Austrian Journal of Statistics
January 2019, Volume 48, 73-96.

http://www.ajs.or.at/ m | [ |
d0i:10.17713/ajs.v481i2.803 I_I.=Il

Estimation of Stochastic Volatility Models Using
Optimized Filtering Algorithms

Saba Infante Cesar Luna Luis Sanchez Aracelis Hernandez
Yachay Tech Universidad de Carabobo Universidad Técnica Universidad de Carabobo
de Manabi
Abstract

In this paper, we describe and implement two recursive filtering algorithms, the opti-
mized particle filter, and the Viterbi algorithm, which allow the joint estimation of states
and parameters of continuous-time stochastic volatility models, such as the Cox Ingersoll
Ross and Heston model. In practice, good parameter estimates are required so that the
models are able to generate accurate forecasts. To achieve the objectives the proposed al-
gorithms were implemented using daily empirical data from the time series of the S& P500
returns of the stock exchange index. The proposed methodology facilitates computational
calculations of the marginal likelihood of states and allows the reconstruction of unknown
states in a suitable way, and reliable estimation of the parameters. To measure the qual-
ity of estimation of the algorithms, we used the square root of the mean square error
and relative deviation standard as measures of goodness of fit. The estimated errors are
insignificant for the analyzed data and the two models considered. We also calculated
the execution times of the algorithms, demonstrating that the Viterbi algorithm has less
execution time than the optimized particle filter.

Keywords: stochastic volatility models, optimized particle filter, Viterbi algorithm.

1. Introduction

The Black-Scholes model described by Black and Scholes (1973) is an equation derived from
the financial mathematics used to determine the prices of certain financial assets. The as-
sumptions of this model are given in terms of an ideal scenario where it is assumed that it is
possible to conduct continuous trading, the markets are perfect, the interest rate is risk-free
and fixed and the price of the underlying asset behaves as a random variable that is modeled as
a stochastic process. However, it has been shown by empirical studies that these assumptions
are not realistic because the model does not explain the true impact of change on financial
markets, such as changes in volatility. Currently, there are more sophisticated models that
incorporate volatility as a random variable related to risk factors. Two most representative
models are the model of Cox Ingersoll Ross (CIR) (see Cox, Ingersoll, and Ross (1985)) and
the model of Heston (see Heston (1993)).

The problem with these models lies in the estimation of the parameters. When the maximum
likelihood estimation method is used, there is a first drawback related to obtaining a solution
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in closed form for the transition density when the solution of the transition density between
prices and volatility is not known in closed form, see Ait-Sahalia (2002) for detail.

A second problem arises when the time series of prices are only partially observed, and volatil-
ity is unknown when integrating the joint density to obtain the marginal density, the process
results in the handling of analytically intractable integrals, which need to be solved by nu-
merical or technical Monte Carlo methods.

In recent years some solutions have been proposed to solve the above problems. For example,
Ait-Sahalia and Kimmel (2007) and Ait-Sahalia and Kimmel (2010), proposed closed-form
approximations to the log-likelihood function. MCMC methods in Eraker (2001), Eraker
(2004), Eraker, Johannes, and N. (2003), Jacquier, Polson, and P. (2004) have been used for
such purposes. In Bates (1996), Johannes, Polson, and Stroud (2009) and Christoffersen, Ja-
cobs, and Mimouni (2010), proposed computational algorithms based on filter theory. Hurn,
Lindsay, and McClelland (2005) described a maximum likelihood method for estimating the
parameters of the Heston volatility model using market index data and the prices of the
options inscribed in that index using a particle filter algorithm and the study shows the ef-
ficiency of the filter on simulated and real data taken from the S&P 500 index. Kleppe,
Jun, and Skaug (2009) implemented a method for maximum likelihood estimation in stochas-
tic volatility models, which does not require observations of either the price option or the
volatility. In order to integrate the volatility of the latent process from the joint density of
profitability and volatility, the use of a technique of modified importance sampling for the ap-
proximation of the continuous time model using the Euler-Maruyama scheme was proposed.
Kleppe, Jun, and Skaug (2014) develop a maximum likelihood method to estimate partially
observed diffusion models based on data sampled at discrete times. The method combines
two estimation techniques, the first, proposed by Ait-Sahalia (2008), and which was used to
obtain an exact approximation of the joint transition probability density of latent states and
observed measurements. The second was proposed in Richard and Zhang (2007) and used an
importance sampling technique to integrate the latent states and obtain an approximation
of the likelihood function. Javaheri, Lautier, and Galli (2003) introduced the use of filter-
ing algorithms in the world of the quantitative finances. In particular, the Kalman filter,
the extended Kalman filter, the unscented Kalman filter, the nonlinear Kushner’s filter and
the particle filter are implemented for stochastic volatility models and structure models of
commodity price terms. Spall (2003) proposed a dual estimation algorithm based on Markov
chain Monte Carlo to estimate states and parameters in a state space model. Recently, in
Javaheri (2015) established a methodology to estimate parameters in volatility models of time
series of market price. In particular, problems related to stochastic volatility models, statisti-
cal inference techniques, filtering algorithm and optimization are considered, the consistency
of the parameters is demonstrated, and recommends the use of observations of the markets
of better quality options.

The main contribution of this article is based on the use of the filtering theory for the joint
estimation of states and parameters (Haykin (2001), Liu and West (2001)) in the stochastic
volatility models of CIR and Heston. In particular, the optimized particle filter algorithm
proposed by Yang and Xing (2011) was implemented in this context. Assuming the known
parameters, the Viterbi algorithm, Viterbi (1967), was implemented to estimate the maxi-
mum a posteriori states. For both models, we obtain the estimated likelihood and show how
the optimized algorithms work in an application with real data. In summary, the proposed
in this article:

e Two stochastic volatility models are formulated, these models are defined on terms of
stochastic processes of continuous times with continuous space state.

e The dynamic system in continuous time is approximate by a discrete system, i.e., the
derivatives in conitnuous time are approximated by difference equations in discrete time,
which can be expressed in the form of space state model.

e Once that the models are in the form space state, it is necessary to estimate the states
and parameters for which two algorithms are proposed.



Austrian Journal of Statistics

The rest of article is summarized as follows: in section 2, Cox Ingersoll Ross model is de-
fined, this model describes the evolution of interest rates (i.e specifies that the instantaneous
interest rate follows a stochastic differential equation) and can be used in the valuation of
interest rate derivatives; the section 3 contains the Heston model, this is a mathematical
model that describing the evolution of the volatility of an underlying asset, assumes that the
price of the asset is determined by a stochastic process; in section 4, optimized particle filter
is using for generate new observations into sampling process and also optimizes it, through
optimized particle filter, particles are moved towards regions where they have larger values of
posterior density function; in section 5 the Viterbi algorithm are developed, this algorithm is
a maximum a posteriori (MAP) estimation method that rely on a particle cloud representa-
tion of the filtering distribution which evolves through time using importance sampling and
resampling ideas. The MAP estimation is then performed using a classical dynamic program-
ming technique applied to the discretised version of the state space model; in section 6 the
results obtained for two different models are shown, in section 7 contains a final discussion
and conclusions and lastly, section 8 contains the acknowledgements.

2. Cox Ingersoll Ross model

The Cox Ingersoll Ross (CIR) model, describes the evolution of the interest rate by the
following stochastic differential equation

dry = B(p — r)dt + o+/r1d By (1)

where 7 is the interest rate process, By is a Brownian motion (which models the random risk
factor of the market), 8, p and o are parameters. The parameter [ corresponds to the speed
of adjustment, p to the mean and o to volatility. The drift factor S(u — r¢) is exactly the
same as in the Vasicek model. It ensures mean reversion of the interest rate towards the long
run value u, with speed of adjustment governed by the strictly positive parameter 5. The
CIR model ensures that the process has mean reversion and avoids the possibility of negative
interest rates. A process satisfying the equation (1) is called the CIR process, the transition
density of the CIR model is not Gaussian.

Stochastic volatility models are generally constructed based on mean reversion of volatility
parameter, which reflect through observations that periods of low volatility tend to be followed
by a reversion to a more moderate long-term level.

In order to solve analytically the equation given in (1), we need to introduce the chain rule
for stochastic differentials, called It6’s Lemma, which is defined as follows:

Theorem 1 (Ito’s Lemma). Let By be a Brownian motion and x;¢ be an Ito drift-diffusion pro-

cess which satisfies the stochastic differential equation dr; = (xt, t)dt + o(xy, t)dBy. Suppose

that y; = u(xy,t), u: R x [0,T] — R, is continuous, %, %, 2712‘, exist and are continuous

then
ou 10%u

0
*u(ﬂct,t)dt + %(ajta t)dwy + - 5 9% Q(xtJ t)(day)?

dy; =
Yt ot

2

ou ou 10%u 9 ou
<6t (x4, t) + 5 t($t7t)ﬂ($tat) + = 5 9 5 (T, t)o (24, 1) )dt—l— %(a}t,t) o(xy, t)dBy

The term (dxy)? is interpreted using the following identities:
e dtdt = 0.
e dtdB; = dBydt =0
e dBdB; = dt.

Now, using the transformation v; = In(r¢) — in(o?) and applying It6’s Lemma in CIR model,
where

at) = Blu—r) . olent) = oy (2)
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8Ut - 1 82’1),5 o 1 8’Ut _
airt Ft ) 87"? ? ) (l’fld ) E - O (3)
then 5 5 e Do,
v I 107 » v
d’Ut = (8t + 8 re ( t) + 9 8 L? (l’t, )) dt+ 8rt0'(xt, )dBt (4)
we have
dvy = { P . ”}dt U\FdBt (5)
Tt
102 o
{ n—T¢ —Tt}dt—F\/?TtdBt (6)
2
= {5 (,u 1> ;tz}dt—l—exp <——> dBy (7)
where .
v, = In(ry) — In(c?) = In (—;) (8)
o

taking exponential and solving, we obtain
v
7 —exp (_l) (9)

In order to illustrate the methodology of estimation of parameters and states proposed in
this article, we use the reparametrized version of the CIR model in continuous time, which is
discussed in Chib, Pitt, and Shephard (2006) and Poyiadjis, Doucet, and Singh (2011), where
the volatility follows a square root process given by

v
Vir1 = p+ v + Bexp (—vg) + exp <—5t> Gtr1 (10)

and v
t
Yt = 0¢ exp (—§> & (11)

where (;11 and & are two identically distributed independent random variables, (i1 ~
N(O,a?) and & ~ N(0,0‘?). We are interested in estimating the states vo; = (vo,...,vt)
and parameters © = (u,[3,0¢) of system placed in (10), and (11), given the observation
Y1t = (yl) °")yt)‘

3. The Heston model

The Heston model (1993) is a mathematical model used to describe the behavior of a bivariate
stochastic process between stock prices s; and its variance v;. It initially emerged as a
generalization of the Black and Scholes option pricing model, but assuming that volatility is
a stochastic process. The model is governed by the following system of stochastic differential
equations

dSt = MStdt + \/’E&SﬂiBLt (12)
and
d (v/vr) = =B/ vgdt + 6dBa (13)

If oy, = (\/th)2 and Ito’s Lemma is applied, then

dye = 2/T(V/0) + 2 (A7)’ (14)

dy = 2y/v (—By/ugdt + 6dBa) + (—B/vrdt + 6dBay)° (15)
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developing, we obtain
52
dy; = (52 — QBUt)dt + 25\/U7tdB27t =24 (% — Ut> dt + 25\/QTtdB27t (16)
If we make k = 23; 0 = % and o = 20, we get:
dyt = d’Ut = k:(0 - ’Ut)dt + O-\/'U»tdBZt (17)

to obtain this last result, the following properties were used dtdt = 0, dtdB; = dBdt = 0 and
dBydB; = dt.
Then the given system in (12) and (18) becomes

dSt = [LStdt + \/’UjﬁSﬂlBLt (18)
d’Ut = k(9 — Ut)dt + U\/’(Ttdeﬂj (19)

and
dBLtdBQJ = pdt (20)

where the system variables are defined as follows:
e s; : is the asset price,
e v, : is the volatility of the asset,
e 1 : is the expected return on the asset,

0 : is the long-term price change,

e k :is the rate at which volatility tends towards its long-term average,
e o :is the volatility of /vy,

e p: is the correlation of Brownian motions,

e dt =t —t_1 : is a small increase over time,

® dBj; :is a standard one dimensional Brownian motion,

® dBs; : is a standard one dimensional Brownian motion.

The equations (12) and (13) is a system of stochastic differential equations, where the solutions
represent a set of random variables x; and v; indexed by real numbers ¢ > 0 is called a
continuous-time stochastic process. Each instance, or realization of the stochastic process is
a choice from the random variables x; and v; for each t, and is therefore a function of £. The
equations (12) and (13) are, by defnition, an integral equation (integrating from ¢ to t + dt)

t4-dt t+dt t+-dt
/ dSt = / MStdt + \/QTtStdBl’t (21)
t t t

t+dt t+dt t+dt
/ dvy = / k(0 — ve)dt + / o\/vidByy (22)
t t t

where the meaning of the last integral in (21) and (22 ), are called an Ito integral.

The simplest efective computational method for the approximation of ordinary differential
equations is Euler’s method. The Euler-Maruyama method is the analogue of the Euler
method for ordinary differential equations. To develop an approximate solution on the interval
[c; d], assign a grid of points

and

c=1p<n<...<1,=4d (23)

approximate x values
wy <wy < ... < Wy (24)
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will be determined at the respective ¢ points, given the SDE initial value problem.

The simplest way to discretize the process in the equations (21 ) and (22 ) is to use Euler
discretization, this discretization is necessary to find the solution of the equations (18) and
(19). In the following, is shown the process of discretization of s;, vy and In(s;).

e Discretization of the process sy

The stochastic differential equation given in (12) and (13) in integral form can be expressed
as follows

t4-dt t+dt
Stidt = St + / Sy du —|—/ VUuSudBi (25)
¢ ¢

Using a discretization of Euler we obtain that

t+dt
/ Sy du = pusedt (26)
t

and
t+dt
/ VVusudByy = \/TTtSt(BHdt — Bi) = uisizw 5 zu ~ N(0,1) (27)
t

so the stochastic differential equation of the stock price in its discretized version of Euler is
given by
Stadt = St + psedt + \/viSezy (28)

e Discretization of the process vy

With a relation similar to the discretization of the stochastic difference equation of s;, a
version for v; is obtained, which is written as follows

tdt t+dt
Vprdr = Vg + / k(0 — vy )du + / 0\/UydBa (29)
t t

Using a discretization of Euler we obtain that
t+dt
/ k(0 — vy)du =~ k(6 — vy)dt (30)
t

and
trdt
/ 0\/UudBa,y, = 0\/Ui(Byat — By) = 0/uzs 5 zs~ N(0,1)
t

where Corr(zy, zs) = p. Finally, the equation of the volatility in the discrete version of Euler
is given by
Vgt = U + k(0 — v)dt + o/ vdizs (31)

To avoid obtaining a negative variance, v; is replaced by v;” = max (0,v;), or v;” = |vy].

e Discretization of the process In(s;)

If we now consider y; = In (s;), using Ité’s Lemma, we obtain

1
dy; = din (s¢) = (u — §vt)dt + /v dBi

Integrating we obtain

t 1 t
In(serar) =In(s) + / <,u — 2%) du + / VU dB1
0 0
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1
=lIn (St) + (M - 2’Ut) dt + ﬂ(Bl,t+dt — Bl,t)

1
=In(s) + <,u - 2vt> dt + \/vpdtzy, (32)

then Euler’s discretization for In (s;) is given by

1
In(serar) =1In(s¢) + (u — 2vt> dt + / vidtzy, (33)

or equivalently
1
St1dt = St exp [(M — Qvt) dt + \/vtdtzu] (34)

e The model in the state space

The Heston’s stochastic volatility model can be written as state space models, these models
are useful for describing data in many different areas, such as financial time series, environ-
mental data, and clinical trial, among other applications; and are used to estimate latent
state processes (unknown processes), based on measurements from the observation process.
Also, allows to write equations (18) and (19) in discretized form in time, facilitating the
computational implementation of the estimation algorithms, this representation as follows

Vi1 = U + K(0 — vp) + 0y/ve2s (35)
1
Yer1 = Yt + <M - 2Ut> + otz (36)

where dt = 1 and 411 = Ins;+1 are assumed. The equation given in (35) is the state equation
and the equation given in (36) is the observation equation. A way to generate z, and zg
with correlation p, consists of generating identically distributed independent normal random
variables 21 ~ N(0,1) and 2z ~ N(0,1), such that z, = 21 and 25 = pz1 + /1 — p?22. The
equations given in (35) and (36) can be rewritten as

Vi1 = v + K(0 — vp) + oo (pz1 + V1 — p?a2) (37)

1
Yi+1 = Yt + (M - 2%) + oz (38)

The model parameters are © = (k, 6, i, 7, p). The joint distribution of (v 1, yss1)?

by

is given

Yt+1

(2t ) ~ v i (39)

where . < EEZ 13 > (40)

5, = ( Var(vit1)  Cov(vit, yer1) > (41)
Cov(ye+1,ve41)  Var(yes1)

and

The bivariate transition density of a correlated normal distribution is given by

1 1
21/ Var(vis1) v/ Var (y1) v/ (1 — p?) exp {_MQ(UHl,ytH)} (42)

p(vt+1a Z/t+1) =

79
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Where Q(vit1,Yi+1) = ¢

(Ut+1 - E(Ut+1))2 _9p <Ut+1 - E(Ut+1)) (yt+1 - E(yt+1)> n (?Jt+1 - E(yt+1))2
Var(viy1) Var(viy1) Var(yi+1) Var(yi+1)

Note that

E(vi1) =v+ k0 —v) ; Var(vy) = o (43)
1
E(1) =g+ w—gv) 5 Var(ye) = v (44)
and 3

Cov(vis1, Y1) = ov/oelye + (1 — 5”0] (45)

Therefore, marginal distributions p(vey1|ve) and p(yi+1|y:) are given by
p('l)t+1"l)t) ~ N (Ut + ]{7(0 - ’Ut), O'QUt) (46)

1

P(Yelye) ~ N (ye + (1 — §Ut)ﬂ)t (47)

The conditional distribution p(y;t1|vi+1), is given by

p(Yes1lvet1) ~ N <yt + (1 — %Ut) + g(vtﬂ — (vt + k(0 —vp)), ve(1 — PQ)> (48)

Finally, the joint transition density can be rewritten as

P(Vit1, Yer1) = ! 7 exp {—MQ(Ut+1> yt+1)} (49)

2movey/(

where

2 B 1,
Q(Ut41, Yt41) = S Bl G i (e Ut))} —2p [Uﬂrl — (v + k(0 — Ut))] [yt—l—l (e + (1 —3 ))]

N oo N

" Yer1 — (e + (p — %Ut))] ’

Non

One way to eliminate the correlation between the errors associated with the state and obser-
vation equations in the state space model is to subtract on both sides of the equation (37), a
multiple of the quantity y; + (,u — %vt) + /v¢z1 — Y41 = 0. This procedure would eliminate
the correlation (Javaheri (2015)); that is to say

1
Vip1 = v + K (0 —vp) + oo (le +V1- PQZQ) — po |:yt + <H — 2Ut> + /U2y — Z/t+1}

then, the state space model with uncorrelated noises is as follows

1
Vip1 = v + K (0 — v) + oo (pz1 +41- p2z2> — po [yt + (,u — 2”75) + ez — ytH]

1
Yir1 = V¢ + (M — 2%) + V/vs21

or equivalently:

1
Vi1 = v+ K (0 —v) — po [yt + (M - 2’Ut> - Z/t+1] + Voo /1 — p?zy
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1
Yt+1 = Yt + (M - 2%) + Vv

where z1 and z9 are independent and identically distributed standard Gaussian random vari-
ables. Using this system of equations the calculations are faster and the filters are implemented
more efficiently.

4. Optimized particle filter (FPO)

In the previous sections, two models of stochastic volatility, the CIR model and the Heston
model, were proposed, then a discretization of both was performed, and then represented in
the state space form. Now, it is proposed to define the optimized particulate filter to be used
to estimate the states, solutions of the SDE, and parameters of the proposed models.
Consider a dynamic system

v = f(vi-1,0) + & (50)
yr = h(ve, ¢) + G (51)
where v; is unobserved state of the system, y, are observations at time ¢t € {0,...,T}, ¢ € R™

is parameters vector, f(.|.) is a known density given by the evolution of the states, h(.|.)
is also a known density by the observations, which may be linear or non-linear, ¢ and (;
are estimation errors of the state and observation equations which can be Gaussian or non
Gaussian. It is assumed that {v;} is a Markov process generated according to the evolution
of the previous state, where the observation process {y:} is conditional independent of the
process {v;}.

When ¢ is known the inference falls on the posterior distribution p(vo.¢|y1.t), where the joint
distribution is given by

t t
p(vo, yr:) = f(vo) [ [ £ iralon) T ] Pwilv:) (52)

i=0 i=1
f(vo) is an initial state, vo;y = (vo,...,v:) and y14 = (y1,...,y:), denote the states and

observations from a time 0 to t. If ¢ is unknown parameter, an a priori distribution p(¢) is
assigned and the Bayesian inference falls on the estimation of the posterior distribution of
parameters and states, given by

P(v0:t, Bely1:e) o< p(vo:t, Y1:¢|de)p(Dr) (53)

In particular, we are interested in estimating the filtering distribution p(v¢|y1.t), the predictive
distribution p(vi41]y1.), a posteriori mean py; = E(v¢|y1.1) and a posteriori covariance ¥y, =
E [(v; — my)(vp — my) "], which are calculated as follows:

e Prediction of the filtering distribution:
p(enlynas) = [ oo )peralnis)dvrs (54)

e Update of the filtering distribution:

_ P(yt|ve)p(vely1:e-1)
pludyre) = fp(yt\vt)P(Ut!ylzt—l)dvt (55)

e The predictive distribution:

P(Th1|y1k) = /p($k+1‘37k)p(xkb’1:k1)dwk (56)
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e The a posteriori mean:

Pkl = /xkp(13k|Y1:k)d$k (57)

e The a posteriori covariance:
Ypie = /(9% — myg) (e — mgp)” p(@kly 1) doy (58)

In models with nonlinear structures and with non-Gaussian errors, a posteriori distributions
P(vo:t|y1:4) or p(é,vot|y1.c) does not have closed form expression, so making inference is com-
plicated; in practice, it is difficult to calculate the integrals given in equations (54) and (55).
It is therefore necessary to use approximation Markov Chain Monte Carlo (MCMC) and Se-
quential Monte Carlo methods (SMC). The MCMC and SMC provide efficient computational
tools for inference in state space models (See Andrieu, Doucet, and Holenstein (2010)).

In this work we propose a method that allows to simultaneously estimate the states and pa-
rameters of the posterior distribution, using a sequence of discrete particles generated by a
particle filter algorithm. The approximation is given by

N
ploo, rlyne) = = S 6o 00} (59)
=1

. . N
where {ng)7 qﬁgl) } are the particles of states and parameters and ¢ is the Dirac delta, which

represents the gerzlgrated distribution of the N particles. Taking into account the approxima-
tion given in (59), the problem now focuses on how to extract the samples sequentially from
the posterior distribution. This step is complicated because the propagation of states depends
on the parameters, and vice versa. To solve this situation, to use a density of importance
based on the sampling technique of importance is suggested (Carvalho, Johannes, Lopez, and
Nicholas (2010)).

The proposed methodology combines the maximum likelihood method with an optimized
stochastic particle filter algorithm. The particle filter algorithm works properly for dynamic
models with Gaussian and non-Gaussian distributions, with linear and non-linear structures.
On the other hand, the classical method of estimation by maximum likelihood implies the
optimization of the parameters estimated in such way that the observed data are most likely
to be chosen and the likelihood function is defined as

t t

L(¢) = f(vo) [ [ f(wisalvis @) [ [ Bivalviga, @) (60)

i=0 i=1

where: vg ~ N(po, Xo0), f(vit1|vi, @) is given by the equation (50), h(yit1|vit1, @) is given
by the equation (51), ¢ = (B,u,0), denotes the parameters of the CIR model and ¢ =
(k,0, 1,0, p) are the Heston model parameters. In practice, one uses the log-likelihood which
is numerically better behaved and satisfies

t

1(¢) = InL(¢) = Inf(vo) + Y Inf(vir1lvi,#) + > h(yis1|vit1,6) (61)

=0 i=1

The maximum likelihood method is most commonly done by taking the partial derivative of
the equation given in (61) for each parameter and setting it equal to zero and the system
depending on the parameters is solved.

On the other hand, if we consider the joint density between observations yi.¢, states vg.; and
parameters ¢, we have

p(’UO;t, Yi:t, ¢) = p(ylzt|v():t7 ¢)p(v0¢t|¢>p(¢) (62)
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Furthermore;

t

P00, Yt Y1:t-1, ) = P(Yelyr:e—1, Vo, )P (Y11, Vo, @) = p(yr, vou, ) [ [ p(wilyrsio1, vou, ¢)
i=2

where:

P(Yely1:6—1,v0:t, ¢) = /p(yt‘vt>¢)p(vt|y1:t17¢)dvt = /p(yt|vt7¢)p(vt|vt17¢)p(vt1|ylzt1a¢)dvt1

= /p(ytvt—h O)p(ve—1|y1:t—1, ¢)dvi—1 (63)

and

p(y1,9) = /p(yllvoaﬁﬁ)p(vo)d’vo (64)

The equation given in (63) represents the likelihood of the data at time ¢. Taking logarithm
in the equation (63), we get

t

Up(vot, Yt 0)) = Inlp(y1, vor, )] + Y Inlp(yilyri-1, vos, 6)] (65)
=2

To simplify the computation, the cost function is chosen as the predicted likelihood at time
t, that is:

C(¢) = p(yely1t-1,¢) = /p(yt\vn¢)p(vt\y1:t—1,¢)dvt (66)

However, except in a few simple cases, it is impossible to compute the optimal filter and the
likelihood in closed form, the numerical approximation methods are required; this is

N

C(6) = plulni1,6) = 2 > plaelof”, 0 (67)

=1

The problem of maximizing the cost function is equivalent to finding the zeros of the gradient
VC(¢). A recursive procedure to estimate the parameter vector ¢ such that VC(¢) = 0
proceeds as follows

br41 = ¢t + 1V C () (68)

where VC (¢) is the estimation of gradient at the point ¢,—; and {v; > 0} denotes a sequence
of decreasing step-size. One selects a step-size sequence satisfying v, — 0, > ;2 7 = 0o. Un-
der appropriate conditions, the iteration defined in (68) will converge to the true value of ¢ in
some stochastic sense. The essential part of the equation (68) is how to obtain the gradient
estimate, however, in most cases, it is impossible to compute the closed-form gradient and we
must resort to the numerical approximation.

On the other hand, the particulate filters (Gordon, Salmond, and Smith (1993), Doucet,
YN

De Freitas, and Gordon (2001)), are based on importance sampling where {vgz)}' . is sim-
1=

ulated sequentially from some importance density function ¢(v¢|y1.:) and all particles v; are

selected according to a weight of importance wy, defined by

W = p(vt’ylzt) (69)
q(ve|y1:t)
To develop the particle filter algorithm in detail consider that {vﬁi),wt(i) fil is a random

sample that characterizes the filtered density function p(v¢|yi.¢), where {vgi) N | is a set of

particles obtained with associated weights {wt(i)}szl. Then a posteriori distribution also called
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filtered distribution at time ¢ can be approximated by an empirical distribution formed by
the points of mass or particles, as follows

N

PN (ve|y1e) = Zwt(i)(s(vt - 1) Zwtz = (70)

=1

where ¢(.) is the Dirac delta function and the weights are updated recursively by

(4) (@),
i Pyl )pvy v %)
w§) = t(i) (i)t = wwg—)l (71)
q(v, ‘Ut—hyt)

If in particular, we consider:
a1, ye) = p o) (72)
then we have the modified weights given by
& = & pueler”) (73)

That is, the particles are taken directly from the a priori distribution at time ¢. The filtered
density pn(ve|y1:+), can be approximated by

N (Ve|y1:e) Zwt (v — vt Zth = (74)

Crisan and Doucet (2002) proved that when N — oo the equation given in (74) approaches
the true a posteriori distribution p(v¢|y.¢)-
In particular, optimized particle filter algorithm proposed to be used in this work, using a set of

particles and weights {vﬁ)l, wt(i)l}, which approximate the filtered distribution p(v¢—1|y1:4—1)

in at time ¢t — 1 is initialized, and given the parameters estimated at a time ¢t — 1, ¢_1 =
(Be—1, pt—1,0¢—1) (CIR Model) or ¢y—1 = (Ki—1,0t—1, pit—1,01—1, pt—1) (Heston model). The
cost function can be approximated by

N
Cler-1) = plyrlyra—, dr—1) = > wi” p(wlvf”, dis) (75)
=1
where the particles
o oy ~ gy, 601) = plurlv?,, ¢ ) (76)

are obtained using a one-step ahead state evolution prediction.

The stochastic optimization technique apply only in the cases where a closed form solution
is not available and the approximation method introduced in Spall (1987), Spall (1988) can
be used. It is assumes that C'(¢) is a differentiable function in ¢ and the minimum point of
¢ corresponding to a zero point of the gradient. The gradient estimate

C(n) = (VC1(61), ., V(@) (77)
is given by
o Clot aly) = Clr — aly)
VC;(dn) = e, (78)
¢ denotes a sequence of positive scalars such that ¢, — 0 and Ay = (Ag1,...,Ayp) is

a m-dimensional random perturbation vector. Careful selection of algorithm parameters
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(a,c, A, a, 1) is required to ensure the convergence. In Yang and Xing (2011) the following
values are indicated

a C

=z . = — =0.602 ; =0.101 79
(A+k+1) “t (t+1) @ . (79)

Yt =
The value of ¢ is chosen empirically and it is approximately equal to the standard deviation
of the measurement noise in C(¢). The values of a, A can be chosen together to ensure
effective practical performance. Each components of A; is usually generated from a Bernoulli
1 distribution with probability of % for each of 1 independently.
In cases where the gradient has more than one zero point, then the algorithm may only con-
verge to a local minimum. In Spall (1988), some modifications in the algorithm to allow it to
search for the global solution among multiple local solutions are given.
We present here how to incorporate maximum-likelihood within the particle filtering frame-
work. The algorithm proceeds as follows:

Algorithm: Optimized Particle Filter

e Step 1. Initialization: For ¢ = 1,..., N, sample qb(()i) ~ p(¢o) and v((]i) ~ p(vg) assign

initial important weights as w(()i) = % and the initial estimate of states and parameters
is:
N . . N . .
=Y a0 i b= wye (30)
= i=1

e Step 2. Propagation of states and parameters: suppose that states, parameters and
weights are known at time ¢ — 1:

{v§ >1,¢g21,w,§21} L i=1,...,N (81)

We proceed to propagate the states and parameters at time ¢, as follows:
Qby)’”gi)p 1(51)1 ~ p(¢t|vt(i)17¢£?1) (82)
UIEZ) |U,$Z,)1a ¢1EZ) ~ p(vt|vt(i)1) ¢§z)) (83)

To carry out this procedure a step of propagation of the algorithm in Liu and West
(2001) can be implemented. In this case, the parameters can be propagated, as follows

o) = o)+ (1—v)ml +e? )~ N(0,hV)) (84)
where
. : - - 1 & ()
m§ ) — u¢>§31 +(1=v)pi—1 ;5 G1 = N Z(btil (85)
j=1

1Y _ : N
=N Z ( 1) (¢§”_)1) - ch) (86)

The constants v = /1 — h? and h measure the contraction and the degree of dispersion
of the mixture respectively. The states propagate from a density of importance

g(veol o) = poro?), 67) (87)

e Step 3. Cost function evaluation: for each parameter particle (j),gi), generate a m-

(4)

dimensional simultaneous perturbation vector A;”. Compute the perturbed parameter
particle (qbgz) + ctAgz)) and (qbgl) — ctAgz)). Fori=1,...,N
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e Sample:
3 ~ plurfuy, 67 + aaf?) (88)
e Compute the likelihood \":
Pl o1 + ) (89)
e Sample:
o ~ plurlofy, 6 — aaf) (90)
e Compute the likelihood 6@:
p(weld? 0, — ) (91)
e Evaluate cost function
¢ ( o+ CtAi(Ei)h/l:t) =p (ytlf)sf), o + ctAff)) (92)
¢ (8" = calyia) = p (wls?, 6" — cial”) (93)
e Step 4. Gradient approximation: for each parameter particle, the corresponding gra-
dient: ‘ . ‘
ve (of)) = (Varef?), ... V(o)) (94)
where:

(e +enl”) =0 (¢ - anl?)

Ve (6 = . (95)
! ( ! ) QCtAg?J)
and Ag’j) denotes the j—th component of Agi).
Step 5. Parameter update: for each i = 1,..., N, compute:
o1 = o + v (o) (96)

Step 6. Re-sampling: given the samples of particles {vfi), gbgi)}, compute the normal-
ized importance weights at time ¢:

o = o® pylo”, () (97)

The important weights are normalized:

Those particles @t(i) with low weights are discarded and only the particles with high

weights are selected. Re-assign importance weights d)ﬁi) = %

Step 7. Output: the obtained weighted particles {vt(i),qﬁgi),d)fé}, for ¢ = 1,...,N
compute:

e Filtered density of states:

N
PN (Velvoit—1, Y1, §) = Z@tl)(s(vt - ”gl)) (99)
i=1
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e The estimate mean of states:
E(ve|vo:t—1, Y1, ) = 04 = Zwt v (100)
e The estimate mean of parameters:
<¢t|v0t7y1 t7¢1t 1 Zwtz (2) (101)
e The estimate variance of states:
£y = Zwi =) — )" (102)
e The estimate variance of parameters:
~ N . . .
57 =" a6 — a0 (0 — én)T (103)
i=1
e The estimate likelihood: N
simul
b=y o (104)
j=1

t =t -+ 1 and return to step 2.

It is known that the likelihood in the k—th step is given by the equation (63), so the total
likelihood can be defined as Li.y = Hf\i 1 li, so the log of the likelihood can be maximized by

n(Li.y) Zln (105)

Now [; can be written, such as:

VtlY1:4—1, P1:
ly = /p(yt|vtu¢1:t) P(velyre—1, 1) )Q(vt|vt—1aylzta¢1:t)dvt (106)

q(vt|ve—1, Yr:t, Pret
Since by construction the vlgi) is generated from q(vt|vti 1> gbti ,) and taking into account
the readjustment of the weights w; up to a constant durmg the resampling step, the
likelihood can be approximated by

(107)
j=1

which will give us an approximate interpretation of the likelihood as the total weights.

5. Viterbi algorithm

In addition, it is proposed to implement the Viterbi algorithm with the objective of comparing
these results with those obtained by the optimized particle filter. The Viterbi algorithm
is a maximum a posteriori (MAP) estimation method that uses the a posteriori density
maximization, whose structure is not available analytically and is approximated by a Bayesian
filter. In the literature it is noted that the maximum weights are taken as the MAP estimator
(Zhou, Chellappa, and Moghaddam (2004), Candy (2007), Godsill, Doucet, and West (2001),
Saha, Boers, Driessen, Mandal, and Bagchi (2009), Boers and Driessen (2007), among others).
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In this article, we intend to estimate the unknown states of the stochastic CIR and Heston
models, assumingthe known parameters through the MAP estimation. The method consists

N
of sample particles {Uéz} according to the methodology used to approximate the given
=1
filtered density in (99) and then selecting

047 (1) = arg max p(u ) (108)

Vo:t

If the support of ¢(.) includes the support of p(vémyl:t) then the estimator converges asymp-
totically when N — oo to 9}44F(t) (Godsill et al. (2001)). The choice of ¢(.) has a great
influence on the performance of the algorithm.

Sampling directly from p(vo.t|y1.¢) is usually impossible, but an approximation can be used
by the particle filter, then the following approximation can be obtained

doi*C(t) =arg  max  p(vou|yie) (109)

V0: tE{”U(()Zz}

This is an easy method to implement, but has the degenerative problem that affects particle
filters, the quality of the estimators decrease as t is increased. To solve this problem, an
alternative is to use a dynamic programming algorithm. The method assumes that the filtered
distribution given in the equation (99) has been calculated and stored for each time ¢. Then

the approximation 0447 (t) is obtained by
oo M () =arg  max  p(ooulyre) (110)

00:4 € 1{ (1)

i=1

To evaluate the function given in the equation (110) to gross force would imply an exhaustive
search of all possible trajectories of the model given by the equation (50). However, the
maximizing function is given by the equation (61), which is additive. Then the maximizing
function is

¢ ¢
iy (1) = arg max [lnf('uo) + Z Inf(vita|vi) + Z h(:’Ji—l—l’”i—i—l)] (111)
't i=0 i=1

This property allows the use of the dynamic programming technique called Viterbi algorithm
(Viterbi (1967)), which allows estimation of 5{447(t) as follows

t t
oIAP (1) = arg max [lnf(vo) + Z Inf(vig1|vi) + Z h(yi+1’1}i+1)] (112)
vo:te®;:1{v§i} i=0 i=1

The Viterbi algorithm is a widely used technique for estimation in discrete state space models
of hidden Markov processes as given by equations (50) and (51), they are widely used for
recognition voice and decoding codes in information theory (Godsill et al. (2001)), among
other applications. The algorithm proceeds as follows:

Algorithm: Viterbi
e Step 1. for 1 <7 < N, do:

e16) = nf (o) + in (F0P100)) + i (hio)) (113)
e Step 2. for2 <k <tand 2<i<N, do:
r(9) = i { o)+ max a0 + tnfo7) + 0 (£ A2))] |

and

(i) = arg max [gok_l(i) + lnf(v(()i)) +lin (f(v,(j)|v,(21))}
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e Step 3. Do:
ir = arg max [ (i)] (114)

and 4
oMAP () = o)™ (115)

Finally, the sequence of maximized a posteriori states is obtained

QAP (1) = (8)AP (1), ..., oA (1) (116)

6. Results

In order to show the proposed methodology, the joint parameter and state values of the CIR
and Heston stochastic models are estimated using 2610 daily data from the time series of
the S&P500 index. The time series analyzed correspond to the period from 29/09/2006
up to 30/09/2016 and it is available at the following address: http://us.spindices.com/
indices/equity/sp-500. The algorithms was programmed in the Octave GNU programming
environment, in an Intel CPU Core i7 3.6GHz with 16GB RAM running 64Bit Windows. To
analyze the data series, the following transformation was performed
R, = St — St—-1 (117)
St—1
where: R; denotes the net return on an investment of a S&P500 asset at the end of the month
between the time ¢t — 1 and the time ¢; s; denotes the S& P500 index at the end of the month
in time ¢ and s;_; denotes the S&P500 index at the end of the month at time ¢ — 1. In the
Figure 1 a graph is displayed where the daily S&P500 is observed for the raw data and for
the transformed data in the figure 2, observing a rather volatile behavior of the time series.
To initialize the FPO algorithm in the CIR model, a priori the following values were chosen

2200

2000

1800

1600

1400

Dow Jones Index

1200

1000

800

500 | | | | I
o 500 1000 1500 2000 2500 3000

Days

Figure 1: Representation of raw data of the Dow Jones Index.

c =01, a =1, h = 0.00001, v, = 0.0001, A(Z) = 0.0001, A = 0.00001, o = 0.602 and
A =2538. In the Heston model the following Values were chosen ¢ = 0.1, a = 1, v = 0.00001,
A =0.0001, 7 = 0.00001, A =1021.2 and a = 0.602.

In the Table 1 the estimates of the parameters of the CIR model are shown. In the Figure
3 and 4, the states estimated by the FPO (red color) and the Viterbi algorithm (red color)
and the observed data (blue color) are shown. For the CIR model, much variability in the
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Figure 2: Representation of transformed data of the Dow Jones Index.

approximate states by the Viterbi algorithm can be observed, whereas the states estimated
by the FPO fit quite well to the real data. Since the Viterbi algorithm only estimates the
states, the parameters required by the CIR model are those estimated by the FPO algorithm.

In the Table 2 the estimations of the parameters of the Heston model are shown. In the

Table 1: Parameters estimated by the CIR model using the FPO.

Parameters FPO Algorithm

[l ~0.00339
B 0.001
&¢ 0.1

Figures 5 and 6 the states estimated by the FPO (red color) and by the Viterbi algorithm
(red color), together with the observed data (blue color) are shown. As with the CIR model,
states estimated by the Heston model show erratic behavior when calculated by the FPO and
Viterbi algorithms with respect to the actual data. In the Table 3 the execution times of

Table 2: Estimated parameters of the Heston model using the FPO.

Parameters FPO Algorithm

i ~0.00339
& 100

i 3.3065

0 0.0215

p -0.9108

the algorithms used are shown, speed and efficiency in the calculations for a high number of
data in the cases analyzed in this work are observed.

The Root Mean Squared Error (RMSE) was also calculated as a measure of goodness of
fit for the comparison between the estimated states ©; and the observed true values v;. The
formula provides a quantitative measurement for the comparison between two models, the
smaller the RMSE value, the closer the estimated values to the observed values will be. The
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Figure 3: Real and estimated state by the FPO algorithm, CIR model.
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Figure 4: Real and estimated state by the Viterbi algorithm, CIR model.

RMSE is defined as

1
RMSE = | =) (b — v;)? (118)
i=1

A measure of relative dispersion of the data, which takes into account its magnitude, is given
by the relative standard deviation (RSD), where it is a measure of the relative dispersion of
a data set estimated 9;, which is obtained by dividing the standard deviation of the set by its
mean arithmetic and is usually expressed in percentage terms.

RSD = ~-100% (119)

(%

In the Table 4, we show the errors estimated by the two optimized filtering algorithms pro-
posed for the two models considered, observing little variability between the real states and
the estimated states. In addition, the relative standard deviation is observed showing low
variability in the estimated states.
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Figure 5: Real and estimated state by the FPO algorithm, Heston model.
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Figure 6: Real and estimated state by the Viterbi algorithm, Heston model.

7. Discussion and conclusions

There are economic models used to determine the prices of certain financial assets. However,
it has been shown that the assumptions are not realistic because the model does not explain
the true impact of the change in financial markets, such as changes in volatility. Volatility
is what helps us to know the status of investors, that is, the feeling of levels of complacency
or confidence as well as fear and extreme panic, these two opposite levels are very interesting
when it comes to making a decision about a certain value. Currently, financial models are
estimated with the maximum likelihood estimation, presenting a drawback related to obtain-
ing the solution in closed form when the density of transition between prices and volatility is
not known in a closed manner, also when prices are partially and partially observed. volatile
is unknown, the process in the maximum likelihood estimation results in the management
of analytically intractable integrals. In this sense, this research presents a Bayesian estima-
tion methodology that estimates the states and market parameters of the S&P500 index
considering volatile models and incomplete observations on line with low execution time and
immediate response of the algorithms, observing a good estimate of the real data, describing
the market of the S&P500 index when the market is presented with confidence or compla-
cency because the volatility is very low and the market rises slowly without scarcely scaring,
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Table 3: Elapsed time of the algorithms for the CIR and Heston models.

Algorithm Model 1  Elapsed time (second) Model 2 Elapsed time (second)
FPO CIR 0.589036 Heston 1.165637
Viterbi CIR 0.059803 Heston 0.148185

Table 4: RSME and RSD estimated for the CIR and Heston models.

Algorithm Model 1 RSME Model 2 RSME

FPO CIR 0.0462 Heston  0.0427
Viterbi CIR 0.0926 Heston  0.0415
Algorithm Model 1 RSD Model 2 RSD
FPO CIR 30.66  Heston  23.20
Viterbi CIR 21.16  Heston  36.21

so investors feel safe and this feeling is the prelude to the falls, also, describing the market
in the points presented with fear or panic because the volatility is very high and the market
falls sharply scare the great part of the investors, therefore the investors feel insecure and this
feeling is the prelude to the rises.

In this article, two algorithms for estimation of states and parameters in stochastic volatility
models were proposed. The methodology used is a useful and elegant tool that serves to
approximate in a recursive way the parameters and the filtered distribution of the states not
observed from a process observed with errors using weighted random samples. The FPO algo-
rithm is based on a particle filter structure and a gradient stochastic approximation algorithm
is used to optimize the cost function. The estimation of states and parameters is performed
simultaneously. On the other hand, the Viterbi algorithm uses the properties of the hidden
Markov chains in conjunction with dynamic programming techniques to obtain an optimal
sequence of states that maximizes the joint posterior distribution of all states. To estimate
the parameters and to reconstruct the unknown states in the two models, both algorithms
were implemented, observing little variability with respect to the real states. To measure the
relative success of the estimation algorithms, the RMSE and RSD was calculated showing
that the estimates produced by the two models have small errors. Finally, we compared the
execution times of the algorithms and showed that the Viterbi algorithm has shorter execu-
tion time than the FPO.

Some of the works under investigation currently related to this methodology, we can point
out the study of the stochastic behavior of the prices of a commodity taking into account the
reversal of the average in terms of futures contract prices and real prices. The implementation
of algorithms type Metropolis Hastings, Monte Carlo Sequential, and Particle Independent
Metropolis Hastings to make simultaneous estimation of the parameters and states solutions in
models of stochastic differential equations in situations where the diffusion process is partially
observed. Finally it is developing a mixed effects model defined through a stochastic defer-
ential equation, these models arise in many fields of research such as: clinical trials, growth
studies in agriculture, dispersion processes of epidemiological diseases, series of financial time,
population dynamics (including predatory dam systems), and intracellular processes, among
many other applications.
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