ith observation, yi,05, . . . , yi,10, and suppose the observation i
is selected in the 20% to be imputed. The nearest neighbour observation m regarding the
variable yi,05 is selected as a donor to impute yi,06, . . . , yi,10. The ratio hot deck for the
observation i is given by:

ŷi,j = yi,05/ym,05 × ym,j , (j = 06, . . . ,10).

MSD is used for cleaning donor candidates with the default settings. Sum of the deviations
between true and imputed values are compared when donor candidates are cleaned and not
cleaned. The results of Table 7 show the donor cleaning helps to improve imputation.
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Table 8: Sum of the absolute deviation between imputed and true values

Variable No cleaning After outlier removal Reduced rate
06 173,794 172,275 99%
07 101,144 90,082 89%
08 103,717 93,627 90%
09 191,600 183,674 96%
10 164,239 160,500 98%

Lastly, we measured processing time with the entire survey data from 2002 to 2017. After
removing missing data and the data less than or equal to zero, 44, 537 observations with 6
variables were obtained. The processing times of MSD and BACON are approximately 45
seconds and 5 seconds, respectively. It is apparent that MSD is the least computationally
efficient among the compared four methods in this paper. However, a processing time of less
than one minute for an imputation class is not a major problem for the application of this
particular survey.

5. Conclusion and future work

In this study, we examined four multivariate outlier detection methods with attractive fea-
tures and found that the MSD estimators exhibit relatively good performance with skewed
and heavy tailed datasets. With a survey data, MSD successfully improved ratio hot-deck
imputation. In addition, we confirmed that this computationally expensive method is practi-
cally applicable because a dataset containing more than 45, 000 observations of six variables
can be processed in less than one minute.

There are also a few issues to be tackled before the practical implementation of the proposed
method. These issues are, for example, examining an appropriate size of the imputation
class and adjustment of thresholds used to determine outliers, as cleaning of donor candidates
reduces a substantial size of imputation class. While cleaning of donor candidates improve
estimation, reducing the size of donor candidates may degrades estimation. We also need to
consider further about an appropriate data transformation since influential outliers in terms
of compiling statistics tend to have larger values, although it is obvious that the fourth square
root transformation is better than the square root in terms of the elliptical model of the outlier
detection methods. Further work is necessary.
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Table 2: Comparison with contaminated skew-t datasets (Correlation : 0.4)
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Table 2: Comparison with contaminated skew-t datasets (Correlation : 0.8)
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Table 2: Comparison with contaminated skew-t datasets (Correlation : 0.8)
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