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Abstract

A control chart is a crucial statistical tool that is typically used to monitor a process, in
an effort to reduce variation. It is necessary to practically evaluate the overall performance
of a control chart. Evaluation reveals the efficiency of a control chart to detect a process
shift. This influences practitioners’ decisions on the choice of a control chart. The usual
practice taken to evaluate the performance of a control chart is to use the average run
length (ARL). The assumption for using the ARL as a performance measure is that the
shift size is known in advance. Determining the shift size can be restrictive, particularly
in the case practitioners do not have prior knowledge about the process. In view of this,
the expected ARL (EARL) is employed as a performance measure for the random process
mean shift. In this article, the overall performance of the side sensitive group runs (SSGR)
chart is investigated in terms of EARL. Moreover, the optimal design for the SSGR chart
based on minimising the EARL is proposed.
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1. Introduction

Statistical Process Control (SPC) is a collection of statistical tools that is efficient in achieving
stability and improving the capability of a process. A control chart is among the primary
tools of SPC (Montgomery 2013). The objective of using a control chart is to monitor the
process, and produce high quality output (Steland 2006).

The first control chart was developed by Dr. Walter A. Shewhart, and is referred to as the
Shewhart chart. It is well-known that the Shewhart chart is good in detecting large shifts,
but rather insensitive to detect small mean shifts. In view of this, new control charts such
as the group runs (GR) chart (Gadre and Rattihalli 2004), and side sensitive group runs
(SSGR) chart (Gadre and Rattihalli 2007), are developed to enhance the detection ability
toward small and moderate sized process shifts.

The performance of the control chart influences the decision on the choice of a control chart. It
is thus crucial to evaluate the performance of a control chart. The average run length (ARL)
is the common performance measure for a control chart. The ARL represents the average
number of samples plotted on a control chart, before an out-of-control signal is detected.
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The computation of the ARL requires the practitioners to specify the magnitude of shift
(Chakraborti 2007).

In reality, this requirement is too restrictive, since the practitioners may not have historical
knowledge about the process. Therefore, practitioners may not be able to determine the
precise shift size of the process in advance. In this circumstance, expected ARL (EARL) is
employed, where the EARL does not require practitioners to identify the shift size. On the
contrary, the EARL computes the expected value of the ARL, over the distribution function
of the shift size. Celano (2009), Castagliola, Celano, and Psarakis (2011) and You, Khoo,
Castagliola, and Qu (2016) evaluated the performance of a control chart when the shift size
is unknown.

Gadre and Rattihalli (2007) proposed the SSGR based on average time to signal (ATS), which
is ATS = n×ARL i.e. n denotes sample size. However, the SSGR chart uses the fixed n in
process monitoring. Therefore, measuring the SSGR chart’s performance using either the ATS
or ARL gives a similar conclusion. In addition, Gadre and Rattihalli (2007) demonstrated
that the performance of the SSGR chart is superior to the Shewhart chart, synthetic chart
and GR chart, and this has motivated the current research work.

This paper aims to propose the optimal design for the SSGR chart based on minimising
EARL. Moreover, the performance of the SSGR chart based on exact and random process
shift sizes is investigated. The SSGR chart is briefly reviewed in the following section. Next,
the run length properties of the SSGR chart are discussed in Section 3. The optimal design
of the SSGR chart based on minimising the out-of-control EARL is presented in Section 4.
This is followed by the investigation of the performance of the SSGR chart based on the exact
and random shifts for monitoring the process mean. Finally, some concluding remarks are
presented.

2. The SSGR chart

The SSGR chart is the integration of the Shewhart sub-chart and an extended version of
the conforming run length (CRL) sub-chart. In process monitoring, take a sample of n
observations and compute the sample value, i.e., X̄. When a sample value plots beyond the
control limits of the Shewhart sub-chart, the SSGR chart does not signal an out-of-control
status. Alternatively, it shows that a nonconforming sample exists. Further investigation
using CRL sub-chart is required to determine the state of the process.

As the name implies, the SSGR chart takes into account the side sensitivity aspects, i.e. the
two continuous sample values that fall beyond the control limits of the Shewhart sub-chart
must be on the same side of the Shewhart sub-chart. Therefore, the SSGR chart declares
an out-of-control if (i) CRL1 ≤ L or (ii) CRLr ≤ L and CRLr+1 ≤ L , for r = 2, 3, . . . ,
and that both CRLr and CRLr+1 have shifts on the same side of the Shewhart sub-chart.
Here, L is the lower limit of the CRL sub-chart, which must be presented as a positive value.
The CRLr, for r = 1, 2, . . . is the number of conforming samples plotted on the Shewhart
sub-chart, before a nonconforming sample is detected. With an additional rule to enhance
the detection effectiveness, the SSGR chart is considered in this work.

3. The run length properties of the SSGR chart

When process parameters, i.e. the in-control mean µ0 and in-control standard deviation σ0
are known, the control limits of the Shewhart sub-chart are defined as follows:

LCL = µ0 −
K√
n
σ0 (1)

and
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UCL = µ0 +
K√
n
σ0, (2)

where the LCL, UCL and K represent the lower control limit, upper control limit and control
limit coefficient respectively. Note that n denotes the sample size.

The probability that a sample is nonconforming on the Shewhart sub-chart is defined as A =
1 - Pr (X̄ ∈ [LCL,UCL]), i.e.

A = 1− Pr
(
µ0 −

K√
n
σ0 ≤ X̄ ≤ µ0 +

K√
n
σ0
)
. (3)

Using the fact that X̄ ∼ N(µ0 + δσ0, σ
2
0/n), subtracting µ0+δσ0 and multiplying the inequal-

ity by
√
n/σ0, Equation (3) becomes

A = 1−
[
Φ[(µ0 +

K√
n
σ0 − µ0 − δσ0)

√
n

σ0
]− Φ[(µ0 −

K√
n
σ0 − µ0 − δσ0)

√
n

σ0
]
]
. (4)

Next, following some simplifications, A is reduced to

A = 1− Φ(K − δ
√
n) + Φ(−K − δ

√
n). (5)

Here, Φ( · ) is the standard normal cumulative distribution function (cdf).

Moreover, the probability of an event CRLr ≤ L is

P = 1− (1−A)L. (6)

Furthermore, the conditional probability for taking into account the position where the sample
value falls on the Shewhart sub-chart is

β =
Pr(X̄ > µ0 + K√

n
σ0)

A
=

1− Φ(K − δ
√
n)

A
. (7)

Note that the reader can refer to Gadre and Rattihalli (2007) for a detailed and complete
derivation.

The ARL formula for the SSGR chart is

ARL =
1− β(1− β)P 2

AP 2[1 + β(1− β)(P − 2)]
. (8)

Note that the computation of the ARL can be conducted when the practitioner is able to
identify the shift size in the process mean.

However, in real scenarios, the shift size is unknown in advance, as the practitioner does not
have historical knowledge of the overall process. In light of this, it is crucial to consider the
EARL for an overall range of shifts (δmin, δmax) , where δmin and δmax indicate the lower and
upper bounds of the mean shift respectively. The EARL of the SSGR chart is denoted as
follows

EARL =

∫ δmax

δmin

fδ(δ)ARLdδ, (9)

where fδ(δ) is the probability density function of the magnitude of the shift in a process and
ARL is from Equation (8). The magnitude is denoted as δ.
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4. Optimal design of the SSGR chart based on minimising EARL

In many scenarios, the magnitude of shift size, δ is seldom predefined. When the real shift size
differs from the desired δ, optimal charting parameters based on minimising out-of-control
ARL (ARL1) result in a deterioration in performance. For example, in Table 2, when n =
3 and δ = 0.8, the optimal charting parameters (K, L) = (1.9588, 7) give ARL1 = 4.32.
However, if the real mean shift occurred in the process is δ = 0.2, using the same optimal
charting parameters (K, L) will result in ARL1 = 143.88. Comparing this ARL1 value with
the minimized ARL1 = 127.88 (refer Table 2 when (n, δ) = (3, 0.2)), the relative error is 100
x (143.88 - 127.88)/127.88 = 12.51%.

In light of this, it is crucial to consider the EARL by taking into account the overall range of
shifts (δmin, δmax). The computation of the optimal charting parameters (K, L) that minimize
the out-of-control EARL (EARL1), for the SSGR chart is

(K,L) = arg min EARL(n,K ′, L′, δminδmax) (10)

subject to the constraint EARL (n,K ′, L′, 0, 0) = EARL0, where EARL0 is the in-control
EARL. Here, EARL1 (n,K ′, L′, δmin, δmax) is obtained using Equation (9).

A computer program developed in ScicosLab software version 4.4.2 (www.scicoslab.org) was
employed to compute the optimal charting parameters (K, L) based on the following steps:

Step 1: Specify n, (δmin, δmax), EARL0.

Step 2: Initialize L as unity.

Step 3: Compute K using a nonlinear equations solver to satisfy EARL0 that specified in
Step (1).

Step 4: Compute the EARL1 using Equation (9), based on the current charting parameters
(K, L).

Step 5: Increase L by one if L = 1 or ”L > 1 and EARL1 has been reduced”. Otherwise,
proceed to the next step.

Step 6: Take the charting parameters (K, L) that give the smallest EARL1 as the optimal
charting parameters.

5. The performance comparison of the SSGR chart

Table 1 presents the optimal charting parameters (K, L) and the corresponding out-of-control
EARL (EARL1) for various (n, δmin, δmax) combinations. In addition, the optimal charting
parameters (K, L) are adjusted to give the intended in-control EARL (EARL0) at 370.4.
Here, the SSGR chart is optimally designed to obtain the optimal charting parameters (K,
L) based on the procedure illustrated in Section 4. For example, when n = 5, δmin = 0.2 and
δmax = 1.0, the optimal pairs (K, L) = (2.1735, 16) yield the smallest EARL1, i.e. 13.18 and
attaining the EARL0 at 370.4.
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Table 1: EARL1s for different combinations of (n, δmin, δmax), based on the optimal charting
parameters (K, L).

n δmin δmax (K, L) EARL1s
3 0.2 1.0 (2.2284, 20) 23.84

1.0 2.0 (1.7185, 3) 1.41
5 0.2 1.0 (2.1735, 16) 13.18

1.0 2.0 (1.5953, 2) 1.11
7 0.2 1.0 (2.1213, 13) 8.70

1.0 2.0 (1.5953, 2) 1.04
9 0.2 1.0 (2.0785, 11) 6.34

1.0 2.0 (1.5953, 2) 1.01

In order to illustrate the implementation of the proposed optimal design, Table 2 displays the
optimal charting parameters based on minimising out-of-control ARL (ARL1) and the corre-
sponding ARL1s for the same n values. For the sake of comparison, δ ∈ {0.2, 0.4, 0.8, 1.2, 1.4, 2.0}
are considered. Here, δ ∈ {0.2, 0.4, 0.8} and δ ∈ {1.2, 1.4, 2.0} are included in (δmin, δmax) =
(0.2, 1.0) and (δmin, δmax) = (1.0, 2.0), respectively. In Table 2, when n = 3 and δ = 1.2,
the (K, L) that minimize ARL1 are (1.7185, 3). These optimal charting parameters yield the
smallest ARL1 value, i.e. ARL1 = 1.72 while attaining the desired ARL0 at 370.4.

Table 2: ARL1s for different combinations of (n, δ), based on the optimal charting parameters
(K, L).

n δ (K, L) ARL1s
3 0.2 (2.4125, 44) 127.88

0.4 (2.2403, 21) 29.55
0.8 (1.9588, 7) 4.32
1.2 (1.7185, 3) 1.72
1.4 (1.7185, 3) 1.35
2.0 (1.5953, 2) 1.03

5 0.2 (2.3606, 35) 81.44
0.4 (2.1401, 14) 14.72
0.8 (1.8025, 4) 2.31
1.2 (1.5953, 2) 1.21
1.4 (1.5953, 2) 1.07
2.0 (1.5953, 2) 1.00

7 0.2 (2.3171, 29) 57.05
0.4 (2.0785, 11) 9.13
0.8 (1.7185, 3) 1.66
1.2 (1.5953, 2) 1.07
1.4 (1.5953, 2) 1.02
2.0 (1.5953, 2) 1.00

9 0.2 (2.2821, 25) 42.50
0.4 (2.0260, 9) 6.40
0.8 (1.7185, 3) 1.37
1.2 (1.5953, 2) 1.02
1.4 (1.5953, 2) 1.00
2.0 (1.5953, 2) 1.00

According to Table 1, EARL1 = 6.34 is obtained using the optimal charting parameters
(K, L) = (2.0785, 11) when n = 9, δmin = 0.2 and δmax = 1.0. By considering δ = 0.4(
i.e.δ ∈ (δmin, δmax)

)
for the same n value, the ARL1 value is 6.46 using the same optimal

charting parameters. This value is almost the same as the ARL1 = 6.40 when using the
optimal charting parameters (K, L) = (2.0260, 9) from Table 2. This shows that the value
of the performance measures, i.e. EARL1 and ARL1 are almost the same. Thus, the optimal
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charting parameters computed using minimising EARL1 can be implemented as long as δ ∈
(δmin, δmax), i.e. when the practitioners do not have prior knowledge to determine the exact
process shift size.

6. Conclusion

This paper assessed the performance of the SSGR chart based on ARL and EARL when the
magnitude of shift is deterministic, and the magnitude of the shift may not be known in
advance respectively. Here, the ARL is used when the next shift size is known in advance.
In a real-world application, there is the situation during which practitioners cannot specify
the magnitude of shift in advance. In this scenario, if a chart’s user considers a certain shift
size and uses the corresponding optimal charting parameters, the performance of the SSGR
chart will significantly deteriorate if a different shift size occurs in reality. Therefore, EARL
is implemented to evaluate the SSGR chart when dealing with random shifts. The results
reveal that adopting the optimal charting parameters based on minimising EARL1 is reliable,
as the performance measure is nearly the same when using the optimal charting parameters
based on minimising ARL1. In view of this, the proposed optimal charting parameters can be
implemented as long as δ ∈ (δmin, δmax). Future research works can consider to propose the
optimal design of the SSGR chart based on minimizing EARL when the process parameters
are estimated.
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