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Abstract

In this paper, the one-way ANOVA model and its application in Bayesian multi-class
variable selection is considered. A full Bayesian bootstrap prior ANOVA test function
is developed within the framework of parametric empirical Bayes. The test function de-
veloped was later used for variable screening in multiclass classification scenario. Perfor-
mance comparison between the proposed method and existing classical ANOVA method
was achieved using simulated and real life gene expression datasets. Analysis results
revealed lower false positive rate and higher sensitivity for the proposed method.
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1. Introduction

In machine or statistical learning, multiclass classification problem involves grouping of ob-
served samples into three or more classes. Variable selection in multiclass classification is the
process of identifying relevant subset of input variables that can positively improve the per-
formance of a multiclass classifier. The dual task of classification and subset selection often
arise in biological and medical applications, especially in genomic studies (Liu, Bensmail, and
Tan 2012). High-dimensional data with large input and small sample size are often observed
or reported in genomic studies. Many variable selection methods for multiclass classification
task have been developed within the framework of Bayesian and classical approaches.

In a broader sense, variable selection can be divided into three types; filter, wrapper and
embedded. Variable selection techniques or methods that are independent of classifier are
referred to as filter. Filter methods are fast and easy to apply but posed with the tendency
of selecting irrelevant variables. Wrapper method are similar to filter except that the selec-
tion procedure is based on the scores generated from a predetermined classifier. The major
drawback is that, it is classifier sensitive which implies the subset selected are mostly not
optimal. Embedded is an hybrid form of wrapper and filter, with filter or wrapper at the
training stage before proceeding to the classification stage (Guyon, Weston, Barnhill, and
Vapnik 2002; Guyon and Elisseeff 2003; Guyon, Gunn, Nikravesh, and Zadeh 2008; Peng,
Wu, and Jiang 2010). Filter method has been applied in multiclass classification especially
for high-dimensional datasets because of its fast computational time. Forman (2003) used
Chi-square method, Wright and Simon (2003) used the classical one-way ANOVA method for
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preliminary variable selection task. The two approaches are based on ranking the Chi-square
or F statistic in descending order with top variables being the best subset. Alternatively, the
p-values of the statistics may be reported and variables with p-value lower than a threshold
level say 0.05 are selected as best candidate for further classification task (Hwang, Lee, and
Park 2017). The classical one-way ANOVA method which authors like Guyon and Elisseeff
(2003); Wright and Simon (2003); Qureshi, Oh, Min, Jo, and Lee (2017), among others used
suffers from loss of information (Bertolino, Piccinato, and Racugno 1990; Solari, Liseo, and
Sun 2008). Solari et al. (2008) has worked on Bayesian one-way ANOVA as a safe haven to
loss of information issue. They suggested objective prior through Bayes factor as an alter-
native approach to handle one-way ANOVA model. Objective Bayes (let the data speak for
themselves) are no way better than the classical approach as its often used when subjective
priors are difficult to compute or elicit (Yahya, Olaniran, and Ige 2014; Olaniran, Olaniran,
Yahya, Banjoko, Garba, Amusa, and Gatta 2016; Olaniran and Yahya 2017; Olaniran and
Abdullah 2018; Olaniran, Abdullah, Pillay, and Olaniran 2018). Thus, in this paper, we de-
veloped a Bayesian one-way ANOVA test function using bootstrap prior Olaniran and Yahya
(2017) for variable selection in multiclass classification problem.

2. One-way ANOVA multi-class variable selection

Suppose we have the training dataset [τt, yt1, yt2, . . . , ytp, t = 1, 2, . . . , n], where τt is a cate-
gorical outcome that assumes i = 1, 2, . . . , k values and yt is the vector of continuous input
variables. The one-way ANOVA multiclass variable selection takes each input variable yt as
response and τt as treatment effect for a one-way ANOVA model given as;

yij = µ+ τi + εij , i = 1, 2, ..., k, j = 1, 2, ..., ni (1)

where yij is now the response variable of interest, µ is the overall mean, τi is the effect of ith
categorical predictor and εij is the residual error that is distributed N(0, σ2). The traditional
Analysis of variance focuses on testing the hypotheses:

H0 : τ1 = ... = τk

against

H1 : τi 6= τj

for at least one pair of i 6= j.

The classical approach of testing the hypotheses relies on the use of statistic:

Fc =

∑k
i=1 ni(ȳi − ȳ)2/(k − 1)∑k

i=1

∑ni
j=1(yij − ȳi)2/(n− k)

(2)

(Solari et al. 2008). Under H0, Fc is distributed F (k − 1, n − k). The null hypothesis H0 is
rejected if Fc > F (k − 1, n− k).

Model (1) can also be reparameterized to a regression format with categorical effect predictors
treated as dummy variables. Let 1p and 0p be the p × 1 vectors of 1′s and 0′s. Thus the
reparameterized model is given in matrix notation as:

Y = Xβ + ε (3)

where

Y ′ = [y11, y12, ..., yij ]
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,

X =


1 1n1 0n1 0n1 . . . 0n1

1 0n2 1n2 0n2 . . . 0n2

1 0n3 0n3 1n3 . . . 0n3

...
...

...
...

...
...

1 0nk
0nk

0nk
. . . 1nk


,

β′ = [µ, τ1, τ2, ..., τk]

.

The Maximum Likelihood Estimate for β follows from;

L(Y,X|β, γ) =
n∏

ij=1

γ√
2π

exp

[
−γ
2

(Y −Xβ)′(Y −Xβ)

]
(4)

where γ = σ−2 is the model precision.

L(Y,X|β, γ) =
γn/2

(2π)n/2
exp

[
−γ
2

(Y −Xβ)′(Y −Xβ)

]
(5)

It is pertinent to note that design matrix X is not of full rank and one of the solution is
to reparameterized such that

∑k
i=1 τi = 0. Thus X now becomes X∗ with rows of X∗

corresponding to τk observations replaced with −1 and columns of τk omitted completely
from X∗. Therefore,

β̂ = (X∗
′
X∗)−1(X∗

′
Y ) (6)

The classical ANOVA follows from (6) with:

Fc =
n− k
k − 1

(
β̂′X∗

′
Y − nȲ 2

Y ′Y − β̂′X∗
′
Y

)
(7)

2.1. Bayesian one-way ANOVA

The exponent term in (5) can be re-arranged so that we have:

L(Y,X|β, γ) =
γn/2

(2π)n/2
exp

[
−γ
2

(
(Y −Xβ −Xβ̂ +Xβ̂)′(Y −Xβ −Xβ̂ +Xβ̂)

)]

L(Y,X|β, γ) =
γn/2

(2π)n/2
exp

[
−γ
2

(Y −Xβ̂)′(Y −Xβ̂) + (β − β̂)′(X′X)(β − β̂)

]

with estimate of variance s2 = (Y−Xβ̂)′(Y−Xβ̂)
n−k , then,

L(Y,X|β, γ) =
γn/2

(2π)n/2
exp

[
−γ
2

(n− k)s2 + (β − β̂)′(X′X)(β − β̂)

]
If we let v = n− k, implies n = k + v,

L(Y,X|β, γ) =
γk/2

(2π)n/2
exp

[
−γ
2

(β − β̂)′(X′X)(β − β̂)

]
× γv/2 exp

(
−γv
2s−2

)
(8)
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The natural conjugate prior to the likelihood in (8) is normal gamma prior given by:

p(β|γ) =
γk/2

(2π)k/2|Σ0|
1
2

exp

[
−γ
2

(β − β0)′(Σ0)−1(β − β0)

]
(9)

and

p(γ) =
1

Γ(v02 )

(
2s−2

0
v0

) v0
2

γ
v0
2
−1 exp

[
−γv0
2s−20

]
(10)

The posterior distribution p(β, γ) can be obtained from the standard Bayes formula:

p(β, γ|Y,X) =
p(β, γ)L(β, γ|Y,X)∫ ∫
p(β, γ)L(Y,X|β, γ)dβdγ

(11)

For simplicity, the denominator of (11) is often dropped such that the posterior is of the form;

p(β, γ|Y,X) ∝ exp

[
−γ
2

(β − β0)′(Σ0)−1(β − β0)

]
× γ

v0
2
−1 exp

(
−γv0
2s−20

)
×

exp

[
−γ
2

(β − β̂)′(X′X)(β − β̂)

]
× γv/2 exp

(
−γv
2s−2

) (12)

From (12), it can be observed that the p(β, γ|Y,X) is also Normal-Gamma distributed.
Notationally,

p(β, γ|Y,X) ∼ N(βn,Σn, vn, s
−2
n )

where

Σn = (Σ−1
0 +X′X)−1

βn = (Σ−1
0 +X′X)−1(Σ−1

0 β0 +X′Xβ̂)

and vn = v0 + n,

s−2n =
v0 + n

v0s20 + (β̂ − β0)′[Σ0 + (X′X)−1]−1(β̂ − β0)

.

2.2. Bootstrap prior one-way ANOVA

The Bayesian solution provided in section (3.1) requires either subjective prior elicitation
or objective prior via monte - carlo sampling from the posterior distribution. In variable
selection, monte-carlo approach will be computational intensive especially when posed with
high-dimensional datasets. The bootstrap prior technique follows from empirical Bayes prin-
ciple where prior hyperparameters are estimated from the data. Therefore, the empirical
Bayes estimates of β,Σn, vn, s

−2
n are;

βEB
n = (Σ̂−1

0 +X′X)−1(Σ̂−1
0 β̂0 +X′Xβ̂) (13)

ΣEB
n = (Σ̂−1

0 +X′X)−1 (14)

vEB
n = v̂0 + n (15)
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(s−2n )EB =
v̂0 + n

v̂0ŝ20 + (β̂ − β̂0)′[Σ̂0 + (X′X)−1]−1(β̂ − β̂0)
(16)

The bootstrap Bayesian version of the estimates of β,Σn involves the following steps;

1. Generation of bootstrap samples from the original data B desired number of times,

2. Estimating the hyperparameters (prior parameters) each time the samples are generated
using Maximum Likelihood (ML) method,

3. Updating the posterior estimates using the hyperparameters in step (2) above using (13
& 14) and

4. Then obtaining the bootstrap empirical Bayesian estimates β̂
BT

and Σ̂
BT

using;

β̂
BT

= B−1
B∑
b=1

β̂
EB
b (17)

Σ̂
BT

= B−1
B∑
b=1

Σ̂
EB
b (18)

The β̂
BT

proposed here has good statistical properties in terms of biasness and Mean Square
Error (MSE).

The Bias property can be evaluated as:

Bias = E[β̂
BT

]− β

= E

[
B−1

B∑
b=1

β̂
EB
b

]
− β

= E

{
B−1

B∑
b=1

[
(Σ̂−1

b +X′X)−1(Σ̂−1
b β̂b +X′Xβ̂)

]}
− β

= (Σ−1 +X′X)−1(Σ−1β +X′Xβ)− β
= (Σ−1 +X′X)−1(Σ−1 +X′X)β − β

Bias = 0

Also, the MSE is the combination of square of bias and variance of the estimate, then following
from the above derivation the MSE is just the variance of the estimate. Thus;

MSE[β̂
BT

] = B−2var

{ B∑
b=1

[
(Σ̂−1

0 +X′X)−1(Σ̂−1
0 β̂0 +X′Xβ̂)

]}
The bootstrap prior Bayesian ANOVA follows from (17) with:

FBT =
n− k
k − 1

[
(β̂BT )′X∗

′
Y − nȲ 2

Y ′Y − (β̂BT )′X∗
′
Y

]
. (19)

Again, the null hypothesis H0 is rejected if FBT > F (k − 1, n− k).

The multiclass variable selection procedure will be repeated for all p input variables in the
training set. This implies that the test will be carried out p times which will lead to multiple
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testing issue. To avert this, the False Discovery Rate (FDR) approach of Benjamini and
Yekutieli (2001) is adopted as it has been adjudged to be more powerful than other method.
The FDR procedure correct the multiple comparison issue by adjusting the p-values returned
from the test functions. The function ”p.adjust” in R with the option ”fdr” was used to adjust
the resulting p-values yielded by the method.

3. Simulation study

The R software was used to investigate the performance of classical ANOVA and bootstrap
prior ANOVA in multiclass variable selection. The simulation procedure used was adapted
from Olaniran et al. (2016) with little modifications. We simulated n = 100 observations
representing the number of patients samples with k = 3, 9 distinct biological groups corre-
sponding to different types of disease outcomes. For each observation, p = 100, 1000, 5000
covariates, Y = (y1, ...yp), representing the observed gene expression profiles were simulated.
For k = 3 and Y = (y1, ..., y5), the dataset Y |τ = 1, 2, 3 were simulated from multivariate
normal distributions with means µ1, µ2, µ3 and variance-covariance matrix Σ with values;
µ1 = 1, µ2 = 2, µ3 = 0,Σ1 = Σ2 = Σ3 = Σ = I. The remaining dataset Y |τ = 1, 2, 3 for
Y = (y6, ..., yp) were simulated from multivariate normal distributions with means µ1 = µ2,=
µ3 = 0 and variance-covariance matrix Σ = I. Similarly, for k = 9 and Y = (y1, ..., y5), the
dataset Y |τ = 1, 2, 3, . . . , 9 were simulated from multivariate normal distributions with means
[µ1, µ2, µ3] = [µ4, µ5, µ6] = [µ4, µ5, µ6] = [1, 2, 0] and variance-covariance matrix Σ = I. The
remaining dataset Y |τ = 1, 2, 3, . . . , 9 for Y = (y6, ..., y1000) were simulated from multivari-
ate normal distributions with means [µ1, µ2, µ3] = [µ4, µ5, µ6] = [µ7, µ8, µ9] = [0, 0, 0] and
variance-covariance matrix Σ = I. In the all cases, the first 5 variables y1, ..., y5 are regarded
as relevant variables while the remaining p− 5 are the irrelevant variables as they constitute
same mean structure 0 irrespective of the class. The bootstrap size B and number of simula-
tion iterations were fixed at 1000. The simulation results are presented in Tables 1 - 4. Table
1 presents the comparison between classical Fc and the proposed FBT for a single gene y with
k = 3, 9.

Table 1: Comparison results between Fc and FBT for p = 1 and k = 3, 9

H0 is true H1 is true

Fc FBT Fc FBT

F 1.0239 1.0158 45.804 45.788
k = 3 P (H|Y,X) 0.4994 0.5034 0.0000 0.0000

Error 0.0527 0.0506 0.0000 0.0000

F 0.8017 0.7918 12.5300 12.5098
k = 9 P (H|Y,X) 0.6732 0.6772 0.0002 0.0002

Error 0.0790 0.0776 0.0007 0.0008

Table 1 presents the simulation results for a single gene that corresponds to testing for p = 1.
The underlying null hypothesis is H0 : µ1 = µ2 = µ3 for k = 3 and H0 : µ1 = µ2 = µ3 = · · · =
µ9 for k = 9 against alternative hypothesisH1 : µi 6= µj for at least one pair of i 6= j. The table
is partitioned into two conditions that correspond to the situation where the null hypothesis
is true or false. The level of significance used for the testing is 0.05. The F values of FBT is
lower than Fc at various levels of k and conditions. The P (H|Y,X) is often interpreted as the
p-value for frequentist procedure Fc and the probability of the null hypothesis for Bayesian
procedure FBT . At 5% significance level, FBT has a larger probability of H0 being true when
it is indeed true than Fc. These results subsequently corresponds to lower Type I errors for
FBT at k = 3, 9 when H0 is true. For the second condition when H1 is true and k = 3, the
two procedures return similar probability of H0 being true and thus similar Type II error
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was achieved. However, when k = 9 and H1 is true, approximately similar probability of null
hypothesis and Type II error were obtained. Thus regarding validity, FBT is more valid than
Fc regarding relatively closer Type I error rate to the imposed 0.05 level especially when k = 3.
Also, regarding the power of detecting a true difference when it exists, FBT performance is
relatively similar to Fc.

Table 2: Performance results of the simulated data at p = 100

FDR Unadjusted FDR Adjusted

Metrics Fc FBT Fc FBT

TPR 1.0000 1.0000 1.0000 1.0000
k = 3 FPR 0.0505 0.0253 0.0053 0.0032

TNR 0.9495 0.9747 0.9947 0.9968
FNR 0.0000 0.0000 0.0000 0.0000

TPR 1.0000 1.0000 1.0000 1.0000
FPR 0.0516 0.0158 0.0042 0.0000
TNR 0.9484 0.9842 0.9958 1.0000

k = 9 FNR 0.0000 0.0000 0.0000 0.0000

The performance metrics used to assess the methods are True Positive Rate (Sensitivity or
Power) TPR which measures the expected proportion of active variables that are declared
active, False Positive Rate (False Discovery) FPR which measures the expected proportion
of inactive variables that are declared active, True Negative Rate (Specificity) TNR which
measures the expected proportion of inactive variables that are declared inactive and False
Negative Rate FNR which measures the expected proportion of active variables that are
declared inactive.

The performance result for p = 100 corresponding to moderate high-dimensional modeling
scenario is presented in Table 2. The two approaches maintained same sensitivity level at vari-
ous k levels. This implies the two approach will always detect relevant variables. However,the
most important criterion is the false positive or false discovery rate, a good selection procedure
should have a reasonably lower false positive rate as well as high power. The false positive
rate of FBT is lower than Fc at various levels of k. Similar results were equally observed when
p = 5000 in Table 4. However, when p = 1000 in Table 3, the FPR is approximately similar.

Table 3: Performance results of the simulated data at p = 1000

FDR Unadjusted FDR Adjusted

Metrics Fc FBT Fc FBT

TPR 1.0000 1.0000 1.0000 1.0000
k = 3 FPR 0.0481 0.0275 0.0003 0.0003

TNR 0.9519 0.9725 0.9997 0.9997
FNR 0.0000 0.0000 0.0000 0.0000

TPR 1.0000 1.0000 1.0000 1.0000
FPR 0.0449 0.0143 0.0004 0.0001
TNR 0.9551 0.9857 0.9996 0.9999

k = 9 FNR 0.0000 0.0000 0.0000 0.0000

4. Application to gene expression cancer RNA-Seq dataset

The dataset used here is a subset of RNA-Seq (HiSeq) PANCAN data set (Weinstein, Col-
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lisson, Mills, Shaw, Ozenberger, Ellrott, Shmulevich, Sander, Stuart, Network et al. 2013).
It represent a random extraction of 16384 gene expressions profiles of 801 patients with five
different form of tumors labels BRCA, KIRC, COAD, LUAD and PRAD. The two methods
were used to identify the most relevant biomarker genes for possible classification of tumors.
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Figure 1: 3D classification plot for selection with Fc and FBT

Fc identified 15798 genes while FBT identified 4511 genes as relevant both at 5% threshold.
The large number of gene subset identified by Fc can be attributed to high false positive rate
as observed in the simulation studies. In addition, the p-values yielded by the two methods
were used to rank the genes in increasing order of relevance. The three best subset genes were
later used to plot the graph in Figure 1.

The plot showed that the two methods could only classify the tumors into three clear groups
using the best three genes. But the classification from FBT is more distinct compared to that
of Fc. Also, two of the best three genes overlapped for the two methods. Tumor LUAD and
BRCA were more evidently a product of high level of expressions for gene220 and gene219
using FBT and Fc selections. Therefore, further clinical examination can be followed up on
the identified genes for tumors with labels LUAD and BRCA.

5. Conclusion

In this paper, we considered Bayesian variable selection for multiclass classification task using
the bootstrap prior technique. The bias derivation showed that the approach used is unbiased
as well as maintaining lower mean square error property of Bayesian techniques. Simulation
studies revealed that the proposed method FBT has lower false positive rate in addition to the
high power property in ANOVA based methods. Additionally, the proposed method has higher
accuracy when selecting biomarker subsets useful for disease classification as observed in the
PANCAN dataset. Hybridizing the proposed FBT method with a classification technique
is a good area of research that can be considered in future. Also, we have considered one
way ANOVA because of its applicability to multiclass variable selection. The bootstrap prior
technique can also be extended to multi-factor ANOVA.
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Table 4: Performance results of the simulated data at p = 5000

FDR Unadjusted FDR Adjusted

Metrics Fc FBT Fc FBT

TPR 1.0000 1.0000 1.0000 1.0000
k = 3 FPR 0.0503 0.0268 0.0001 0.0000

TNR 0.9497 0.9732 0.9999 1.0000
FNR 0.0000 0.0000 0.0000 0.0000

TPR 1.0000 1.0000 1.0000 1.0000
FPR 0.0483 0.0154 0.0001 0.0000
TNR 0.9517 0.9846 0.9999 1.0000

k = 9 FNR 0.0000 0.0000 0.0000 0.0000
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