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Abstract

A proper monitoring of stochastic systems is the control charts of statistical process
control and drift in characteristics of output may be due to one or several assignable
causes. Although many research works have been done on the economic design of control
charts with single assignable cause, the economic statistical design of T 2 control chart
under Weibull shock model with multiple assignable causes and considering multivariate
Taguchi loss function has not been presented yet. Using Taguchi loss function in the
concept of quality control charts with economic and economic statistical design leads to
better decisions in the industry. Based on the optimization of the average cost per unit
of time and taking into account the different combination values of Weibull distribution
parameters, optimal design values of sample size, sampling interval and control limit coeffi-
cient were derived and calculated. Then the cost models under non-uniform and uniform
sampling scheme were compared. The results revealed that the model under multiple
assignable causes with Taguchi loss function has a lower cost than single assignable cause
model and integrated model with non-uniform sampling has a lower cost than that with
uniform sampling.

Keywords: economic statistical design, T 2 control chart, multiple assignable causes, Weibull
shock model, Taguchi loss function.

1. Introduction

The control charts technique for monitoring the process behavior is one of the basic tools
of statistical process control (SPC). These charts are to distinguish between non-random
and random variation where non-random variations cause a process to go out of control.
Designing a control chart means to find the optimal values for three design parameters,
namely, sample size, sampling interval and control limit coefficient which is done under three
types of statistical, economic, and economic statistical designs. In the statistical designs, only
statistical criteria are considered and in the economic designs, only the cost is important. A
better alternative may be the economic statistical designs provided by Saniga (1989) in which
both statistical and economic criteria are considered.

Most of the research works, like Duncan (1956) as the pioneer and then followers presented an
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economic design of X control charts with only one assignable cause. However, Duncan (1971),
Gibra (1981), Tagaras and Lee (1988), Chung (1991), Chen and Yang (2002), Yang, Su, and
Pearn (2010), Ahmed, Sultana, Paul, and Azeem (2014) presented an economic design of X
control charts with multiple assignable causes.

Economic and economic statistical design needs a probability distribution for the process fail-
ure mechanism (PFM). In most of the first research works, Exponential distribution that has a
fixed failure rate were used Duncan (1956). Then other distributions such as Weibull, Gamma,
Pareto, Generalized exponential, Burr 12 and. . . ., is used as a failure mechanism Banerjee and
Rahim (1988); Al-Oraini and Rahim (2002); Kraleti and Kambagowni (2010); Moghadam,
Moghadam, Rafie, and Naderi (2016); Heydari, Moghadam, and Eskandari (2016). Banerjee
and Rahim (1988) Extended Duncan (1956) by using the more flexible Weibull distribution
for single assignable cause model and non-uniform sampling interval by considering the fact
that using uniform sampling interval is not logical for the process with increasing failure rate.
Then, Chen and Yang (2002) extended the model of Banerjee and Rahim (1988) from a sin-
gle assignable cause to multiple assignable causes. In their paper, they showed that if the
process were affected by several assignable causes, the cost of the model would be reduced in
comparison with the model that wrongly assumed only single assignable cause.

With the complexity of products, the need for simultaneous monitoring of multiple quality
characteristics appeared and caused the first economic design of the Hotelling T 2 control
charts developed by Montgomery and Klatt (1972). In most of the research works such as
Heikes, Montgomery, and Yeung (1974), Yang and Rahim (2006), Chen, Hsieh, and Chang
(2007), Seif, Moghadam, Faraz, and Heuchenne (2011), Bahiraee and Raissi (2014), Faraz,
Heuchenne, Saniga, and Costa (2014)the economic design of T 2 control chart is presented
with single assignable cause Jolayemi and Berrettoni (1989) generalized Duncan (1971) cost
model, and produce economic design of T 2 control chart with multiple assignable causes.

Due to interactions that parameter variations have on each other, using the concept of loss
function for estimating costs of the low-quality product became important. Deming (1982) be-
lieved that Taguchi loss function Taguchi, Elsayed, and Hsiang (1989) describe the real world
better where the minimum loss is in nominal value and any deviation from the nominal value
will increase the amount of loss. Until now, a lot of economic and economic-statistical design
developed for control chart by the combination of classic models like Duncan and Loren-
zen Vance model by Taguchi loss function Safaei, Kazemzadeh, and Niaki (2012); Al-Ghazi,
Al-Shareef, Usher, and Duffuaa (2007); Yang (1998). In economic and economic statistical
design, loss cost under control and out of control is calculated with Taguchi loss function in
many research works (Serel and Moskowitz (2008); Elsayed and Chen (1994)). In the case
of multiple characteristics, Kapur and Cho (1996) developed a multivariate loss function for
the multivariate quality characteristics. Chou, Chen, and Liu (2001) used the Taguchi loss
function to develop ideas of Montgomery and Klatt (1972) for monitoring multivariate control
charts to monitor mean and variance of the process jointly.

The economic statistical design of T 2 control charts under Weibull shock model with multiple
assignable causes and multivariate Taguchi loss function are not performed yet, thus we
present the economic statistical design of T 2 control chart with multiple assignable causes
under Weibull shock model by considering multivariate Taguchi loss function. The use of the
loss function in estimating the costs of producing non-conforming products in the production
process makes the cost model more flexible. The loss functions that have been used in this field
are univariate, so combining the Multivariate loss function with the cost model in the design
of the economic-statistical T 2 control chart under Weibull Shock Models, is theoretically an
innovation in the literature. Here, based on the Duncan (1971) with multiple assignable
causes, sampling design of Banerjee and Rahim (1988) and cost structure of Chen and Yang
(2002), an upgraded model is constructed. In our paper, by considering fixed sampling interval
(uniform sampling scheme), we calculate the average cost for the cycle and compare our
findings with the average cost in the case of non-uniform sampling. To calculate cost functions
for uniform and non-uniform sampling schemes, we presented and proved the formulas of
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AATS based on multiple assignable causes and ANF in the case of uniform and non-uniform
sampling schemes . To construct economic statistical design we used penalty formula and both
the statistical properties and optimization of loss cost have been considered simultaneously.
The application of this function is more prominent in the industries where the products are
economically or qualitatively more important and over estimation or under estimation of the
target’s value creates various losses.

The structure of this paper is as follows. In the second part, review of T 2 control chart
is given. In the third part, some performance indicators are defined. Cost model offered
with multiple special causes by considering uniform and non-uniform sampling scheme in
section four. Improvement of cost model by the use of multivariate Taguchi loss function
also presented in section 4. Section 5 includes economic statistical design. Section 6 shows
that how to determine input parameters and optimizing cost model based on these input
parameters and the comparison between cost models under multiple assignable causes and
single assignable cause. The comparison between cost model under multiple assignable causes
with uniform and non-uniform schemes also presented in section 6. Finally, the conclusion is
presented in section 8.

Table 1: Summarized literature review
Papers Assignable Cause PFM DesignType Type of control chart Objective Integrated with taguchi loss function

Duncan (1956) Single Exponential Economic X Cost No

Duncan (1971) Multiple Exponential Economic X Cost No
Montgomery and Klatt (1972) Single Exponential Economic T 2 Cost No

Lorenzen and Vance (1986) Single Exponential Economic X Cost No

Banerjee and Rahim (1988) Single Weibull Economic X Cost No
Jolayemi and Berrettoni (1989) Multiple Exponential Economic T 2 Cost No

Rahim and Banerjee (1993) Single Increasing hazard rate distribution Economic X Cost No

Elsayed and Chen (1994) Single Exponential Economic X Cost Yes

Alexander, Dillman, Usher, and Damodaran (1995) Single Exponential Economic X Cost Yes

Zhang and Berardi (1997) Single Weibull Economic- Statistical X Cost and α and 1− β No

Chen and Yang (2002) Multiple Weibull Economic X Cost No

Chou et al. (2001) Single Exponential Economic X Cost and α and 1− β Yes

Ben-Daya and Duffuaa (2003) Single Exponential Economic X Cost Yes

Al-Oraini and Rahim (2002) Single Gamma Economic- Statistical X Cost and α and 1− β No
Yang and Rahim (2006) Single Weibull Economic- Statistical T 2 Cost and α and 1− β No

Yu and Chen (2009) Multiple Exponential Economic- Statistical X Cost and α and 1− β Yes

Kraleti and Kambagowni (2010) Single Pareto Economic X Cost No

Yu, Tsou, Huang, and Wu (2010) Multiple Exponential Economic- Statistical X Cost and α and 1− β No

Safaei et al. (2012) Single Exponential Multiple Objective ESD X Cost and α and 1− β Yes

Heydari et al. (2016) Single Burr Xll Economic- Statistical X Cost and α and 1− β No

Moghadam et al. (2016) Single Generalized Exponential Economic X Cost No
This paper Multiple Weibull Economic- statistical T 2 Cost AATS and ANF Yes

2. T 2 control chart overview

Assume that the output of manufacturing process has p correlated quality characteristics and
X has a p-variate normal distribution with known covariance matrix Σ and mean vector µ
(when the process is under control, µ=µ0). As an expansion of the univariate, Hotelling in
1931 presented the following statistic which, known as T 2 Hotelling:

T 2 = (X− µ0)′Σ−1(X− µ0) (1)

where X = 1
n

∑n
i=1 X is sample mean vector. Assuming that the mean vector and covariance

matrix is known, T 2 statistic has Chi-Square distribution with p degrees of freedom. Each
of the T 2 values is compared with the upper α percentage of the Chi-Square distribution
(L = χ2

α(p)) and if the sample values fall below the control limit L, the process is considered
in control, otherwise, the process is said to be out of control and the corresponding subgroup(s)
is investigated. The occurrence of assignable causes shifts the mean process. In multivariate
case, this change is calculated as follows:

d2i = (µi − µ0)′Σ−1(µi − µ0), i = 1, 2, . . . , s (2)

In fact, the above equation is Mahalanobis distance between µ0 and µi vector where µi is p
dimensional vector of process mean in the out of control situation due to the ith assignable
cause. In T 2 control chart, the probability of Type I error is calculated as follows:
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α = P (T 2 > χ2
α,p|µ = µ0) (3)

=
1

2
P
2 Γ(P2 )

∫ ∞
L

x
P
2
−1exp(−x

2
)dx (4)

(5)

where the ith assignable cause occurs, the process mean shifts. The probability of detecting
change in process mean is 1− βi.
By considering βi = P (T 2 < χ2

α,p|µ = µi), i = 1, 2, ..., s as the probability of error Type II,
the above probability formula is:

βi = exp(−ηi
2

Σ∞j=0

ηji
j!22jΓ(j + P

2 )
) (6)

=

∫ L

0
x

P
2
+j−1exp(−x

2
)dx (7)

where ηi = nd2i , i = 1, 2, ..., s is non-central parameter of χ2 distribution.

3. Essential points

Following Banerjee and Rahim (1988), it is expected that the time of being under control
until the occurrence of ith assignable cause follows a Weibull distribution with probability
density function and hazard rate as below:

fi(t) = λikt
k−1exp(−λitk).( t > 0, k ≥ 1, λi > 0), i = 1, 2, ..., s. (8)

ri(t) = λikt
k−1 (9)

where k is shape parameter and λi is scale parameter. The process is investigated by taking
samples of size n from X at time intervals h1, h1 + h2, h1 + h2 + h3 and so on. Where hj is
defined as jth sampling interval and we have h1 ≥ h2 ≥ h3, ... (The proof of above inequality
is given in Appendix B).

Sampling intervals are determined in a way that the probability of shift from a control state
is fixed for all intervals when it is in control at the beginning of the interval. In other words,
according to Banerjee and Rahim (1988), integrated hazard over each interval should be equal.

∫ ωj+1

ωj

ri(t) dt =

∫ h1

ω0

ri(t) dt, j = 1, 2, .... (10)

Accordingly hj (for more detail see Appendix C) obtained as follows

hj = [j
1
k − (j − 1)

1
k ]h1 (11)

For sake of simplicity in deriving required equations, we define ωj as below:

ωj = Σj
i=1hi. (12)

It is assumed that the process stops at the time of search and repair and the cost of sampling
is negligible. To calculate the average cost per unit of time we need to define the following
terms.
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1. We define pij is the conditional probability that ith assignable cause will occur during jth

sampling interval , given that ith assignable cause not occur at time ωj−1.

pij =

∫ ωj

ωj−1
fi(t) dt∫∞

ωj−1
fi(t) dt

= 1− exp(−λi(jhk1)). (13)

let pij = pi , for (i = 1, 2, ..., S), (j = 1, 2, ...).

2. We define qij as the unconditional probability that ith assignable cause will occur during
the jth sampling interval. Thus, we have:

qij =

∫ ωj

ωj−1

fi(t),dt = e−λiω
k
j−1 − e−λiω

k
j = (1− pi)j−1pi. (14)

3. Suppose that τij be the expected duration of the in control period within sampling interval
hj , given that ith assignable cause has occurred during this period. Thus, we have:

τij = E(T − ωj−1 | ωj−1 < T < ωj) (15)

So the expected τi (the time that process be under control) during any sampling interval is
as follows:

τi =

∞∑
j=1

τijqij =

∞∑
j=1

∫ ωj

ωj−1

(t− ωj−1)fi(t) dt = (
1

λi
)
1
k Γ(1 +

1

k
)− h1pi(1− pi)A(1− pi), (16)

where for |x| < 1

A(X) =
∞∑
j=0

(j + 1)
1
kXj . (17)

Let AATSi be the average time between occurrence shift in process mean owing to the ith

assignable cause and receiving a right alarm from control chart.

AATSi = h1piA(1− pi) +
βih1pi[piA(1− pi)− (1− βi)A(βi)]

1− pi − βi
− (

1

λi
)
1
k Γ(1 +

1

k
). (18)

The concept of AATSi is presented well in Figure 1. The proof of above formula is presented
in Appendix D.

4. Cost model structure

4.1. Assumptions

In building our model for observing a process by a T 2 control chart we make the typical
assumptions about the process as follows:

1. The p quality characteristics follow a multivariate normal distribution with mean vector
µ and covariance matrix Σ.

2. The process is characterized by an in-control state, i.e. µ = µ0.

3. The time interval that the process remains in control is a Weibull random variable
expecting that the process starts in control state.

4. The occurrences of assignable causes are independent.
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5. Multiple assignable causes produce ”step changes” in the process mean from µ = µ0 to
a known µ = µ1. This results in a known value of the Mahalanobis distance.

6. In this paper the shift occurred in process mean is noted by di. Three distributions of

uniform, negative-exponential 1
2e
− di

2 and half-normal 1√
2π
e−

( 12 di)
2

2 are considered as a

prior for di. Considering these distributions as a prior would cover all values of di in a
real industry.

7. “Drifting processes” are not a subject of this research. Assignable causes that affect
process variability are not addressed; hence it is assumed that the covariance matrix Σ
is constant over time.

8. Before the shift, the process is considered to be in a state of statistical control (in-control
state).

9. The process is not self-correcting. That is, once a transition to an out-of-control state has
occurred, the process can be returned to the in-control condition only by management
intervention upon appropriate corrective actions.

10. The quality cycle starts with the in-control state and continues until the process is
repaired after an out-of-control signal. It is assumed that quality cycle follows a Renewal
Reward Process.

11. During the search for an assignable cause, the process is shut down.

4.2. Cost function in the case of non-uniform sampling

Every process begins at in control state. At that point, because of the occurrence of one
assignable cause, the process will change to out of control state and after detection and
repair; it goes back to the control state. This is called quality cycle that develops Renewal
Reward Process where the average cost per unit time for cycle E(A) is obtained by the average
cost per cycle E(C) divided by the average time per cycle E(T ). We assumed that assignable
causes affected the process. The occurrence time of any assignable cause follows Weibull
distribution.

 

Figure 1: The quality cycle under control and out of control

Here it is assumed that after the occurrence of the ith assignable cause, until the discovery
of this deviation, the process will not disturb by other assignable causes. If the time until
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occurrence of assignable causes noted by T
′
1, T

′
2, ..., T

′
S , then the probability of being under

control at time t is:

P (T
′
> t) = P (min(T

′
1, T

′
2, ..., T

′
S) > t) = exp−λ0t

k
(19)

where λ0 =
∑
λi, i = 1, 2, . . . , s.

Therefore, the time of being in control until the occurrence of multiple assignable causes
follows the Weibull distribution.

f0(t) = λ0kt
k−1exp(−λ0tk).( t > 0, k ≥ 1, λ0 > 0). (20)

We consider P0j as the conditional probability that multiple assignable causes (i = 1, 2, ..., s)
will occur during jth sampling interval (j = 1, 2, ...) given that multiple assignable causes not
occur at time ωj−1. We obtain p0j = 1− e−λ0hk1. Here it is assumed p0j = p0.

The average time that the process is in control is:

(
1

λ0
)
1
k Γ(1 +

1

k
) + Z0ANF (21)

In the above formula ANF is the average numbers of false alarm in the quality cycle and
is equal to the production of average sample numbers before shift and probability of Type I
error (α).

If A is the event of the occurrence of single assignable cause, then average numbers of false
alarm calculated as follows:

E(Numberofsamplesaretakenbeforeshift) =
∞∑
j=0

jP (A ∈ (jh, (j + 1)h) (22)

=
∞∑
j=0

j(e−λ0jh
k
1 − e−λ0(j+1)hk1 ) (23)

=
e−λ0h

k
1

1− e−λ0hk1
. (24)

Therefore, ANF is equal to:

ANF = α
1− p0
p0

. (25)

The average time of cycle is:

E(T ) = (
1

λ0
)
1
k Γ(1 +

1

k
) + Z0ANF +AATS + Z1 + Σ(

λi
λ0

)Z2i (26)

where

AATS =
s∑
i=1

λi
λ0
AATSi. (27)

For a better understanding of E(T ) one can see Figure 1.

The average cost of cycle is:

E(C) = D0(
1

λ0
)
1
k Γ(1 +

1

k
) + Y ANF +

s∑
i=1

λi
λ0
D1iAATSi +

s∑
i=1

λi
λ0
wi (28)

+ (a+ bn)

s∑
i=1

λi
λ0

(
1

1− βi
) + (a+ bn)Q. (29)

(30)
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For better understanding of E(C) one can see Figure 1. The way of obtaining λi
λ0

in above
formula is presented in Appendix E.

In practice, each process starts from in control state. Then because of occurrence of one
assignable cause, it goes to out of control state. It is clear that after repairing and fixing the
assignable cause, the process returns to the initial state. This cycle is called quality cycle and
its model follows the form of a Renewal Reward Process where the average cost per unit time
for the cycle E(A) is calculated by the average cost per cycle E(C) divided by the average time
per cycle E(T ). In economic design, the purpose is optimizing E(A) without any constraint
and finding optimal values for sampling interval, sample size and control limits coefficient.

4.3. Cost function in the case of uniform sampling

To evaluate the relative benefits of non-uniform sampling plan in comparison with uniform
sampling plan under multiple assignable causes cost model, and by considering fixed sampling
interval, we calculate average time and the average cost for the cycle and analyze them. If h
is a fixed sampling interval, then we can obtain E(T ) as follows:

E(T ) = (
1

λ0
)
1
k Γ(1 +

1

k
) + Z0ANF +AATS + Z1 + Σ(

λi
λ0

)Z2i, (31)

where

AATS =
s∑
i=1

λi
λ0
AATSi (32)

AATSi =
h

1− βi
− τi (33)

τi = (
1

λ0
)
1
k Γ(1 +

1

k
)− hQi (34)

Qi =
∞∑
j=1

eλi(jh)
k

(35)

ANF = αQ,Q =

∞∑
j=1

eλ0(jh)
k

(36)

We also obtain E(C) as fallows:

E(C) = D0(
1

λ0
)
1
k Γ(1 +

1

k
) + Y ANF +

s∑
i=1

λi
λ0
D1iAATSi +

s∑
i=1

λi
λ0
wi (37)

+ (a+ bn)

s∑
i=1

λi
λ0

(
1

1− βi
) + (a+ bn)Q. (38)

4.4. Improvement of cost function by using Taguchi loss function

To consider the intangible costs, Taguchi loss function is used. In this model, E(A) is used
as an economic criterion to assess the measurable costs. To estimate D0 and D1 Taguchi
loss function is used. Taguchi, Chowdhury, and Wu (2005) characterized product quality as
the loss a product bestows to society from the time the product is delivered and presented
the quality loss function as a quality measure. They showed that a quadratic loss function
adequately represents economic loss due to the deviation of a quality characteristic from the
target value. The Taguchi loss function is presented bellow:

L(Y ) = C(X − t)2 (39)
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In the above formula L(Y ), is the loss connected with the value of quality characteristic X, the
target value of the quality characteristic is denoted by t, and C is a constant value depending
on the width of the specification and the cost at the specification limits.

Based on Eq. (31), Kapur and Cho (1996) improved a multivariate loss function for the
multivariate quality characteristics Y1, Y2, ..., YP . The multivariate loss function presented
below

L(Y1, Y2, ..., YP ) =
P∑
i=1

i∑
j=1

Cij(Yi − ti)(Yj − tj) (40)

where tj is the target of the jth characteristic, and Cij is a constant depending on the cost at
the specification limits and the width of the specification. Chen (1995) discussed completely
about determining the values of Cij . Specifically, if Yi and Yj are independent, then Cij = 0.
The expected loss per unit of product may be obtained by the use of expectation operator on
both sides of Eq. (32).

E(L(Y1, Y2, ..., YP )) =
P∑
i=1

Cii[(µi − ti) + σ2i ] +
P∑
i=2

i∑
j=1

Cij [(µi − ti)(µj − tj) + σij ] (41)

In the above formula µj and σ2j are the mean and variance of Yj , and the covariance of Yj
and the covariance of Yi and Yj is σij .

If we consider Eq (33) when the process under control, (µ = µ0), Lin is obtained. Lout, i
is obtained by considering Eq (33), when the process is out of control µ = µ1. We improve
Eq (23) and (30) by using PLin instead of D0 and PLout, i instead of D1i. In this paper,
we consider two quality characteristic. Let (Y1, Y2) be two quality characteristic, and assume
that when the process is in-control:

(Y1, Y2) ∼ BN( ~µ0 = (µY1 , µY2),Σ0), (T
′′
1 , T

′′
2 ) = (µY1 − δ5σ1, µY2 − δ6σ2) (42)

where σ12 = ρσ1σ2 is the covariance of (Y1, Y2) and ρ is the coefficient of correlation and
−1 ≤ ρ ≤ 1. δ5 and δ6 are target shifts, in order to simplify the process we set δ5, δ6 ≥ 0.

When the process is out-of-control,

(Y1, Y2) ∼ BN( ~µ1 = (µY1 + δ1i, µY2 + δ2i),Σ0), (T
′′
1 , T

′′
2 ) = (µY1 − δ5σ1, µY2 − δ6σ2) (43)

where both δ1i and δ2i for i = 1, 2, ..., s are the mean partial shift and δ1i, δ2i 6= 0.

We use the following bivariate loss function:

L(Y1, Y2) = K11(Y1 − T
′′
1 )2 +K12(Y1 − T

′′
1 )(Y2 − T

′′
2 ) +K22(Y2 − T

′′
2 )2 (44)

where (Y1, Y2) are quality characteristics, T1 and T2 are target values and K11,K22 and K12

are constants.

E(L(Y1, Y2)) = K11E[(Y1 − T
′′
1 )2] +K12E[(Y1 − T

′′
1 )(Y2 − T

′′
2 )] +K22E[(Y2 − T

′′
2 )2] (45)

Lin is obtained by considering Eq (37) when the process is in control and Lout,i is obtained
by considering Eq (37) .

5. Economic statistical design

In the statistical design of control charts, optimal performance of design parameters obtained
in terms of statistical criteria. Economic design of control charts based on economic criteria.
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In this paper, economic statistical design performed based on minimizing average cost per
time and by considering maximum values for the average time between occurrence shift in
process mean and receiving a right alarm from control chart (AATS) and average numbers
of false alarm in the quality cycle (ANF ). If we note the average cost of a cycle per time
by E(A) and the set of economic design parameters of T 2 control charts by F, we can show
economic statistical design of T 2 control charts as follows:

minimize EF (A)

subject to AATS ≤ AATSU and ANF ≤ ANFU
where AATSu and ANFu are the corresponding bounds of values of AATS and ANF .

6. Illustrative example

To determine the optimal model parameters, the R package Optim is used through minimizing
loss cost. Some of the parameters like cost parameters (Y, a, b) and time parameters (Z0, Z1)
that are fixed have been determined based on past experience. In this model, ωi and Z2i

are non-fixed cost and time parameters, respectively. Also, there are Weibull distribution
parameters (λi, k), shift parameter di and (n, h1, L) parameters in the model. In the numerical
example we assume:

Y = 500, a = 20, b = 4.22, Z0 = 0.25, Z1 = 0.25

The above parameters are not affected by the occurrence of different assignable causes and
the shift created in the mean process. However, Wi, Z2i, λi and parameters are assumed to
be a function of di. We calculated above parameters below:

a) It is assumed (Y1, Y2) be two quality characteristic, and assume that when process is in-
control:

(Y1, Y2) ∼ BN(µ0 = (2, 3),Σ0) (46)

(T
′′
1 , T

′′
2 ) = (0.32, 1.92) (47)

When covariance matrix is: [
4 1
1 9

]
We assume that process is disturbed by ten assignable causes which produce ten shift values
in process mean vector. We also assume that when the process is going to out of control, the
mean of the process is shifted and we have

µi = (2 + δ1i, 3 + δ2i) (48)

Values of δ1i and δ2i and di related to them, are listed in Table 2.

As seen before, Lin and Lout,i is obtained by considering Eq(37) and we have D0 = PLin and
D1i = PLout,i. We assume K11 = 1.6,K12 = 4,K22 = 5, P = 17. Thus we obtain D0 = 946,

D1i = (948, 955.87, 956.624, 957.37, 958.12, 959, 960.02, 960.7, 961.5, 962.24)

b) Suppose that di = 0.018 is a base case. Yang and Rahim (2006) single assignable cause
model is compared with our multiple assignable causes model. Base case parameters are also
considered for single assignable cause model

W = 1100, D1 = 958.12, Z2 = 0.75, λ = 0.05, d = 0.018
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Table 2: Model partial shift and shift mean parameters

Ai δ1i δ2i di
1 0.02 0.03 0.036
2 0.01 0.02 0.022
3 0.009 0.019 0.021
4 0.008 0.018 0.019
5 0.007 0.017 0.018
6 0.006 0.014 0.015
7 0.005 0.009 0.01
8 0.004 0.008 0.008
9 0.003 0.007 0.007
10 0.002 0.006 0.006

Table 3: Model input parameters

PDi Z2i Wi λi
Ai di NE Un HN D1i NE Un HN NE Un HN NE Un HN

1 0.036 0.491 0.100 0.399 948 0.743 0.75 0.75 1090 1100 1100 0.0154 0.0156 0.0156
2 0.022 0.495 0.100 0.399 955.9 0.749 0.75 0.75 1098 1100 1100 0.0155 0.0156 0.0156
3 0.021 0.495 0.100 0.399 956.6 0.749 0.75 0.75 1098 1100 1100 0.0155 0.0156 0.0156
4 0.019 0.495 0.100 0.399 957.4 0.750 0.75 0.75 1099 1100 1100 0.0155 0.0156 0.0156
5 0.018 0.496 0.100 0.399 958.1 0.750 0.75 0.750 1100 1100 1100 0.0155 0.0156 0.0156
6 0.015 0.496 0.100 0.399 959 0.751 0.75 0.75 1102 1100 1100 0.0156 0.0156 0.0156
7 0.01 0.498 0.100 0.399 960 0.753 0.75 0.75 1104 1100 1100 0.0156 0.0156 0.0156
8 0.008 0.498 0.100 0.399 960.7 0.754 0.75 0.75 1106 1100 1100 0.0156 0.0156 0.0156
9 0.007 0.498 0.100 0.399 961.5 0.754 0.75 0.75 1106 1100 1100 0.0156 0.0156 0.0156
10 0.006 0.499 0.100 0.399 962.2 0.755 0.75 0.75 1107 1100 1100 0.0156 0.0156 0.0156

In this paper, we noted the prior distribution for di by PDi. As mentioned earlier three
distribution uniform, negative-exponential and half-normal are considered as a prior for di.
The value of Weibull scale parameter λi

is calculated by the use of prior distributions. Other parameter formulas are as below:

Wi = (
PDi

PD5
)× 1100 (49)

Z2i = (
PDi

PD5
)× 0.75 (50)

λi = (
PDi

PD5
)× λ5 (51)

Input parameters values are listed in Table 3 .

Comparison between optimal values (n, h1, L) and loss cost for our multiplicity-cause and
single-cause model of Yang and Rahim (2006) is presented in Table 4 for different values of
the shape parameter Weibull distribution. As seen in Table 4, a single-cause model has a
higher loss cost than multiplicity-cause model except in the case of k = 1. In other words,
when the process is affected by several assignable causes, and wrongly it is assumed that
only single assignable cause affected the process, the loss cost will be increased. It should be
noted that according to the values obtained in economic design, the upper limit of AATS was
considered 1 and the upper limit of ANF were considered 0.5.

In Table 5 comparison between optimal values and loss cost for economic statistical design
by considering the non-uniform sampling and uniform sampling scheme for different values
of the Weibull distribution shape parameter is given. As it is seen in Table 5 when we use
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Table 4: Optimal parameters obtained under multiple assignable causes

Economic design Economic Statistical design

k PD n h1 L α 1− β AATS ANF ECT n h1 L α 1− β AATS ANF ECT

Y R 12 1.2 5.47 0.065 0.9 0.747 0.262 1090.65 12 1.2 5.47 0.065 0.9 0.747 0.262 1090.65
1 NE 7 1.18 2.71 0.25 0.69 1.53 4.05 1127.09 97 1 7.24 0.026 0.85 0.99 0.5 1427.5

Un 6 1.05 3.55 0.17 0.72 1.52 3.95 1106.9 100 1.21 7.39 0.025 0.99 1 0.5 1370.27
HN 7 1.11 3.08 0.21 0.71 1.47 3.83 1120.29 100 1.16 7.07 0.029 0.89 0.99 0.49 1385.53
Y R 11 1.7 5.18 0.075 0.89 0.428 0.16 1171.17 11 1.7 5.18 0.075 0.89 0.428 0.16 1171.17

1.5 NE 6 2.27 2.2 0.33 0.72 0.6 1.71 1149 17 2.65 4.14 0.12 0.71 0.99 0.5 1177.4
Un 6 2.05 3.33 0.19 0.72 0.547 1.52 1135.32 42 1.83 10.5 0.006 0.78 1 0.06 1336.54
HN 7 2.14 2.71 0.26 0.72 0.56 1.55 1142.67 44 1.69 9.69 0.008 0.75 0.99 0.07 1367.21
Y R 11 1.76 5.07 0.079 0.88 0.36 0.13 1195.13 11 1.76 5.07 0.079 0.88 0.36 0.13 1195.13

1.8 NE 6 2.45 1.95 0.38 0.27 0.43 1.26 1151.94 40 1.73 10.3 0.005 0.66 1 0.038 1459.54
Un 5 2.22 3.21 0.2 0.72 0.38 1.09 1140.68 10 2.88 3.74 0.15 0.77 0.55 0.5 1156.42
HN 6 2.31 2.53 0.28 0.73 0.4 1.13 1144.94 13 2.91 3.23 0.2 0.77 0.57 0.5 1160.73
Y R 11 1.76 5 0.082 0.88 0.32 0.12 1204.79 11 1.76 5 0.082 0.88 0.32 0.12 1204.79

2 NE 4 2.49 1.79 0.41 0.75 0.36 1.07 1151.3 40 2 10.5 0.005 0.66 0.99 0.024 1449.842
Un 5 2.25 3.13 0.21 0.72 0.32 0.93 1141.86 8 2.42 4.03 0.13 0.72 0.41 0.5 1148.92
HN 6 2.34 2.42 0.3 0.73 0.338 0.96 1144.36 9 2.42 3.59 0.17 0.71 0.44 0.49 1152.69
Y R 10 1.73 4.89 0.087 0.87 0.264 0.1 1215.95 10 1.73 4.89 0.087 0.87 0.264 0.1 1215.95

2.5 NE 4 2.47 1.29 0.52 0.79 0.259 0.81 1146.18 6 2.83 1.33 0.51 0.72 0.33 0.51 1153
Un 5 2.21 2.93 0.23 0.72 0.22 0.69 1140.55 6 2.47 2.89 0.23 0.75 0.26 0.49 1144.09
HN 5 2.3 2.13 0.34 0.74 0.242 0.72 1139.48 7 2.4 2.58 0.27 0.74 0.28 0.49 1141.99
Y R 10 1.68 4.8 0.09 0.86 0.229 0.084 1217.35 10 1.68 4.8 0.09 0.86 0.229 0.084 1217.35

3 NE 4 2.35 1 0.6 0.81 0.203 0.63 1139 4 2.47 1 0.6 0.83 0.227 0.51 1140.36
Un 4 2.12 2.74 0.25 0.72 0.17 0.54 1136.53 5 2.63 1.24 0.53 0.86 0.2 0.5 1148.57
HN 5 2.21 1.83 0.4 0.76 0.19 0.57 1132.74 4 2.52 1.03 0.6 0.85 0.21 0.5 1136.46
Y R 10 1.57 4.67 0.097 0.86 0.18 0.68 1209.84 10 1.57 4.67 0.097 0.86 0.18 0.68 1209.84

4 NE 3 2.05 1 0.6 0.81 0.15 0.4 1125.9 3 2.05 1 0.6 0.81 0.15 0.4 1125.9
Un 4 1.95 2.33 0.31 0.74 0.12 0.39 1126.8 4 1.95 2.33 0.31 0.74 0.12 0.39 1126.8
HN 3 2.06 1 0.61 0.83 0.13 0.43 1118.74 3 2.06 1 0.61 0.83 0.13 0.43 1118.74

economic statistical design, the loss cost becomes greater when uniform sampling scheme is
used instead of non-uniform sampling scheme

7. Conclusions

In this paper, the economic design of T 2 control chart with multiple assignable causes under
Weibull shock model with Taguchi loss function was presented. The cost model under multiple
assignable causes compared with single cause model of Yang and Rahim (2006). The results
showed that the model under multiple assignable causes with Taguchi loss function has a
lower cost than single assignable cause model. In other words, when the process is affected by
several assignable causes, and wrongly it is assumed that only single assignable cause affected
the process, the loss cost will be increased.

Appendix A

Notations and definitions

Z0: Average time to search for false alarm.

Z1: Average time to discover assignable cause once it is detected by control chart.

Z2i: Average time to repair ith assignable cause after it has been discovered.

D0: Average cost per unit of time while the process in control.

D1i: Average cost per unit of time while the process is out of control owing to the occurrence
of the ith assignable cause (i = 1, 2, ..., s).

Lin: Approximated in control cost obtained by considering modified Taguchi loss function.

Lout,i: Approximated out of control cost obtained by considering modified Taguchi loss func-
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Table 5: Optimal parameters

Economic Statistical design with non-uniform sampling scheme Economic Statistical design with uniform sampling scheme

k PD n h1 L α 1-β AATS ANF ECT n h1 L α 1-β AATS ANF ECT

Y R 12 1.2 5.47 0.065 0.9 0.747 0.262 1090.65 13 1.4 6.62 0.036 0.88 0.9 0.5 1094.34
1 NE 97 1 7.24 0.026 0.85 0.99 0.5 1427.5 76 0.7 7.97 0.019 0.8 1 0.5 1470.08

Un 100 1.21 7.39 0.025 0.99 1 0.5 1370.27 45 0.32 10.0 0.007 0.79 1 0.5 1600.9
HN 100 1.16 7.07 0.029 0.89 0.99 0.49 1385.53 72 0.79 7.85 0.019 0.83 1 0.5 1401.65
Y R 11 1.7 5.18 0.075 0.89 0.428 0.16 1171.17 12 0.91 5.2 0.074 0.99 0.55 0.5 1183.24

1.5 NE 17 2.65 4.14 0.12 0.71 0.99 0.5 1177.4 51 0.97 5.02 0.08 0.72 1 0.5 1342
Un 42 1.83 10.1 0.006 0.78 1 0.06 1336.54 48 1.15 5.04 0.08 0.88 1 0.5 1319.8
HN 44 1.69 9.69 0.008 0.75 0.99 0.07 1367.21 26 0.85 4.28 0.12 0.81 0.93 0.49 1327.63
Y R 11 1.76 5.07 0.079 0.88 0.36 0.13 1195.13 10 0.78 4.79 0.091 0.88 0.5 0.5 1219.73

1.8 NE 40 1.73 10.3 0.005 0.66 1 0.038 1459.54 47 1.18 3.82 0.14 0.85 1 0.5 1356.5
Un 10 2.88 3.74 0.15 0.77 0.55 0.5 1156.42 44 1.32 3.89 0.14 0.89 0.99 0.5 1363.43
HN 13 2.91 3.23 0.2 0.77 0.57 0.5 1160.73 45 1.22 3.82 0.15 0.88 0.96 0.5 1353.81
Y R 11 1.76 5 0.082 0.88 0.32 0.12 1204.79 11 0.68 4.72 0.094 0.9 0.42 0.5 1230.94

2 NE 40 2 10.4 0.005 0.66 0.99 0.024 1449.84 47 1.29 3.22 0.2 0.87 0.98 0.5 1377
Un 8 2.42 4.03 0.13 0.72 0.41 0.5 1148.92 24 1 4.11 0.13 0.84 0.99 0.5 1333.48
HN 9 2.42 3.59 0.17 0.71 0.44 0.49 1152.69 26 0.84 4.26 0.12 0.81 0.93 0.5 1327.63
Y R 10 1.73 4.89 0.087 0.87 0.264 0.1 1215.95 10 0.7 3.97 0.13 0.9 0.42 0.5 1270.02

2.5 NE 6 2.83 1.33 0.51 0.72 0.33 0.51 1153 47 143 2.22 0.33 0.91 0.92 0.5 1429.82
Un 6 2.47 2.89 0.23 0.75 0.26 0.49 1144.09 11 0.49 4.98 0.082 0.72 0.91 0.5 1327.62
HN 7 2.4 2.58 0.27 0.74 0.28 0.49 1141.99 17 0.96 3.29 0.19 0.8 0.97 0.5 1353.43
Y R 10 1.68 4.8 0.09 0.86 0.229 0.084 1217.35 10 0.79 3.25 0.2 0.94 0.44 0.5 1302.67

3 NE 4 2.47 1 0.6 0.83 0.227 0.51 1140.36 49 1.23 2.1 0.35 0.92 0.77 0.5 1449.74
Un 5 2.63 1.24 0.53 0.86 0.2 0.5 1148.57 12 0.62 4 0.13 0.78 0.79 0.5 1352.8
HN 4 2.52 1.03 0.6 0.85 0.21 0.5 1136.46 47 1.25 2.13 0.34 0.93 0.76 0.5 1463.84
Y R 10 1.57 4.67 0.097 0.86 0.18 0.68 1209.84 13 2.5 1 0.6 0.99 0.94 0.086 1507.75

4 NE 3 2.05 1 0.6 0.81 0.15 0.4 1125.9 51 1.01 2.01 0.37 0.92 0.62 0.5 1473.23
Un 4 1.95 2.33 0.31 0.74 0.12 0.39 1126.8 47 1.05 2.1 0.35 0.94 0.61 0.5 1520.34
HN 3 2.06 1 0.61 0.83 0.13 0.43 1118.74 49 1.02 2.04 0.36 0.84 0.6 0.5 1487.96

tion.

Y : The average cost per false alarm when the process is under control.

Wi: Cost to locate and repair ith assignable cause.

a: Fixed sample cost.

b: Unit sample cost.

P : Production rate.

∆: Tolerance rate.

A: The cost to society for manufacturing a product out of specification.

σ: Standard deviation of the process.

λi: Weibull Scale parameter.

k: Weibull Shape parameter.

n: Sample size.

h1: Sampling interval.

L: Control limits coefficient.

ρ: Average correlation factor within samples.

Appendix B

According to Banerjee and Rahim (1988) and Regarding of hj we have:

hj = [j
1
k − (j − 1)

1
k ]h1

We show hj is decreasing based of j :
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∂

∂j
hj = [

1

k
j

1
k
−1 − 1

k
(j − 1)

1
k
−1]h1

= [j

1

k
−1
− (j − 1)

1

k
−1

]
h1
k

h1 is sampling interval and positive. In the above formula, 1
k is positive, because the shape

parameter of Weibull distribution K ≥ 1. Hence j
1
k
−1 − (j − 1)

1
k
−1 ≤ 0, therefore we have:

∂
∂jhj ≤ 0. Because of above reason, hj is decreasing based of j.

Appendix C

Recall that the X ∼ N(µ, V ), with V = σ2R is the process variance and R is the correlation
matrix.

V ar(X) =
1

n2
[

n∑
i=1

V ar(Xi) +
∑
i 6=j

Cov(Xi, Xj)]

=
1

n2
[nσ2 +

∑
i 6=j

Vij ]

=
1

n2
[nσ2 + σ2{

∑
i 6=j

rij}]

Let ρ =
∑

i6=j rij
n(n−1) . Then

V ar(X) =
1

n2
[nσ2 + σ2n(n− 1)ρ]

=
σ2

n
[1 + (n− 1)ρ]

Appendix D

According to Banerjee and Rahim (1988) and Regarding equation (7), ωj and hj can be
obtained as follows: ∫ ωj+1

ωj

ri(t) dt =

∫ h1

ω0

ri(t) dt, j = 1, 2, . . .

∫ ωj+1

ωj

λikt
k−1(t) dt =

∫ h1

ω0

λikt
k−1(t) dt

= ωkj+1 − ωkj = hk1

If j = 1 : ωk2 = ωk1 + hk1 ⇒ ω2 = 2
1
kh1

If j = 2 : ωk3 = ωk2 + hk1 ⇒ ω3 = 3
1
kh1

...
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Therefore ωj = j
1
kh1 and

hj = ωj − ωj−1
= [j

1
k − (j − 1)

1
k ]h1, j = 1, 2, ....

Appendix E

Let AATSi be the average time between occurrence shifts in process mean owing to ith

assignable cause and receiving true alarm from control chart, Banerjee and Rahim (1988).

AATSi =
∞∑
j=1

[
∞∑
k=1

qij [ωk+j−1 − ωj−1]βk−1i (1− βi)]− τi

=

∞∑
j=1

[

∞∑
k=1

(1− pi)j−1pi[ωk+j−1 − ωj−1]βk−1i (1− βi)]− τi

= (1− βi)pi
∞∑
j=1

[

∞∑
k=1

[(1− pi)j−1ωk+j−1βk−1i︸ ︷︷ ︸− (1− pi)j−1ωj−1βk−1i︸ ︷︷ ︸]]− τi
For the first part, we have:

I =

∞∑
j=1

∞∑
k=1

(1− pi)j−1ωk+j−1βk−1i

=

∞∑
l=1

l∑
j=1

(1− pi)j−1ωlβl−ji

=

∞∑
l=1

ωlβ
l
i

l∑
j=1

(1− pi)−1(
1− pi
βi

)j

= (
1

1− pi
)

∞∑
l=1

ωlβ
l
i(

1− pi
βi − 1 + pi

)− (
1

1− pi
)

∞∑
l=1

ωl(
(1− pi)l+1

βi − 1 + pi
)

= (
1

pi + βi − 1
)(

∞∑
l=1

ωlβ
l
i −

∞∑
l=1

ωl(1− pi)l)

= (
h1

pi + βi − 1
)(βiA(βi)− (1− pi)A(1− pi))

For the second part, we have:

II =
∞∑
j=1

∞∑
k=1

(1− pi)j−1ωj−1βk−1i

=

∞∑
j=1

(1− pi)j−1ωj−1
∞∑
k=1

βk−1i

=
h1(1− pi)

1− βi
A(1− pi)

By substituting and simplifying, final formula is obtained.

Appendix F

If Bi is the event of the occurrence of ith assignable cause, then

P (Bi) = P (Ti < Y ),
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where Y = min(T1, T2, ..., Ti−1, Ti+1, ..., Ts)

Let λ
′

=
∑

i 6=j and λ0 =
∑
λj , j = 1, 2, ..., s, then

P (Bi) = P (Ti < Y )

=

∫ +∞

0
P (Ti < Y |Y = y)fY (y)dy

=

∫ +∞

0
P (Ti < Y )fY (y)dy

=

∫ +∞

0
(1− e−λiyk)λ

′
kyk−1e−λy

k
dy

=

∫ +∞

0
λ
′
kyk−1e−λy

k
dy

−
∫ +∞

0
e−λiy

k
λ
′
kyk−1e−λy

k
dy

= 1− λ′
∫ +∞

0
kyk−1e−y

k(λi+λ
′
)dy

= 1− λ
′

λi + λ′

=
λi

λi + λ′

=
λi
λ0
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