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Abstract

In this paper, we have considered the problem of optimal inspection times for the pro-
gressive interval type-I censoring scheme where uncertainty in the process is governed by
the two-parameter Rayleigh distribution. Here, we also introduced some optimality crite-
rion and determined the optimum inspection times, accordingly. The effect of the number
of inspections and choice of optimally spaced inspection times based on the asymptotic
relative efficiencies of the maximum likelihood estimates of the parameters are also inves-
tigated. Further, we have discussed the optimal progressive type-I interval censoring plan
when the inspection times and the expected proportions of total failures in the experiment
are under control.

Keywords: progressive interval type-I, optimality criterion, inspection plan, Rayleigh distri-
bution.

1. Introduction

The Rayleigh distribution is recognized to be a very useful distribution in the lifetime analysis
and operations research for its mathematical simplicity and statistical flexibility. It has nu-
merous application in the diverse areas such as health, agriculture, biology, engineering, and
other sciences. Rayleigh (1880) and Siddiqui (1962) have introduced this model and discussed
its various captivating properties. The inferential problems regarding considered model have
been discussed by Sinha and Howlader (1983), Lalitha and Mishra (1996) and Abd-Elfattah,
Hassan, and Ziedan (2006). The probability density function of the Rayleigh distribution
with parameters γ and σ is given by

f(y) =
y − γ
σ2

e
−

(y − γ)2

2σ2 ; y ∈ [γ,∞); γ ∈ (−∞,∞);σ ∈ (0,∞) (1)

and the distribution function is given by

F (y) = 1− e
−

(y − γ)2

2σ2 ; y ∈ [γ,∞); γ ∈ (−∞,∞);σ ∈ (0,∞). (2)
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Mousa and Al-Sagheer (2005) have discussed Bayesian prediction whereas Wu, Chen, and
Chen (2006) have performed Bayesian inference. Mousa and Al-sagheer (2006) have conducted
statistical inference for progressive type-II censored data from the Rayleigh distribution. Seo
and Kang (2007) obtained the approximate MLEs based on progressive type-II censored data
and Kim and Han (2009) estimated the scale parameter under general progressive censor-
ing. Recently, Dey and Dey (2014) estimates the parameters for Rayleigh distribution under
progressively Type-II censoring with binomial removal and Abdel-Hamid and Al-Hussaini
(2014) provided the Bayesian prediction analysis for Type-II progressive-censored data from
the Rayleigh distribution under the progressive-stress model.

In life-testing experiments, many times, it is more economical and practical to gauge ob-
servations as progressive interval type-I (PITI) censored data than to record their actual
measurements because exact observations may not be possible (e.g., in medical experiments)
or may be very costly (e.g., engineering experiments which contain precious items). PITI cen-
soring is a combination of interval Type-I censoring and progressive censoring, proposed by
Aggarwala (2001), which is having wide applications in clinical trials. For more details about
PITI censoring readers may refer to Kaushik, Singh, and Singh (2015), Kaushik, Pandey,
Maurya, Singh, and Singh (2017), Ng and Wang (2009), Chen and Lio (2010), Lio, Chen,
and Tsai (2011), etc. In the PITI censored situations, a natural problem that may arise is to
determine the associated inspection times appropriately before conducting the experiment to
assess the parameter(s) of interest with the least possible reduction in efficiency as compared
to the exactly observed situation. In this context, Lin, Chou, and Balakrishnan (2013) have
developed some optimum inspection plan for log-normal distribution. For this purpose, they
proposed the use of maximization of the determinant of the Fisher information matrix or
minimization of the determinant of the variance-covariance matrix. A discussion on optimal
grouping or monitoring times can be found in the works of Kulldorf (1961) based on the cri-
terion of minimizing the asymptotic variance or maximizing the determinant of the expected
Fisher information matrix of the maximum likelihood estimates (MLEs) of the parameters
under the interval type-I censoring scheme. Further for related work on optimal inspections
times for lifetime censored data one may refer to Lin, Wu, and Balakrishnan (2009) and Ag-
garwal (1984). Our goal here is to determine the optimally spaced(OS) inspection times for
the PITI censoring scheme concerning the two-parameter Rayleigh distribution by proposing
some additional optimality criteria.

This paper is systematized into five sections. In section 2, we have described the Fisher’s
information matrix and variance-covariance matrix in case of Rayleigh distribution for a PITI
censored sample. Section 3 devoted to the criteria for choosing the OS and the optimal
equally spaced (OES) inspection times. In section 4, we have performed a numerical study
and provided the discussion based on the results obtained thereof. The effect of the number
of inspections and the choice of inspection times based on the asymptotic relative efficiencies
(AREs) and relative entropy under the OS inspection scheme are assessed. In the same way,
OES and EP inspection schemes are compared with the OS inspection scheme. Further, the
optimal PITI censoring plan when the inspection times and the expected proportions of total
failures in the experiment are pre-fixed have also been discussed. Finally, concluding remarks
have been given in section 5.

2. Expected Fisher information matrix

Let us consider a PITI censored data D = (d1, d2, . . . , dm) and R = (r1, r2, . . . , rm) from
Rayleigh distribution. It is necessary to mention here that the values R = (r1, r2, . . . , rm)
may be pre-specified as the proportion p1, p2, . . . , pm(with pm = 1) of the remaining live units
consequently, the numbers of units remaining at times t1, t2, . . . , tm are random variables.
Hence, the log-likelihood function for considered distribution under PITI censoring can be
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written as

LogL(γ, σ) =

m∑
i=1

di ln

(
e−

(ti−1−γ)
2

2σ2 − e−
(ti−γ)

2

2σ2

)
− ri (ti − γ)2

2σ2
. (3)

To obtain the maximum likelihood estimates of parameters σ and γ, one requires to maximize
Eq. (3) simultaneously with respect to σ and γ. It is noticed here that the simultaneous
solution of likelihood equations is not achievable in explicit form. Therefore, one can use
a suitable numerical method to obtain the maximum likelihood estimates of parameters.
Further, the Fisher’s information matrix of the likelihood is obtained as

I (γ, σ) = E

[
−d2LogL

dγ2
−d2LogL

dγdσ

−d2LogL
dσdγ −d2LogL

dσ2

]
(γ̂,σ̂)

, (4)

where,

d2LogL

dγ2
=

1

σ2

m∑
i=1

di

(
e−0.5τi

2 − τi2e−0.5τi
2 − e−0.5τ

2
i−1 + τ2i−1e

−0.5τ2i−1

)
(

e−0.5τ
2
i−1 − e−0.5τ

2
i

)
− di

(
τi−1e

−0.5τi−1
2 − τie−0.5τ

2
i

)2
(

e−0.5τ
2
i−1 − e−0.5τi2

)2 − ri

(5)

d2LogL

dσ2
=

1

σ2

m∑
i=1

di
(2− τi) τ2i e−0.5τ

2
i − (2− τi−1) τ2i−1e

−0.5τ2i−1(
e−0.5τ

2
i−1 − e−0.5τi2

)
− di

(
−τie−0.5τi

2
+ τi−1e

−0.5τ2i−1

)(
−τ2i e−0.5τi

2
+ τ2i−1e

−0.5τ2i−1

)
(

e−0.5τ
2
i−1 − e−0.5τi2

)2 − 2riτi−1

(6)

d2LogL

dγdσ
=

1

σ2

m∑
i=1

di

(
3− τ2i

)
τ2i e−0.5τ

2
i −

(
3− τ2i−1

)
τ2i−1e

−0.5τ2i−1

e−0.5τ
2
i−1 − e−0.5τi2

− di

(
τ2i−1e

−0.5τ2i−1 − τ2i e−0.5τ
2
i

)2
(

e−0.5τ
2
i−1 − e−0.5τi2

)2 − 3riτ
2
i−1,

(7)

and τi =
ti − γ
σ

, di =
(
n−

∑i−1
l=1 dl −

∑i−1
l=0 rl

)
×
(
F (ti)− F (ti−1)

1− F (ti−1)

)
, and

ri = pi ×
(
n−

∑i
l=1 dl −

∑i−1
l=0 rl

)
. Therefore, the expected asymptotic variance-covariance

matrix of the MLEs is

Cov(γ, σ) = −I−1 (γ, σ) =

[
V11 V12
V21 V22

]
= V (say). (8)

3. Optimal inspection plan

We have observed here that, generally the removals in the PITI censoring scheme are not in
the control of the experimenter. Thus, we are left with optimization of the inspection plan
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only. That is t1, t2, . . . , tm are to be chosen in accordance with an optimality criterion. Some
optimality criteria used in this context are given in the following subsections:

3.1. Optimality criterion based on the Fisher information matrix

This criterion was suggested by Lin et al. (2009) to obtain the optimal choices of inspection
times. According to them, the inspection times t1, t2, . . . , tm are to be chosen so as to
maximize the determinant of the Fisher information matrix given in Eq. (4) i.e.

max
t1<t2<···<tk

∣∣I(·)
∣∣ . (9)

3.2. Optimality criterion based on generalized asymptotic variance (GAV)

The determinant of the inverse of Fisher’s information matrix is called as generalized asymp-
totic variance (see Bai, Kim, and Chun 1993). Ismail (2015) has suggested the use of GAV
as the criterion to plan the inspection times. Therefore, the inspection times t1, t2, . . . , tk are
to be chosen such that GAV is minimized i.e.

min
t1<t2<···<tk

GAV (·). (10)

3.3. Proposed optimality criterion based on Shannon entropy

Shannon entropy provides the amount of information contained in the observed likelihood.
Consequently, we propose to use it for the optimal choice of the inspection time t1, t2, . . . , tm.
Thus, the resulting criterion is to choose the inspection times t1, t2, . . . , tm which maximizing
the Shannon entropy, i.e., the values of t1, t2, . . . , tm are to be determined by

max
t1<t2<···<tm

H(·), (11)

where, H is the Shannon entropy for PITI censored data obtained in the following Eq. (12).

H(D) =− E
[
ln fD(d1, d2, . . . , dm)

]
=

n∑
d1=0

n∗
2∑

d2=0

· · ·
n∗
m∑

dm=0

fD(d1, d2, . . . , dm)× ln fD(d1, d2, . . . , dm)

=

n∑
d1=0

n∗
2∑

d2=0

· · ·
n∗
m∑

dm=0

{
m∑
i=1

ln

(
n∗i
di

)
+di ln [FX(ti)− FX(ti−1)]− n∗i ln [1− FX(ti−1)]

+(n∗i − di) ln [1− FX(ti)]} ×
m∏
i=1

(
n∗i
di

)

×
[
FX(ti)− FX(ti−1)

1− FX(ti−1)

]di [ 1− FX(ti)

1− FX(ti−1)

]n∗
i−di

,

(12)

where n∗1 = n and n∗i = n−
∑i−1

l=1(dl − rl) for i = 2, . . . ,m.

3.4. Optimality criterion based on the variance of the estimate of some
specific population characteristic

In many realistic circumstances, one may often be interested in some specific characteristics
of the population which is a function of the parameters. Then one would be interested in
minimization of the variance of the estimate of the characteristic under interest rather than
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minimization of the variance-covariance matrix of the estimate of the parameters. For exam-
ple, one may be interested in getting a precise estimate of the population mean rather than
the individual estimate of the parameters. The population mean µ for Rayleigh distribution
is

µ = γ + σ

√
π

2
.

Let µ̂ be the MLE of mean lifetime. Then, our proposed criterion is to choose t1, t2, . . . tm so
as to minimize var(µ̂)

min
t1<t2<···<tk

V ar(µ̂). (13)

Following Kamakura and Yanagimoto (1989) and using the delta method, the asymptotic
variance of µ̂ will be [

µγ µσ
]
I−1(γ, σ)

[
µγ
µσ

]
, (14)

where,

µγ =
∂

∂γ
µ(σ, γ) = 1

µσ =
∂

∂σ
µ(σ, γ) =

√
π

2
.

(15)

The above-stated criteria can be used for the choice of the inspection plan to design the
experiment. The t1 < t2 < · · · < tk obtained by using any of the aforesaid criteria will be
called as optimal spaced (OS) inspection plan. However, if one is interested in keeping the
inspection time equally spaced i.e. ti = it, i = 1, 2, . . . ,m, where t to be chosen such that it
maximizes the determinant of the Fisher information matrix i.e.

max
t

H(·). (16)

Such inspection plan may be called optimal equal spaced (OES) inspection plan. For op-
timization, we propose to use the Simulated Annealing algorithm (see Corana, Marchesi,
Martini, and Ridella (1987)). Further, we fix termination point tm at the 95% quantile of
considered distribution and then we calculate the inspections time following the way that
every interval having an equal probability of occurring an event called as equal-probability
(EP) spaced inspection plan.

4. Numerical result and discussion

In this section, we explore the optimal choice for inspection times utilizing a numerical study.
The numerical study has been performed using different values of the number of inspections m
and sample size n based on the optimality criteria discussed in Sections 3.1, 3.2, 3.3 and 3.4,
respectively. First, we computed the inspection times by using the transformation τi = ti−γ

σ .
It is noted here that the optimal choice of τi will become independent of population parameters
(γ and σ) for all the considered criterion mentioned above. Given p1 = · · · = pm−1 = 0, we
compute the OS inspection times for each of the optimality criteria, in the form τi’s for
m = 2, 3, . . . , 10. The results are presented in Table 1, where last three columns of this
table show asymptotic relative efficiencies (AREs) of the estimates. Here, ARE is defined as
the ratio of the asymptotic variance of parameters in the complete sample case to the that
of in the PTIT censored case. Thus, we obtained the AREs of the MLEs of γ and σ as

ARE(γ̂) = 2/n∗σ2(1−π/4)
V11

, ARE(σ̂) = σ2/4n
V22

, respectively. It may be noted that V11/σ
2 and

V22/σ
2 are functions of τi’s only (i.e. independent of γ and σ).

Table 1 contains the optimal inspection times under considered criterion along with respective
AREs. It is noted here that the ARE(µ̂) is highest for criterion discussed in section 3.4,
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Table 1: The inspection times under the different optimal criteria in terms of τi =
ti − γ
σ

.

Optimality Criterion based on Shannon Entropy

m τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 ARE(µ̂) ARE(γ̂) ARE(σ̂)

2 1.1664 2.9371 0.7153 0.7315 0.5575
3 0.8922 1.4623 2.9402 0.8360 0.8624 0.6437
4 0.7528 1.1663 1.6418 2.9444 0.8706 0.9023 0.7632
5 0.6636 1.0030 1.3407 1.7682 2.9791 0.9111 0.9309 0.8211
6 0.6004 0.8948 1.1687 1.4685 1.8664 3.0258 0.9357 0.9543 0.8634
7 0.5527 0.8162 1.0519 1.2930 1.5695 1.9472 3.0858 0.9524 0.9572 0.8967
8 0.5149 0.7555 0.9653 1.1716 1.3924 1.6528 2.0161 3.1550 0.9607 0.9670 0.9282
9 0.4840 0.7068 0.8975 1.0803 1.2682 1.4750 1.7236 2.0760 3.2313 0.9651 0.9754 0.9317
10 0.4581 0.6666 0.8427 1.0082 1.1742 1.3495 1.5460 1.7856 2.1301 3.3362 0.9790 0.9848 0.9494

Optimality Criterion based on var(µ̂)

m τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 ARE(µ̂) ARE(γ̂) ARE(σ̂)

2 1.0283 2.5788 0.7223 0.6434 0.631
3 0.7862 1.2896 2.5834 0.8537 0.7777 0.6972
4 0.6638 1.0278 1.4622 2.6228 0.9003 0.8574 0.8011
5 0.5849 0.8833 1.1936 1.5752 2.6530 0.9253 0.9051 0.8311
6 0.5281 0.7887 1.0400 1.3084 1.6619 2.7217 0.9437 0.9236 0.8752
7 0.4874 0.7192 0.9371 1.1520 1.3974 1.7516 2.7759 0.9511 0.9516 0.8963
8 0.4528 0.6654 0.8591 1.0428 1.2402 1.4865 1.8136 3.1221 0.9684 0.954 0.924
9 0.4262 0.6225 0.7989 0.9622 1.1287 1.3272 1.5500 2.0544 3.1985 0.9806 0.9695 0.9338
10 0.4031 0.5874 0.7503 0.8977 1.0453 1.2135 1.3913 1.7676 2.1084 3.6024 0.9865 0.9708 0.9421

Optimality Criterion based on Fisher information matrix

m τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 ARE(µ̂) ARE(γ̂) ARE(σ̂)

2 1.149941 2.8865 0.714 0.6995 0.5927
3 0.875579 1.4341 2.8746 0.8254 0.862 0.6572
4 0.747316 1.1446 1.6301 2.9240 0.8527 0.8911 0.782
5 0.651242 0.9862 1.3315 1.7513 2.9576 0.8928 0.9299 0.8189
6 0.594122 0.8801 1.1617 1.4550 1.8539 3.0309 0.9170 0.9451 0.8637
7 0.551476 0.8021 1.0474 1.2895 1.5551 1.9558 3.0897 0.9261 0.9598 0.8934
8 0.509954 0.7442 0.9586 1.1617 1.3869 1.6596 2.0182 3.4726 0.9486 0.9685 0.9186
9 0.482187 0.6932 0.8887 1.0779 1.2604 1.4821 1.7276 2.2847 3.55571 0.957 0.9748 0.931
10 0.458261 0.6536 0.8405 1.0068 1.1674 1.3573 1.5501 1.9731 2.34324 4.0126 0.9622 0.9793 0.9466

Optimality Criterion based on GAV

m τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 ARE(µ̂) ARE(γ̂) ARE(σ̂)

2 1.1418 2.8670 0.7109 0.6882 0.6591
3 0.8728 1.4317 2.8697 0.8191 0.7814 0.7015
4 0.7364 1.1422 1.6252 2.9136 0.8437 0.8815 0.8283
5 0.6498 0.9821 1.3262 1.7503 2.9490 0.8731 0.9238 0.8514
6 0.5874 0.8754 1.1563 1.4535 1.8467 3.0253 0.9135 0.938 0.8781
7 0.5403 0.7993 1.0407 1.2798 1.5532 1.9458 3.0843 0.9356 0.9558 0.9085
8 0.5044 0.7391 0.9542 1.1588 1.3775 1.6512 2.0157 3.4692 0.9486 0.9631 0.9305
9 0.4736 0.6912 0.8883 1.0689 1.2554 1.4740 1.7220 2.2826 3.5529 0.9525 0.9721 0.945
10 0.4484 0.6525 0.8341 0.9970 1.1614 1.3487 1.5459 1.9639 2.3425 4.0020 0.9761 0.9868 0.9639

ARE(γ̂) is highest for criterion described in Section 3.3 and ARE(σ̂) is highest for criterion
given in Section 3.2 among others for all the considered choices of m. From an extensive
numerical study, that we carried out here, it has been revealed that using any of these three
optimality criteria will lead to similar results in terms of efficiency. Therefore, we shall
primarily report the results based on the optimality criterion discussed in Section 3.3 in the
subsequent paragraphs.

Table 2 presents the optimal length of the inspection interval for choosing the OES inspection
times when m = 2, 3, . . . , 9, 10, 15, 20 and p1 = p2 = · · · = pm−1 = 0. Similarly, results were
also obtained for the estimation of the OS inspection plan under other censoring schemes.
From Tables 1 and 2, we can see that as m increases the AREs increases under all the
considered criterion and for large m AREs tend to 1. It is interesting to note here that for the
estimation of γ the choice of optimum censoring time leads to consistently higher ARE than
that for the estimation of σ in the considered cases. It may further be seen from the table
that the performance of the estimates of γ and σ under PITI censoring will still be reasonably
good if the number of inspections is chosen to be at least 5 and preferably 8 or more. For a
comparison of the OS inspection scheme with the OES and EP inspection schemes based on
ARE(γ), ARE(σ), ARE(µ) and Entropy respectively, we calculated the AREs, for different
choices of m when p1 = · · · = pm−1 = 0 and the results are summarized in Table 3. It can
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Table 2: The optimal length of the inspection interval in terms of τ =
t− γ
σ

for OES inspection

times using different optimality criterion when p1 = · · · = pm−1 = 0

XXXXXXXXXXXCriterian
m

2 3 4 5 6 7 8 15 20

Max. Entropy 1.4505 0.9424 0.7382 0.5937 0.5033 0.4302 0.3863 0.2939 0.2112
Min. GAV 1.4846 0.9425 0.7352 0.6034 0.5267 0.4340 0.4046 0.3144 0.2491
Min. V ar(µ̂) 1.4736 0.9667 0.7361 0.5958 0.5043 0.4408 0.3944 0.2990 0.2336
Max. FIM 1.4868 0.9821 0.7220 0.6046 0.5253 0.4627 0.3952 0.3078 0.2352

Table 3: A comparison of the three inspection schemes based on asymptotic relative efficiencies
and relative entropy

PPPPPPPPPARE
m

2 3 4 5 6 7 8 15 20

ARE(γ̂)
OS 0.6995 0.8619 0.8910 0.9299 0.9450 0.9598 0.9684 0.9919 0.9972
OES 0.6763 0.8428 0.8459 0.8777 0.8941 0.9343 0.9605 0.9895 0.9928
EP 0.6727 0.8323 0.8397 0.8567 0.8829 0.9191 0.9526 0.9835 0.9902
ARE(σ̂)
OS 0.5927 0.6572 0.7819 0.8188 0.8636 0.8934 0.9185 0.9447 0.9631
OES 0.4856 0.6231 0.7499 0.7997 0.8408 0.8796 0.8803 0.9257 0.9481
EP 0.4843 0.5855 0.6860 0.7551 0.8123 0.8414 0.8581 0.9049 0.9458
ARE(µ̂)
OS 0.7140 0.8254 0.8527 0.8927 0.9170 0.9461 0.9586 0.9573 0.9727
OES 0.6769 0.7970 0.8418 0.8792 0.9069 0.9171 0.9288 0.9435 0.9673
EP 0.6396 0.7673 0.8250 0.8412 0.8802 0.9054 0.9114 0.9394 0.9591
Relative Entropy
OS 0.6472 0.8040 0.8134 0.8249 0.8718 0.8797 0.9381 0.9761 0.9888
OES 0.5977 0.7851 0.7916 0.8092 0.8619 0.8679 0.9286 0.9551 0.9728
EP 0.5667 0.7103 0.7892 0.7901 0.8444 0.8664 0.9047 0.9428 0.9545

be seen easily from the table that the ARE for OS inspection plan is highest and for EP
plan it is least in all the cases. The AREs for OES lies in between the AREs under OS and
OES plans. Thus, on the basis of this, we may say that for the Rayleigh distribution, the OS
inspection scheme is more suitable as it provides the maximum ARE as compared to other
schemes irrespective of the parameter under deliberation.

To study the effect of variation in the values of m and n on the relative entropy we considered
a number of values for m and n and taking an arbitrary choice for p′is as p1 = p2 = · · · =
pm−1 = 0. The results obtained are presented in Table 4. It may be seen from the table that
the relative entropy increases as m or n increases, but the increment in relative entropy is
higher due to increase in m as compared to that of increase in n.

We have noted above that AREs of the estimates for an optimum choice of the inspection
time depends on the parameter to be estimated. Suppose that we are interested in the
estimation of both parameters then neither the value of ARE(γ) nor the value of ARE(σ) can
provide us the overall performance of the two estimates. Therefore, we need a single quantity

Table 4: The values of relative entropies for varying m and n, when p1 = · · · = pm−1 = 0

HH
HHHHm

n
30 40 50 100 150 200

2 0.6552 0.6924 0.6991 0.6996 0.7064 0.7546
3 0.7028 0.7123 0.7265 0.7418 0.7527 0.7720
4 0.7380 0.7458 0.7551 0.7666 0.7822 0.7968
5 0.7587 0.7656 0.7765 0.7998 0.8158 0.8392
6 0.7638 0.7829 0.8023 0.8406 0.8479 0.8723
7 0.7890 0.8082 0.8145 0.8463 0.8795 0.8864
8 0.8363 0.8456 0.8469 0.8564 0.8854 0.9123
9 0.8497 0.8550 0.8792 0.8975 0.9316 0.9484
10 0.8875 0.8955 0.8986 0.9327 0.9717 0.9816
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Table 5: The values of λARE(γ̂) + (1− λ)ARE(σ̂), λ ∈ (0, 1), when p1 = · · · = pm−1 = 0

HH
HHHHm

λ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 0.5514 0.5842 0.5892 0.5904 0.5923 0.5967 0.6050 0.6143 0.6490
3 0.5737 0.6001 0.6093 0.6208 0.6298 0.6400 0.6515 0.6609 0.6684
4 0.5995 0.6400 0.6413 0.6492 0.6538 0.6650 0.6812 0.6886 0.6944
5 0.6351 0.6548 0.6654 0.6710 0.6744 0.6966 0.7120 0.7289 0.7354
6 0.6521 0.6618 0.6801 0.7016 0.7116 0.7344 0.7459 0.7597 0.7640
7 0.6804 0.6871 0.7007 0.7108 0.7363 0.7405 0.7794 0.7807 0.7841
8 0.7230 0.7249 0.7394 0.7414 0.7432 0.7463 0.7811 0.7966 0.8069
9 0.7396 0.7496 0.7512 0.7750 0.7800 0.7890 0.8258 0.8325 0.8364
10 0.7463 0.7794 0.7884 0.7984 0.8070 0.8282 0.8629 0.8711 0.8805

to measure the over all performance of the estimates. Therefore, a convex combination of
ARE(γ) and ARE(σ) is a simple way to assess the relative efficiency of the two estimates
considered simultaneously. Some convex combinations of these two AREs, viz., λARE(γ) +
(1− λ)ARE(σ), λ ∈ [0, 1] are presented in Table 5. The values of ARE(γ) and ARE(σ) are
taken from Table 1 for those rows in which optimality criterion is discussed in subsection 3.3.

In earlier discussions, we have kept the fixed removals proportions p1 = p2 = · · · = pm−1 = 0
and our main interest was to discuss the optimal choice of inspection times for fixed removals.
Moreover, the considered situation was corresponding to the removals which result in the
minimum loss of information. At this stage, one may say that situations do arise where the
experimenter can control the removals, for example in engineering experiments; although it
is true that the removal of units is based on the practical necessity of saving test units or
cost. However, one could fix the expected proportion of removals h based on time and cost
of the experiment. As soon as h is fixed, the problem of optimum choice in PITI censoring
scheme now reduces to the determination of the optimum inspection plan and optimal removal
scheme (p1, p2, . . . , pm−1, pm = 1) where the total proportion of failures h in the experiment
is pre-fixed. In this situation, the optimality problem is

max
p1,...,pm−1,t1,<···<tm

H (·) (17)

subject to

E(r1) + E(r2|r1) + · · ·+ E(rm|r1, . . . , rm−1)|µ,σ = n× h. (18)

This scheme is called as generalized optimal spaced (GOS) inspection scheme. Further, we
have also studied the effect of removals if these occur in the experiment when inspection times
are chosen from Table 1. So, in this situation, the optimality problem will be

max
p1,...,pm

H (·) (19)

subject to the constraint as given in Eq.(18). The optimum values of pi’s are computed and
given in Table 6, under the GOS, OS, OES, and EP inspection schemes for n = 200, m = 5,
and h = 0.5, 0.6, 0.7, 0.8. The first row of the table shows that if the experimenter chooses to
use five inspection times and wishes to save 50% of the n = 200 units put under test, then the
optimal removal scheme will be 11.80%, 37.67%, 0%, 0%, and 100% removals of the live units
at the five consecutive inspection times under GOS inspection scheme. It may be recalled
that when we chose the optimum inspection times and studied the effect of variation in the
values of p′is the least loss was observed when all p′is was zero except pm(= 1). However, from
the Table 6, we see that if we calculate the optimum value of inspection time and removal
probability simultaneously then non zero pis are observed in the solution. Evidently, the
optimal censoring plan (i.e choice of inspection time and removal proportion simultaneously)
will not be the same if different optimality criteria are used. The entries in the rows titled
as OS, OES and EP provides the optimum values of removal proportions when the optimum
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Table 6: Optimal progressive interval Type-I censoring plans under different inspection
schemes for some selected failure rates when n = 200 and m = 5

h Scheme p1 p2 p3 p4 p5 Relative Efficiency

0.5 GOS 0.1180 0.3767 0 0 1 1
OS 0 0.4981 0 0 1 0.9236

OES 0 0.0726 0.5030 0 1 0.9146
EP 0.2904 0.1642 0 0 1 0.7435

0.4 GOS 0 0 0.4789 0 1 1
OS 0.0601 0.4194 0 0 1 0.9354

OES 0 0.4554 0 0 1 0.9198
EP 0.1817 0.1931 0 0 1 0.7656

0.3 GOS 0.0613 0.2326 0 0 1 1
OS 0.0545 0 0.3115 0 1 0.9402

OES 0 0.3485 0 0 1 0.9233
EP 0.2161 0 0 0 1 0.7847

0.2 GOS 0 0.1518 0.1070 0 1 1
OS 0.1085 0 0.0683 0 1 0.9475

OES 0.1627 0 0 0 1 0.9309
EP 0 0.2503 0 0 1 0.7977

inspection time is pre-calculated and fixed as per optimization criterion discussed in section
3. In this sense, it can be viewed as a result of two-step optimization where we optimize the
inspection time at first and then we optimize removal proportion. The last column of Table
6 shows the relative efficiencies of selected inspection scheme with respect to GOS inspection
scheme. The resulting relative efficiencies of the OES and OS inspection schemes are 92% for
h = 0.5 and 95% for h = 0.2. But the relative efficiency of EP inspection plan is less than
80% in all the considered cases which, once again, reveals that the OS and OES inspection
scheme are more efficient than the EP inspection scheme. It is also observed that as total
removal proportion i.e. h decreases, the relative efficiency approaches to one.

5. Conclusion

In this paper, we have contemplated the problem of planning PITI censoring scheme for
Rayleigh distribution. It is noted that the inspection times using optimality criterion that
minimize Shannon entropy has either highest ARE or close to that relative efficiency which
is the highest among all the considered criterion. Moreover, it is also observed that under
the equal spacing situation, the Shannon entropy provides the smallest value for the spacing
without compromising much in terms of ARE. Therefore, PITI censored plan for Rayleigh
distribution must be constructed by using minimum Entropy criterion. In general, the use
of the OS inspection scheme to construct the inspection plan reduces the required number
of inspections significantly as compared to the EP/OES inspection for achieving the same
level of relative efficiency. Thus, for Rayleigh distribution, the OS inspection scheme is more
appealing. Moreover, as the choice of inspection times is crucial for the computation of the
efficiency of an experiment, hence, the presented work may be productive for future research.
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