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Abstract

Two measures of reliability functions, namely R (t) = P (X > t) and P = P (X < Y )
have been studied based on record values from proportional hazard rate model (PHR)
model. For estimation of P , we generalize the results of Basirat et al. (2016) when X
and Y belong to different family of distributions from PHR model. Uniformly minimum
variance unbiased estimator (UMVUE), maximum likelihood estimator (MLE) and Bayes
estimator (BS) are obtained for the powers of the parameter and reliability functions.
Simulation studies and a real data example have been presented for illustrative purposes.
Asymptotic and exact confidence intervals of the parameters and reliability functions are
constructed. Testing procedures are also developed for various hypotheses.

Keywords: proportional hazard rate model, records, maximum likelihood estimator, uniformly
minimum variance unbiased estimator, Bayes estimator, confidence intervals.

1. Introduction

The most popularly used parameter in life testing analysis and reliability engineering is the
reliability function. This function is defined as the probability of a component operating
for a certain amount of time without failure. As such, the reliability function is a function
of time t and is mathematically defined as R (t) = P (X > t) where the random variable
X denotes the lifetime of the component. Every physical component possesses an inherent
strength on the basis of which it survives. These components are subjected to a certain
level of failure inducing stress. If higher level of stress is enforced on the components, then
they are unable to sustain it and eventually break down. The fluctuations in strength and
stress can be modelled to a statistical distribution and a natural scatter arises in the two
variables when their respective distributions interact. Hence, the reliability component may
be determined analytically when the probability density functions of both the stress and
strength variables are well defined. Therefore, we define P = P (X < Y ) which represents the
reliability of a component of random strength Y subject to random stress X. In the stress-
strength setup, a system fails if and only if at any given time, the applied stress exceeds the
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strength and was considered by Birnbaum (1956). Stress-strength models have great utility in
the fields of genetics, psychology, engineering and so on. Interested readers may refer to Kotz
et al. (2003) for further information about stress-strength parameter. In statistical literature,
inferences have been drawn on P under several assumptions on X and Y . Rezaei, Tahmasbi,
and Mahmoodi (2010) estimated P when X and Y are independent random variables from
generalized Pareto distribution with common scale parameter and different shape parameters.
Kundu and Gupta (2005), Raqab, Madi, and Kundu (2008), Jiang and Wong (2008), Huang,
Mi, and Wang (2012), Soliman, Abd-Ellah, Abou-Elheggag, and Ahmed (2013) are among a
few to draw inferences on P based on complete sample. Some inferential procedures on P
based on progressively Type II censored samples have been given by Asgharzadeh, Valiollahi,
and Raqab (2011), Lio and Tsai (2012), Basirat, Baratpour, and Ahmadi (2013) and so
on. Based on record values, one may refer to the work of Baklizi (2008a) who compared
the likelihood and Bayesian estimation of stress-strength parameter using lower records from
generalized exponential model. Baklizi (2008b) estimated P based on records from one and
two parameter exponential distributions. Chaturvedi and Malhotra (2016, 2017) developed
inferential procedures for R(t) and P of a family of lifetime distributions and three parameters
Burr XII distribution respectively.

Chandler (1952) introduced the concept of record values. Often, statistical data are more
readily available in terms of records. In fact, data that are not records may not be available
at all. The hottest day ever, the longest winning streak in professional basketball, the lowest
stock market figure, are a case in point. Such type of data can be analyzed as record values
from a sequence of independent and identically distributed random variables. In statistics,
an upper (lower) record value is the largest (smallest) value obtained from a sequence of
random variables. The theory of record values is closely related to the theory of extreme order
statistics. Based on records, inferential procedures for the parameters of different distributions
have been developed by Glick (1978), Arnold, Balakrishnan, and Nagaraja (1998), Ahmadi
and Arghami (2003a,b), and others.

Proportional hazard rate (PHR) models pertain to a family of survival models proposed by
Cox (1972) and have been primarily used in clinical testing analysis to model the effect of
secondary variables on survival. Basirat et al. (2013) gave statistical inferences on P of PHR
model based on progressive Type II censored data. Later, Basirat, Baratpour, and Ahmadi
(2016) estimated P based on record values from PHR model and obtained its MLE, UMVUE
and Bayes estimator. Their estimation procedures assumed that X and Y belong to the same
family of distribution but have different shape parameters. In this paper, for estimation of P ,
we have extended and generalized the results of Basirat et al. (2016) when X and Y belong
to different family of distributions. The results of Basirat et al. (2016) have been shown
to be particular cases of our result. In our approach, we first obtain the estimators of the
powers of the parameter of PHR model and using these estimators we estimate the probability
density function (pdf). The estimated pdf is subsequently used to estimate R(t) and P . This
approach is adopted for classical as well as Bayesian estimation procedures. Thus, we have
established a relationship between different estimation problems. In order to obtain UMVUE
of P , Basirat et al. (2016) performed Rao-Blackwellisation which is avoided in this paper.
Also, we do not require the derivation of conditional distribution of unbiased estimator of
R(t) and P while deriving their UMVUE.

The rest of the paper has been organised as follows. In Section 2, we define the PHR model
and mention some of its particular cases. We also formally define record values. In Section 3,
we derive MLE of the powers of the parameter and reliability functions R(t) and P . Similarly
in Sections 4 and 5, we derive UMVUE and Bayes estimators respectively of the powers of the
parameter and reliability functions R(t) and P . In Section 6, asymptotic and exact confidence
intervals (CI) for the parameter and reliability functions are constructed. In Section 7, testing
procedures are developed for the parametric functions of the distribution. In Section 8 we
present a real data example for illustrative purposes and finally in Section 9 we numerically
analyse the behaviour of various estimators. The paper ends with a brief discussion on our
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results.

2. The proportional hazard rate model and record values

Let X be a random variable with support Sx from PHR model with survival function defined
as

F (x;α) =
(
F o (x)

)α
;x ∈ Sx, α > 0 (1)

We denote the cumulative distribution function (cdf ) of the baseline distribution by Fo(x) and
the cdf of PHR model by F (x;α). Using these notations in (1) we define F (x;α) = 1−F (x;α)
where α is the shape parameter of the PHR model and F o(x) = 1−Fo(x). Thus, the pdf of X

is f (x;α) = αfo(x)
(
F o (x)

)α−1
where fo(x) is the derivative of Fo(x) with respect to x. The

PHR model has some of its specific cases as exponential distribution, Weibull distribution,
Rayleigh distribution, Burr distribution, Pareto distribution and so on.

The following figure shows the density curve of some of the distributions from PHR model.

Figure 1: The probability density curve of some of the distributions belonging to proportional
hazard rate model for different values of the parameter α.

Let X1, X2, . . . be an infinite sequence of independent and identically distributed random
variables from the PHR model with df f(x;α). An observation Xj will be called an upper
record value (or simply a record) if its value exceeds than all of the previous observations.
Thus Xj is a record if Xj > Xi for every i < j. The record time sequence {Tn, n = 0} is
defined as {

T0 = 1 ; with probability 1

Tn = min{j : Xj > XTn−1};n = 1

and the record value sequence {Rn} is then given by

Rn = XTn ; n = 0, 1, 2, . . .

The likelihood function of α given the first n+ 1 upper record values R0, R1, R2, . . . , Rn is

L (α|R0, R1, R2, . . . , Rn) = f(Rn;α)

n−1∏
i=0

f(Ri;α)

1− F (Ri;α)
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It is easy to see that

L (α|R0, R1, R2, . . . , Rn) = αn+1exp (−αU(Rn))
n∏
i=0

fo(Ri)

1− Fo(Ri)
(2)

where U (x) = log
(

1
1−Fo(x)

)
. It follows from (2) and factorisation theorem [see Rohtagi and

Saleh (2012, p.361)] that U(Rn) is a sufficient statistic for α and follows gamma distribution
with shape parameter n + 1 and rate parameter α. Since the distribution of U(Rn) belongs
to exponential family, it is also complete [see Rohtagi and Saleh (2012, p.367)]. In order to
estimate P = P (X < Y ), let Y be another random variable independent of X from a different

family of PHR model with pdf g (y;β) = βgo(y)
(
Go (y)

)β−1
. Let R∗o, R

∗
1, . . . , R

∗
m be the m+1

record values from the distribution of Y . For simplicity, we define V (y) = log
(

1
1−Go(y)

)
.

Then following the same arguments as above, V (R∗m) is a complete and sufficient statistic for
β and follows Gamma(m+ 1, β) distribution.

3. MLE

The fundamental principle of maximum likelihood estimation is that it assumes the sample
is a representative of the population and estimates the population parameter in such a way
that its value maximises the pdf of the distribution under study. The MLE of the parameter
need not be an unbiased estimator. The log-likelihood function from (2) gives the MLE of αq

where q ∈ (−∞,∞) and q 6= 0, as

α̂q =

(
n+ 1

U(Rn)

)q
(3)

By invariance property of MLE, the MLE of R (t) is

R̂ (t) = exp

(
−(n+ 1)

U(t)

U(Rn)

)
(4)

Using the fact that f̂ (x;α) = − d
dxR̂(x), the MLE of the pdf f(x;α) is

f̂ (x;α) =
(n+ 1) fo (x)

U(Rn) [1− Fo (x)]
exp

(
−(n+ 1)

U(x)

U(Rn)

)
(5)

The following theorem provides the MLE of P = P (X < Y ) when X and Y belong to different
family of distributions of PHR model.

Theorem 1. The MLE of P (X < Y ) when X and Y belong to different families of distribu-
tions, is

P̂ =

∫ ∞
0

e−zexp

−(m+ 1)

V (R∗m)
log

 1

1−Go Fo
−1

(1− e
−zU(Rn)
n+1 )

 dz

Proof. We have,

P̂ =

∫ ∞
x=0

∫ ∞
y=x

ĝ (y;β) f̂ (x;α) dxdy

=

∫ ∞
x=0

R̂ (x) f̂ (x;α) dx

=

∫ ∞
x=0

exp

(
− (m+ 1)V (x)

V (R∗m)

){
(n+ 1) fo(x)

U(Rn) [1− Fo (x)]

}
exp

(
− (n+ 1)U(x)

U(Rn)

)
dx

The result now follows on substituting (n+1)U(x)
U(Rn) = z.
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The following corollary is a particular case of Theorem 1 when X and Y belong to the same

family of distributions with pdf f (x;α) = αfo(x)
(
F o (x)

)α−1
and f (x;β) = βfo(x)

(
F o (x)

)β−1

respectively. The result in Corollary 1 is also a result by Basirat et al. (2016) but by a different
approach.

Corollary 1. When X and Y belong to same family of distributions, the MLE of P is given
by

P̂ =
U (R∗m)

U (R∗m) + (m+1)
(n+1) U (Rn)

Proof. In Theorem 1, put Go = Fo, hence U (x) = V (x) and the result follows.

4. UMVUE

Under this section we focus our attention on unbiased estimator of the population parameter
as MLE need not be unbiased. Using the sufficiency and completeness criterion, we obtain
an unbiased estimator of α that has minimum variance in a class of all unbiased estimators
of α. Such an estimator is called a uniformly minimum variance unbiased estimator. Since

U(Rn) is distributed as a gamma variate, then on considering E
(
U(Rn)−q

)
=
(
Γ (n−q+1)
Γ (n+1)

)
αq,

we obtain the UMVUE of αq as

α̃q =

{(
Γ (n+1)

Γ (n−q+1)

)
(U (Rn))−q; n > q − 1

0; otherwise
(6)

It is easy to see that R (t) =
∞∑
i=0

(−1)i

i! (αU(t))i. Then from (6), we get

R̃ (t) =
∞∑
i=0

(−1)i

i!
{U(t)}iα̃i

=

n∑
i=0

(−1)i
(
n

i

){
U(t)

U(Rn)

}i
which gives the UMVUE of R(t) as

R̃(t) =

{(
1− U(t)

U(Rn)

)n
; U(t) < U (Rn)

0; otherwise
(7)

Taking the derivative of R̃(x) with respect to x, we get the UMVUE of pdf f(x;α) as

f̃ (x;α) =

 nfo(x)
U(Rn)[1−Fo(x)]

[
1− U(x)

U(Rn)

]n−1
; U(x) < U (Rn)

0; otherwise
(8)

The following theorem provides the UMVUE of P when X and Y belong to different family
of distributions of PHR model.

Theorem 2. The UMVUE of P is given by

P̃ =



n
∫ log(1/(1−FoG−1

o (1−e−V (R∗
m))))

U(Rn)

0 (1− z)n−1

[
1− V (R∗m)−1 log

{
1

1−GoFo−1(1−e−zU(Rn))

}]m
dz;

Go
−1
(
1− e−V (R∗

m)
)
< Fo

−1
(
1− e−U(Rn)

)
n
∫ 1

0 (1− z)n−1

[
1− V (R∗m)−1log

{
1

1−GoFo−1(1−e−zU(Rn))

}]m
dz;

Go
−1
(
1− e−V (R∗

m)
)
≥ Fo−1

(
1− e−U(Rn)

)
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Proof. From the arguments similar to those used in the proof of Theorem 1,

P̃ =

∫ ∞
x=0

∫ ∞
y=x

g̃ (y;β) f̃ (x;α) dxdy

=

∫ ∞
x=0

R̃ (x) f̃ (x;α) dx

=

∫ min
[
Go−1

(
1−e−V (R∗

m)
)
, Fo−1(1−e−U(Rn))

]
0

(
1− V (x)

V (R∗m)

)m( n fo(x)

U(Rn) [1− Fo (x)]

)

×
(

1− U(x)

U(Rn)

)n−1

dx

The theorem now follows on considering the two cases and substituting U(x)
U(Rn) = z.

The following corollary is a particular case of Theorem 2 when X and Y belong to the same

family of distributions with pdf f (x;α) = αfo(x)
(
F o (x)

)α−1
and f (x;β) = βfo(x)

(
F o (x)

)β−1

respectively. The result in Corollary 2 is also a result by Basirat et al. (2016) but by a different
approach.

Corollary 2. When X and Y belong to same family of distributions, the MLE of P is given by

P̃ =



m∑
i=0

(−1)i
(
m
i

)(
n+i
i

){ U (Rn)

U (R∗m)

}i
; U(Rn) ≤ U(R∗m)

1−
n∑
i=0

(−1)i
(
n
i

)(
m+i
i

){U (R∗m)

U (Rn)

}i
; U (Rn) > U(R∗m)

Proof. In Theorem 2, put Go = Fo, hence U (x) = V (x) and we get

P̃ =


n

∫ 1

z=0
(1− z)n−1

(
1− z U (Rn)

U (R∗m)

)m
dz ; U(Rn) ≤ U(R∗m)

n

∫ U(R∗
m)

U(Rn)

z=0
(1− z)n−1

(
1− z U (Rn)

U (R∗m)

)m
dz ; U (Rn) > U(R∗m)

For U(Rn) ≤ U(R∗m), expand
(

1− z U(Rn)
U(R∗

m)

)m
binomially to obtain the result and for U (Rn) >

U(R∗m), put z U(Rn)
U(R∗

m) = w to obtain

P̃ = n
U (R∗m)

U (Rn)

∫ 1

w=0

(
1− U (R∗m)

U (Rn)
w

)n−1

(1− w)mdw

On integrating by parts and then expanding
(

1− U(R∗
m)

U(Rn)w
)n

binomially we obtain the result.

5. Bayesian estimators

So far we have considered parameter α as a fixed constant. In Bayesian estimation theory,
we treat α as a random variable having a priori distribution. Another element of this theory
is the specification of a loss function which measures the loss incurred while taking a decision
on the basis of a sample drawn from the population. While adopting Bayesian estimation
procedures, one has to assume the prior distribution of the parameters and the loss function.
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Let us assume that the natural conjugate prior distribution of parameter α of PHR model is
Gamma(ν, µ) with pdf

π (α) =
µν

Γ (ν)
αν−1e−µα; α ≥ 0, µ ≥ 0 and ν is a positive integer (9)

Combining (2) and (9) via Bayes’ theorem, the posterior density of α comes out to be
Gamma(n+ ν + 1, U (Rn) + µ) with pdf

π∗ (α | U (Rn)) =
(U (Rn) + µ)n+ν+1

Γ (n+ ν + 1)
αn+νe−α(U(Rn)+µ) (10)

Using the fact that U (Rn) follows Gamma(n + 1, α), then from (9), the marginal pdf of
U (Rn) is

ϕ (U (Rn)) =

∫ ∞
α=0

αn+1

Γ (n+ 1)
(U (Rn))ne−αU(Rn)π (α) dα

=
µν(U (Rn))n

B (n+ 1, ν) (U (Rn) + µ)n+ν+1 ; U (Rn) > 0 (11)

where B(r, s) is beta function. Under squared error loss function (SELF), the Bayes estimator
of αq denoted by α̂BS , is the posterior mean. Thus from (10) we get

α̂BS =
Γ (n+ ν + q + 1)

Γ (n+ ν + 1)
(U (Rn) + µ)−q (12)

We can re-write the pdf of PHR model as f (x;α) = fo(x)
1−Fo(x)

∞∑
i=0

(−1)i

i! (U (x))iαi+1. Then on

using Lemma 1 of Chaturvedi and Tomer (2002) and (12) we get the Bayes estimator of the
pdf f (x;α) as

f̂BS (x;α) =
fo (x) (n+ ν + 1)

(1− Fo (x)) (U (Rn) + µ)

(
1 +

U (x)

U (Rn) + µ

)−(n+ν+2)

(13)

Next, we obtain the Bayes estimator of R(t) denoted by R̂(t)BS on considering R̂(t)BS =∫∞
t f̂BS (x;α) dx which gives

R̂(t)BS =

(
1 +

U (t)

U (Rn) + µ

)−(n+ν+1)

(14)

on substituting U(x)
U(Rn)+µ = z.

Finally, for obtaining Bayes estimator of P , let X and Y be two independent random variables
from different family of distributions of PHR model with pdf f (x;α) and g (y;β) as previously
defined. Further, let us assume that the prior densities of α and β are Gamma(ν1, µ1) and
Gamma(ν2, µ2) respectively. Then the following theorem provides the Bayes estimator of
P (X < Y ) denoted by P̂BS .

Theorem 3. The Bayes estimator of P (X < Y ) when X and Y belong to different family of
distributions of PHR model, is

P̂BS =

(
n+ ν1 + 1

U (Rn) + µ1

)∫ ∞
w=0

(
1 +

w

U (Rn) + µ1

)−(n+ν1+2)

×

1 +
log
(

1
1−GoF−1

o (1−e−w)

)
V (R∗m) + µ2

−(m+ν2+1)

dw
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Proof.

P̂BS =

∫ ∞
x=0

∫ ∞
y=x

ĝBS (y;β)f̂BS (x;α) dxdy

=

∫ ∞
x=0

R̂(x)BS f̂BS (x;α) dx

=

∫ ∞
x=0

(
1 +

V (x)

V (R∗m) + µ2

)−(m+ν2+1){ (n+ ν1 + 1) fo(x)

(U (Rn) + µ1) (1− Fo (x))

}
×
(

1 +
U (x)

U (Rn) + µ1

)−(n+ν1+2)

dx

The result now follows on substituting U(x)
U(Rn)+µ1

= z.

The following corollary is a particular case of Theorem 3 when X and Y belong to the same

family of distributions with pdf f (x;α) = αfo(x)
(
F o (x)

)α−1
and f (x;β) = βfo(x)

(
F o (x)

)β−1

respectively. The result in Corollary 3 is also a result by Basirat et al. (2016) but by a different
approach.

Corollary 3. The Bayes estimator of P (X < Y ) when X and Y belong to the same family
of distributions of PHR model, is

P̂BS =

(
n+ ν1 + 1

n+m+ ν1 + ν2 + 2

)(
U (Rn) + µ1

U (R∗m) + µ2

)n+ν1+1

× F2,1

(
n+m+ ν1 + ν2 + 2, n+ ν1 + 2;n+m+ ν1 + ν2 + 3, 1− U (Rn) + µ1

U (R∗m) + µ2

)
Proof. In Theorem 3, put Go = Fo, hence U (x) = V (x) and we get

P̂BS =

(
n+ ν1 + 1

U (Rn) + µ1

)∫ ∞
w=0

(
1 +

w

U (Rn) + µ1

)−(n+ν1+2)[
1 +

w

U (R∗m) + µ2

]−(m+ν2+1)

dw

Substitute 1 + w
U(R∗

m)+µ2
= 1

z and we obtain for k = 1− U(Rn)+µ1
U(R∗

m)+µ2
,

P̂BS =

(
n+ ν1 + 1

1− k

)∫ 1

0

zm+ν2−1[
1 + 1−z

z(1−k)

]n+ν1+2dz

= (n+ ν1 + 1) (1− k)n+ν1+1
∫ 1

0
zn+m+ν1+ν2+1(1− kz)−(n+ν1+2)dz

The result follows on using the result of Gradshteyn and Ryzhik, section 3.197.3 given by

F2,1 (b, a; c, x) =
1

B (b, c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tx)−adt; |c| < 1

where B(r, s) is beta function.

6. Confidence intervals

For constructing confidence intervals of the parameters of the PHR model, we first obtain the
Fisher information of α as:

I(α) = −E
[
∂2 log(L(α|R0, R1, R2, . . . , Rn))

∂α2

]
where

∂2 log(L(α|R0, R1, R2, . . . , Rn))

∂α2
=
−(n+ 1)

α2
.

Since it is a complicated task to obtain the expectation of the above expressions, therefore
we use observed Fisher information of α, which is obtained by dropping the expectation
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sign. The asymptotic variance of the MLE is the inverse of I(α̂) = −(n+1)
α2 . After obtaining

the inverse, we get variance of α̂. We use this value to construct confidence intervals of
α. Assuming asymptotic normality of the MLE, CI for α is constructed. Let σ̂2(α̂) be the
estimated variance of α̂. Then 100(1− ε)% asymptotic CI for α is given by:(

α̂− Z ε
2
σ̂(α̂), α̂+ Z ε

2
σ̂(α̂)

)
where Z ε

2
is the upper 100(1 − ε) percentile point of standard normal distribution and σ̂(α̂)

is the estimated standard deviation of α̂. Using this CI, one can easily construct 100(1− ε)%
CI for R(t) as follows:(

exp(−U(t)(α̂+ Z ε
2
σ̂(α̂))), exp(−U(t)(α̂− Z ε

2
σ̂(α̂)))

)
.

Meeker and Escober (1998) reported that the asymptotic CI based on log transformation of
MLE has better coverage probability. An approximate 100(1− ε)% CI for log(α) is:(

log(α̂)− Z ε
2
σ̂(log(α̂)), log(α̂) + Z ε

2
σ̂(log(α̂))

)
where σ̂2(log(α̂)) is the estimated variance of log(α) and is approximated by σ̂2(log(α̂)) =
σ̂2(α̂)
α̂2 . Hence, approximate 100(1− ε)% CI for α is:(

α̂e
−Z ε

2

σ̂(α̂)
α̂ , α̂e

Z ε
2

σ̂(α̂)
α̂

)
.

Next, we consider two independent rvsX and Y belonging to the PHR model with pdf
f(x;α) = αfo(x)(F o(x))α−1 and g(y;β) = βgo(y)(Go(y))β−1 respectively as defined ear-
lier. We develop confidence interval for the ratio of the parameters µ = α

β using the fact

that 2αU(Rn) ∼ χ2
2(n+1) and 2βV (R∗m) ∼ χ2

2(m+1). Thus, we get F = 2αU(Rn)/2(n+1)
2βV (R∗

m)/2(m+1) ∼
F2(n+1),2(m+1) and 100(1− ε)% CI of µ is:(

(n+ 1)V (R∗m))

(m+ 1)U(Rn)
F2(n+1),2(m+1)

(
1− ε

2

)
,

(n+ 1)V (R∗m)

(m+ 1)U(Rn)
F(2(n+1),2(m+1)

(ε
2

))
where F2(n+1),2(m+1)(δ) is the δth percentile of F -distribution with 2(n + 1) and 2(m + 1)
degrees of freedom.

Now, if rvsX and Y belong to the same family of distributions from the PHR model with
common shape parameter α, i.e. X ∼ f(x;α) and Y ∼ f(y;α), then the joint distribution of
n+ 1 records from the istributin of X and m+ 1 records from the distribution of Y is:

L(α|Ro, R1, . . . , Rn, R
∗
o, R

∗
1, . . . , R

∗
m)

= αn+m+2 exp(−α(U(Rn) + U(R∗m)))
n∏
i=0

fo(Ri)

1− Fo(Ri)

m∏
i=0

fo(R
∗
i )

1− Fo(R∗i )
.

Thus the MLE of α is n+m+2
U(Rn)+U(R∗

m) . Using the fact that 2α(U(Rn) + U(R∗m)) ∼ χ2
2(n+m+2),

the 100(1− ε)% CI of α is:(
χ2

2(n+m+2)

(
1− ε

2

)
2(U(Rn) + U(R∗m))

,
χ2

2(n+m+2)

(
ε
2

)
2(U(Rn) + U(R∗m))

)

Finally, in order to construct confidence interval of P , we consider the case when rvsX
and Y belong to the same family of distributions from the PHR model with parameters α
and β respectively. Since the pdf of U(Rn) is Gamma(n + 1, α), thus from (3), the pdf of
MLE of α is inverted-Gamma(n + 1, (n + 1)α). Similarly, the pdf of MLE of β is inverted-

Gamma(m+1, (m+1)β). Then we get Wx = 2(n+1)α
α̂ ∼ χ2

2(n+1) and Wy = 2(m+1)β
β ∼ χ2

2(m+1)
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where α̂ is defined in (3) and β̂ = m+1
U(R∗

m) . Thus, Z = Wx/2(n+1)
Wy/2(m+1) ∼ F2(n+1),2(m+1) which gives

β
α ∼

β̂
α̂F2(n+1),2(m+1)

and we get 100(1− ε)% CI of P = 1

1+ β
α

as:

(1 +
β̂

α̂F2(n+1),2(m+1)

(
1− ε

2

))−1

,

(
1 +

β̂

α̂F2(n+1),2(m+1)

(
ε
2

))−1


7. Hypotheses testing

Suppose we have to test the hypothesis Ho : α = αo against H1 : α 6= αo. It follows from (2)
that, under Ho,

sup
Θo

L(α|Ro, R1, . . . , Rn) = (αo)
n+1 exp(−α0U(Rn))

n∏
i=o

fo(Ri)

1− Fo(Ri)
; θo = {α : α = α0}

and

sup
Θ
L(α|R0, R1, . . . , Rn) =

(
n+ 1

U(Rn)

)n+1

exp(−(n+ 1))

n∏
i=0

fo(Ri)

1− Fo(Ri)
; Θ = {α : α > 0}

The likelihood ratio is given by:

Φ(R0, R1, . . . , Rn) =
supΘo L(α|R0, R1, . . . , Rn)

supΘ L(α|R0, R1, . . . , Rn)

=

{
αoU(Rn)

(n+ 1)

}n+1

exp{−αoU(Rn) + (n+ 1)} (15)

We note that the first term on the right hand side of (15) is monotonically increasing and the
second term is monotonically decreasing in U(Rn). Since 2αoU(Rn) ∼ χ2

2(n+1), the critical
region is given by:

{0 < U(Rn) < ko} ∪ {k′o < U(Rn) <∞}

where ko and k′o are obtained such that ko =
χ2
2(n+1)(

ε
2)

2αo
and k′o =

χ2
2(n+1)(1− ε

2)
2αo

where ε is the
level of significance.

An important hypothesis in life-testing experiments is Ho : α ≤ αo against H1 : α > αo. It
follows from (2) that for α1 > α2,

L(α1|R0, R1, . . . , Rn)

L(α2|R0, R1, . . . , Rn)
=

(
α1

α2

)n+1

exp{(α2 − α1)U(Rn)} (16)

It follows from (16) that the family of distributions f(x;α) has monotone likelihood ratio in
U(Rn). Thus, the uniformly most powerful critical region for testing Ho against H1 is given
by [see Lehmann (1959, p.88)]

Φ(R0, R1, . . . , Rn) =

{
1; U(Rn) ≤ k′′o
0; otherwise

where k′′o =
χ2
2(n+1)

(ε)

2αo
.

It can be seen that when X and Y belong to same families of distributions,then P = 1

1+ β
α

.

Suppose we want to test Ho : P = Po against H1 : P 6= Po. It follows that Ho is equivalent to
α = kβ where k = Po

1−Po . Thus, Ho : α = kβ and H1 : α 6= kβ.



Austrian Journal of Statistics 45

The likelihood for observing α and β is

L(α, β|R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m)

= (α)n+1(β)m+1 exp(−{αU(Rn) + βU(R∗m)})
n∏
i=0

fo(Ri)

1− Fo(Ri)

m∏
i=0

fo(R
∗
i )

1− Fo(R∗i )

It can be shown that, under Ho,

β̂ =
n+m+ 2

kU(Rn) + U(R∗m)
and α̂ =

k(n+m+ 2)

kU(Rn) + U(R∗m)

Thus, for a generic constant C,

sup
Θo

L(α, β|R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m)

=
C

{kU(Rn) + U(R∗m)}n+m+2
exp{−(n+m+ 2)}; Θ0 = {α, β : α = kβ} (17)

and

sup
Θ
L(α1, α2|R0, R1, . . . , Rn, R

∗
0, R

∗
1, . . . , R

∗
m)

=
C

{U(Rn)}n+1{U(R∗m)}m+1
exp{−(n+m+ 2)}; Θ = {α1, α2 : α1 > 0, α2 > 0} (18)

From (17) and (18), the likelihood ratio is:

Φ(R0, R1, . . . , Rn, R
∗
0, R

∗
1, . . . , R

∗
m) =

C
{
U(Rn)
U(R∗

m)

}n+1

{
1 + kU(Rn)

U(R∗
m)

}n+m+2

Using the fact that U(Rn)
U(R∗

m) ∼
(n+1)β
(m+1)αF2(n+1),2(m+1), the critical region is given by

{
U(Rn)

U(R∗m)
< k2

}
∪
{
U(Rn)

U(R∗m)
> k′2

}

where k2 = (n+1)
k(m+1)F2(n+1),2(m+1)

(
ε
2

)
and k′2 = (n+1)

k(m+1)F2(n+1),2(m+1)

(
1− ε

2

)
.

8. Real data example

This section deals with an example of real data to illustrate the proposed estimation methods.
Let us assign the random variable X ∼ f(x;α) to the first data set that has been taken from
Lawless (2003, p. 574) and has been reproduced in the following table.

Data set I

184 241 273 1842 371 830 683 1306 562 166

981 1867 493 418 2978 1463 2220 312 251 76

Basirat et al. (2016) used Kolmogorov-Smirnov (K-S) test and concluded that exponential
distribution is adequate for the above data set. The following figure also confirms the same
for α = 0.001141.
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Figure 2: The empirical and theoretical cdf of Exponential(α) model.

Now let us assign the random variable Y ∼ g (y;β) to the second data set that has been taken
from Lawless (1982, p. 185) concerning the time to breakdown of an insulating fluid between
electrodes at a voltage of 34 kV (minutes). The 19 times to breakdown are

Data set II

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91

32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89

Chaturvedi and Malhotra (2016) used K-S test and concluded that Weibull distribution is
adequate for this data with parameters p = 0.7708 and β = 0.1452. The following figure also
confirms the same.

Figure 3: The empirical and theoretical cdf of Weibull(p, β) model.

The upper record values based on data set I are 184, 241, 273, 1842, 1867, 2978 and based on
data set II are 0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89. Thus, (n,m) = (5, 6), U (Rn) = 2978
and V (R∗m) = 27.2762. The following Table 1 shows the different estimators of parameter α of
exponential model and its corresponding reliability function R(t) based on data set I. Similarly
Table 2 shows the different estimators of parameters p and β of Weibull distribution and its
corresponding reliability function R(t) based on data set II.

Table 1: The MLE, UMVUE and Bayes estimator of parameter α of exponential model and
its corresponding reliability function R(t) for time t = 2 based on data set I.

α̂ α̃ α̂BS R̂(t) R̃(t) R̂(t)BS
0.00114 0.00168 0.00235 0.99772 0.99665 0.99531
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Table 2: The MLE, UMVUE and Bayes estimator of parameters p and β of Weibull distribu-
tion and its corresponding reliability function R(t) for time t = 2 based on data set II.

p̂ β̂ β̃ β̂BS R̂(t) R̃(t) R̂(t)BS
0.77082 0.14521 0.21997 0.28292 0.78054 0.67870 0.62580

Now, for the above two data sets belonging to different family of distributions, we obtain
estimators of P = P (X < Y ) and the results are presented in Table 3. For Bayes estimator
of P we assume the prior distribution of α and β to be Gamma(2,2).

Table 3: The MLE, UMVUE and Bayes estimator of P (X < Y ).

P̂ P̃ P̂BS
0.01345 0.01101 0.01671

9. Numerical computations and simulations

In this section, we numerically analyse the different estimators of parametric functions derived
in the preceding sections along with their bias and mean square error (MSE). First we study
the behaviour of estimators of parameter α of the PHR model. Note that to obtain the bias
and MSE of estimators of α, we do not require to assume any baseline distribution function Fo.
Thus the results obtained will in general hold for all the distributions belonging to the PHR
model. The following Figure 4 compares the MSE of MLE, UMVUE and Bayes estimator of α
for a particular sample size n. We observe from this figure that the Bayes estimator of α has
a consistently low MSE for several values of α although it seems to be more biased compared
to the MLE and UMVUE. As the values of α increases, the UMVUE performs better. This
trend is same for small (n = 5) and large (n = 15) samples. From Figure 5 we observe that
all the estimators of α perform better in the sense that they have a smaller bias and MSE
with an increase in number of records n.

Figure 4: Bias and MSE of MLE, UMVUE and Bayes estimator of α for a specific number of
records.
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Figure 5: Bias and MSE of various estimators of α for various sample sizes n.

Next, we study the behaviour of estimators of reliability function R(t). We know that as
time t increases, the reliability R(t) decreases. We observe from Figure 6 that the MLE and
UMVUE of R(t) have a smaller bias and MSE than the Bayes estimator as time t increases
and are thus better estimators of R(t). However, for small values of t, all the estimators
perform equally well. Figure 7 shows that all the estimators of R(t) perform better in the
sense that they have a smaller bias and MSE with an increase in number of records n.

Figure 6: Bias and MSE of MLE, UMVUE and Bayes estimator of R(t) for a specific number
of records.
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Figure 7: Bias and MSE of various estimators of R(t) for various sample sizes n.

Finally, we discuss the behaviour of estimators of P (X < Y ) where X and Y are random
variables from different families of PHR model. Let X belong to exponential distribution
with parameter α and Y belong to Weibull distribution with parameters p and β. Then
Table 4 gives the MSE of MLE, UMVUE and Bayes estimator of P for different values of the
parameters and sample sizes. We observe from Table 4 and Figure 8 that the UMVUE of P
is a better estimator when P is close to 0 or 1. However, when P is around 0.5, the Bayes
estimator of P performs the best followed by the MLE and UMVUE. Basirat et al. (2016)
also showed that the UMVUE of P is better than the MLE around the tails while the MLE
is better than the UMVUE when P is around 0.5. Also, they produced these results for the
case when X and Y belong to the same distribution. On the other hand, we have presented
the results for a more general case and also compared the Bayes estimator of P with its MLE
and UMVUE. Figure 9 shows that all the estimators of P perform better with an increase in
number of records.

Table 4: MSE of MLE, UMVUE and Bayes estimator of P .
α (p, β) P (n,m) P̂ MSE(P̂ ) P̃ MSE(P̃ ) P̂BS MSE(P̂BS)

(3,6) 0.06512 0.00219 0.05135 0.00138 0.08858 0.00410
0.1 (2,3) 0.05 (5,5) 0.05663 0.00102 0.04899 0.00078 0.07621 0.00205

(6,3) 0.05628 0.00079 0.05046 0.00063 0.08015 0.00204
(3,6) 0.08326 0.00315 0.06577 0.00213 0.10379 0.00466

0.1 (3,2) 0.07 (5,5) 0.07835 0.00162 0.06779 0.00120 0.09509 0.00260
(6,3) 0.07613 0.00116 0.06813 0.00091 0.09457 0.00209
(3,6) 0.25370 0.01668 0.21682 0.01473 0.28952 0.01612

0.5 (2,3) 0.22 (5,5) 0.24117 0.01085 0.21922 0.00998 0.28399 0.01289
(6,3) 0.23564 0.00941 0.22034 0.00897 0.29391 0.01353
(3,6) 0.33195 0.02257 0.28774 0.02175 0.35216 0.01764

0.5 (3,2) 0.29 (5,5) 0.31860 0.01430 0.29143 0.01355 0.34330 0.01335
(6,3) 0.31563 0.01328 0.29605 0.01292 0.34955 0.01337
(3,6) 0.61611 0.02630 0.59478 0.03304 0.56114 0.01087

2 (2,3) 0.59 (5,5) 0.59590 0.02025 0.58577 0.02407 0.58096 0.00967
(6,3) 0.58928 0.02123 0.58901 0.02499 0.60676 0.00928
(3,6) 0.72975 0.02251 0.71722 0.03076 0.65020 0.01600

2 (3,2) 0.72 (5,5) 0.72903 0.01528 0.72455 0.01891 0.67910 0.01047
(6,3) 0.71884 0.01615 0.72051 0.01924 0.69105 0.00992
(3,6) 0.87540 0.00802 0.88569 0.00903 0.71647 0.03111

6 (2,3) 0.88 (5,5) 0.87530 0.00618 0.88731 0.00649 0.77075 0.01561
(6,3) 0.86503 0.00719 0.88301 0.00704 0.79537 0.01034
(3,6) 0.94867 0.00284 0.96098 0.00250 0.80917 0.02523

6 (3,2) 0.96 (5,5) 0.94851 0.00243 0.95896 0.00213 0.85518 0.01328
(6,3) 0.94976 0.00213 0.96181 0.00173 0.87639 0.00882
(3,6) 0.93962 0.00312 0.94969 0.00289 0.75702 0.03882

10 (2,3) 0.95 (5,5) 0.93832 0.00228 0.94858 0.00192 0.81670 0.01917
(6,3) 0.93567 0.00266 0.94940 0.00206 0.84595 0.01209
(3,6) 0.98205 0.00059 0.98896 0.00032 0.84631 0.02169

10 (3,2) 0.99 (5,5) 0.98469 0.00033 0.98994 0.00019 0.89828 0.00910
(6,3) 0.98245 0.00046 0.98868 0.00026 0.91379 0.00646
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Figure 8: Bias and MSE of MLE, UMVUE and Bayes estimator of P for a specific number
of records.

Figure 9: Bias and MSE of various estimators of P for various sample sizes.

10. Discussion

In this paper, we have developed three estimators viz. MLE, UMVUE and Bayes estimator
of the parameter and reliability functions R(t) and P (X < Y ) of proportional hazard rate
model when the data is in the form of record values. We have derived the expressions for
P (X < Y ) when independent random variables X and Y belong to different families of PHR
model, whereas Basirat et al. (2016) considered the case when X and Y belong to the same
family of PHR model. Moreover, the results have been derived using simpler techniques.
Thus, our approach is not only uncomplicated, but also provides more generalised results and
one can consider applying our methods when estimating P (X < Y ). We have also discussed
the behaviour of the developed estimators through simulation studies. Real data sets have
also been considered for illustrative purposes. In addition to this we have derived exact and
asymptotic confidence intervals for the parameter and reliability functions and have also tested
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various hypotheses.

A problem that still remains unsolved is when some prior information exists on the parameter
of the PHR model and this information must be incorporated in the model as a constraint,
giving rise to restricted model. Since this theory needs further consideration, we leave the
idea for future research.
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