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Abstract

A graph random walk is presented. It is derived from the p-Laplacian similarly to
the derivation of the canonical random walk from the Laplacian. This variant enables
quicker exploration while still sticking to the connection constraints given by the graph.
A potential application is shown for video games.
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1. Random walks on a graph and Laplacian

Random walk on graphs are a classical subject in probability (Grimmet and Stirzaker 2004) ,
statistics (von Luxburg, Radl, and Hein 2014) and algebra (Żuk and Pak 2002). The standard
random walk is defined as a Markov chain where the first order transition probability from
one vertex to another is given by 1/d where d is the degree of the first vertex. The stationary
distribution of this Markov chain is given by π = 1

m(d1, . . . , dn) where m =
∑n

i=1 di. In some
cases, as video games it may be desirable to have a random walk starting at some vertex.
Some variants of it would be to explore more quickly the graph. Let’s say there is a monster
exploring rooms in a dungeon where rooms are connected to each other. At each step, a
monster can only move to a neighbour room. So, to accelerate its visits, one way would
be to count more iterations but this would have the drawback of making the monster jump
between rooms. Consequently, here we propose an alternative way consisting in going back
to the definition of the canonical random walk through its associated graph Laplacian and
achieving that way our goal.

The idea is to modify slightly the random walk going back to its definition by a Laplacian.
The Laplacian can be considered in two equivalent ways, either as something proportional
to the infinitesimal generator or as an operator to be minimized when going from one time
step to another. Let us recall first the definition of the infinitesimal generator of the Markov
chain X where Xt

x is the state at time t of the Markov chain starting at x at time 0. The
infinitesimal generator in continuous time for a multivariate diffusion in Rp as the operator
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on a function f : Rp → R is then given by:

Af(x) = lim
t→0

E[f(Xt
x)]− f(x)

t

In can be discretized in many ways, one of them is the following:

Af(i) =
∑
j|j∼i

wij
f(j)

di
− f(i)

=
1

di

∑
j|j∼i

wij [f(j)− f(i)]

= −L2f(i)

di

The second point of view is related to the minimization of equation:
∫
|∇f(x)|pdw, for which

it is well known that the minimum is obtained by having ∆pf(x) = 0 for all x. On a graph,
we can minimize

∑
i

∑
j|j∼i(f(xi)−f(xj))

p on a graph by equalling to zero the corresponding
p-Laplacian.

2. Random walk on a graph and p-Laplacian

In the continuous case, the p-Laplacian is defined as:

∆pf =div(|∇f |p−2.∇f)

=|∇f |p−2
{

∆f + (p− 2)∆∞f
}

where ∆ is the usual 2−Laplacian and ∆∞ = |∇f |−2 12〈∇f,∇
∣∣∇f ∣∣2〉. Indeed,

∆pf =|∇f |p−2∆f + (p− 2)

n∑
i,j=1

|∇f |p−3

|∇f |
∂f

∂xi

∂f

∂xj

∂2f

∂xi∂xj

=|∇f |p−2
(

∆f + |∇f |−2 1

2
〈∇f,∇

∣∣∇f ∣∣2〉)
=|∇f |p−2 {∆f + (p− 2)∆∞f}

Then, we can define the discretized version on a graph g as ∆g
pf = ∆gf + (p− 2)∆g

∞f or put
it in a normalized way:

∆gf

p− 1
+
p− 2

p− 1
∆g
∞f

So, now if we want to minimize ∆pf over a graph we just need to take discrete versions of ∆
and ∆∞. The first one is well known and given by:

∆g
pf(i) =

∑
k|k∼i

wik

di
(f(k)− f(i))

The usual random walk on graph is such that if Rt
ij is the probability of arriving at j in t

time steps starting from i, for all i 6= j Rt+1
ij verifies:∑

k|k∼i

wik

di
(Rt

kj −Rt+1
ij ) = 0

so that
Rt+1

ij =
∑
k|k∼i

wik

di
Rt

kj



Austrian Journal of Statistics 13

About, the infinity Laplacian, one of its discrete expressions is:

∆g
∞f(u) =

1

2

(
max
v∼u

f(v) + min
v∼u

f(v)− 2f(u)
)

as given in Elmoataz, Desquesnes, and Lézoray (2012), this can be obtained by considering
the infinity Laplacian as the second derivative along the steepest direction.

So now, similarly we can aim at minimizing:∑
k|∼i

wik

di
|P t

kj − P t+1
ij |

p

keeping a P t+1 a probability transition matrix.

Without the need of having a probability transition matrix, we could use directly the discrete
p-Laplacian and have:

1

p− 1

∑
k|k∼i

wik

di
(Qt

kj −Qt+1
ij ) +

p− 2

p− 1

[
max
k|k∼i

1

2
Qt

kj + min
k|k∼i

1

2
Qt

kj −Qt+1
ij

]
= 0

leading to:

Qt+1
ij =

1

p− 1

∑
k|k∼i

wik

di
Qt

kj +
p− 2

p− 1

[
max
k|k∼i

1

2
Qt

kj + min
k|k∼i

1

2
Qt

kj

]
(1)

The problem with this expression is that we could have, due to the second term,
∑

j Q
t+1
ij

different from 1.

Therefore to define a probability transition matrix P t+1
ij for time t we can modify slightly the

previous equation by writing:

P t+1
ij =

1

p− 1

∑
k|k∼i

wik

di
P t
kj + αt

i

p− 2

p− 1
max
k|k∼i

P t
kj (2)

where αt
i are such that

∑n
j=1 P

t+1
ij = 1.

αt
i is given by :

αt
i =

(
1−

n∑
j=1

1

p− 1

∑
k|k∼i

wik

di
P t
kj

)
/

( n∑
j=1

p− 2

p− 1
max
k|k∼i

P t
kj

)

=1/

( n∑
j=1

max
k|k∼i

P t
kj

)

Lemma 1. ∀i, t we have 0 ≤ αt
i ≤ 1.

Proof. Positivity of αt
i is obvious by construction. Concerning, the other inequality we can

sum P t+1
ij to prove it, indeed:

n∑
j=1

P t+1
ij =

n∑
j=1

1

p− 1

∑
k|k∼i

wik

di
P t
kj +

n∑
j=1

αt
i

p− 2

p− 1
max
k|k∼i

P t
kj using equation 2

⇒ 1 ≥ 1

p− 1
+ αt

i

p− 2

p− 1
max
k|k∼i

n∑
j=1

P t
kj exchanging the max and sum terms

⇒ 1 ≥ αt
i



14 A p-Laplacian random walk: application to video games

Lemma 2. P t → 1vᵀ for some vector v.

Proof. ∀j, let us consider i∗ = arg maxi P
t
ij . Then,

P t+1
ij =

1

p− 1

∑
k|k∼i

wik

di
P t
kj + αt

i

p− 2

p− 1
max
k|k∼i

P t
kj

≤ 1

p− 1

∑
k|k∼i

wik

di
P t
i∗j + αt

i

p− 2

p− 1
P t
i∗j

≤P t
i∗j as αt

i ≤ 1

This means that for all j the maximum values of P t
ij are not increasing. Besides, at one step

for a given j either P t
i1j

= P t
i2j

for all i1, i2 or there exists i∗ such that for all its neighbours i,
P t
i∗j ≥ P t

ij and there exists i− among its neighbours such that P t
i∗j > P t

i−j so that we obtain
at next step:

P t+1
i∗j =

1

p− 1

∑
k|k∼i∗

wi∗k

di∗
P t
kj + αt

i∗
p− 2

p− 1
max
k|k∼i∗

P t
kj

<
1

p− 1

∑
k|k∼i∗

wi∗k

di∗
P t
i∗j + αt

i∗
p− 2

p− 1
P t
i∗j

<P t
i∗j as αt

i∗ ≤ 1

This shows that the maximum values of P t
ij are all strictly decreasing for all j. Consequently,

as they are bounded below by 0 we obtain then convergence.

In general with our setting it is difficult to guess what the stationary distribution is, contrary
to what happens with the canonical random walk. However, in next lemma we show that for
a d-regular graph the stationary distribution is known.

Lemma 3. For a d-regular graph, the stationary distribution is given by 1
n1.

Proof. Indeed, if ∀i, j P t
ij = 1

n , we obtain:

P t+1
ij =

1

p− 1

∑
k|k∼i

1

d
P t
kj + αt

i

p− 2

p− 1
max
k|k∼i

P t
kj

=
1

p− 1

∑
k|k∼i

1

d

1

n
+ αt

i

p− 2

p− 1
max
k|k∼i

1

n

=
1

p− 1

1

n
+ αt

i

p− 2

p− 1

1

n

Obviously, in that case αt
i = 1 so that: P t+1

ij = 1
n concluding thus the proof.

Thus, our proposed random walk shares the same stationary distribution with the canonical
random walk if the graph is regular.

3. Application to video games

If we consider the graph on figure 1, the transition probabilities P 10
1i after 10 steps for state

1 are represented in tables 1 and 2 for p = 2 and p = 3 respectively. We observe that the
mixing occurs more quickly for p = 3. That is, for the same number of steps, vertices 11 to 20
are more easily reached with the modified random walk than with the canonical one (p = 2).
Afterwards, we have compared the convergence speed for the random walks on two differents
random graphs. The first type is a set of random barbell graphs where in both cliques of size
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100, edges are randomly deleted with probability 0.5. The second type is a set of random
3-regular graphs of size 200 vertices. Convergence is assessed by computing the mean square
error among columns of P 10. Results in table 3 show that in both cases convergence occurs
more quickly for p = 3.

Figure 1: Small graph example drawn using R (R Development Core Team 2008) package
igraph (Csardi and Nepusz 2006)

Table 1: Transition probabilities of state 0 after 10 steps for p = 2.

State 1 2 3 4 5 6 7 8 9 10
Proba. 0.04 0.10 0.03 0.10 0.15 0.08 0.05 0.07 0.11 0.07

State 11 12 13 14 15 16 17 18 19 20
Proba. 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.02

Table 2: Transition probabilities of state 0 after 10 steps for p = 3.

State 1 2 3 4 5 6 7 8 9 10
Proba. 0.04 0.06 0.03 0.06 0.09 0.06 0.05 0.06 0.08 0.05

State 11 12 13 14 15 16 17 18 19 20
Proba. 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.04

4. Conclusion

We have defined a new random walk, derived from the p-Laplacian similary to what is done
for the canonical random walk derived from the 2-Laplacian. It is proven to have a stationary
distribution which is the same as for the canonical random walk in the case of regular graphs.
Experiments demonstrates quicker convergence. Natural perspectives would be to study the
convergence speed and also understand what happens between two time steps as what is
presented is not a Markov chain.
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Table 3: Experimental comparison of convergence speeds between 2-Laplacian and 3-
Laplacian random walks after 10 steps.

Random barbell graphs 3-Regular graph
Mean Sd Mean Sd

Laplacian 2.5 ∗ 10−5 4.4 ∗ 10−8 3.1 ∗ 10−7 8.6 ∗ 10−8

3-Laplacian 1.5 ∗ 10−6 1.1 ∗ 10−7 1.1 ∗ 10−7 2.6 ∗ 10−8
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Żuk A, Pak I (2002). “On Kazhdan Constants and Mixing of Random Walks.” International
Mathematical Research Notes, 36, 1891–1905.

von Luxburg U, Radl A, Hein M (2014). “Hitting and Commute Times in Large Random
Neighborhood Graphs.” Journal of Machine Learning Research, 15, 1751–1798.

Affiliation:

Nicolas Wicker
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