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Abstract

A new point estimation method based on Kullback-Leibler divergence of survival func-
tions (KLS), measuring the distance between an empirical and prescribed survival func-
tions, has been used to estimate the parameter of Lindley distribution. The simulation
studies have been carried out to compare the performance of the proposed estimator with
the corresponding Least square (LS), Maximum likelihood (ML) and Maximum product
spacing (MPS) methods of estimation.
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1. Introduction

The Kullback-Leibler(K-L) divergence, Kullback and Leibler (1951) or relative entropy mea-
sures the distance between two probability distributions. This divergence measure is also
known as information divergence. Let X and Y be two continuous random variables with
density functions f and g respectively over the same support R. The K-L divergence of f
relative to g is, then, defined as;

D(f ||g) =

∫
R
f(x)ln

f(x)

g(x)
dx (1)

It is assumed that for all x belonging to R , g(x) 6= 0. The function D(f ||g) is always non-
negative and it is zero if and only if f = g a.s..
Kullback-Leibler divergence has been used in various statistical problems including model
selection and parameter estimation. For different applications of K-L divergence and related
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details see, Abramov, Majda, and Kleeman (2005), Cover and Thomas (2006), Dhillon, Mal-
lela, and Kumar (2003), Moreno, Ho, and Vasconcelos (2003), Mehrali and Asadi (2016).

Let f(x; θ) belongs to a parametric family with k-dimensional vector parameter θ ∈ Θ ⊂ Rk
and fn be kernel density estimate of f( the distribution of X) based on n random observations
{X1, X2, ...Xn} . Basu and Lindsay, Lindsay (1994) used K-L divergence of fn relative to f
defined as;

D(fn||f) =

∫
R
fn(x)ln

fn(x)

f(x; θ)
dx,

for the estimation of θ and suggested that the estimate of the parameter is that value for
which D(fn||f) is least . Thus, the estimate of the parameter can be defined as;

θ̂ = arg inf
θ∈Θ

D(fn(x)||f(x; θ))

Although, the method of estimation based on D(fn||f) possesses many interesting features,
there are some limitations to apply K-L divergence measure for continuous random variables.
It worthwhile to note here that the above definition is based on the density of random variables
which, in general, may or may not exist, see Cover and Thomas (2006). In addition it depend
on fn which cannot be properly estimated from the sample data in the sense that even
by increasing the sample size sufficiently large, one cannot guarantee that the estimated
density converges to its true measure. To overcome such problems, various approaches have
been suggested by different researchers to estimate the K-L divergence from sample data for
continuous random variables, for details of these methods see Lee and Park (2006), Pérez-
Cruz (2008), Wang, Kulkarni, and Verdú (2005), Wang, Kulkarni, and Verdú (2006). Apart
from these, several alternative measures to K-L divergence have also been defined, for details
reader may refer to Aczél and Daróczy (1975), Forte and Hughes (1988).

To grip over the problem, J. Liu Liu (2007) proposed a new divergence measure named as
Kullback-Leibler divergence of survival functions (KLS), which measures the distance between
an empirical and prescribed survival function. The key idea of using survival function instead
of density function is that the survival function is more regular and can be easily estimated
from sample data as compared to density function. Further, by law of large number, the
estimate is convergent. Liu (2007) used this new divergence measure to estimate the param-
eters of uniform and exponential distributions. Although the KLS estimates are found to be
biased, its convergence in mean square error to the true value of the parameter is faster than
ML estimate. Yari, Mirhabibi, and Saghafi (2013) demonstrated the use of KLS method for
the estimation of the parameters of Weibull distribution.

In this paper, we have used KLS method for the estimation of the parameter of Lindley
distribution and compared the estimator thus obtained with few classical estimators. The
reason for the choice of Lindley distribution rest in simple form of its survival function.

The organisation of rest of the paper is in the following manner. To introduce the model under
consideration, a brief description of the Lindley distribution is given in Section 2. Different
estimation procedures have been discussed in Section 3. Section 4 contains a simulation study
to compare the performance of KLS estimation procedure with some alternative methods. The
conclusion of the present piece of work have been provided in Section 5.

2. The Lindley distribution

Lifetime distributions describe the random behavior of the length of the life of a system or
a device. These are having their applications in the field of science and technology . In
statistical literature, several models such as Exponential, Gamma, Weibull have been pro-
posed to analyze the lifetime data. The popularity of Gamma and Weibull distributions,
over exponential distribution is due to the fact that these distributions have more general
mathematical form than that of exponential distribution, although with an additional pa-
rameter. In recent years, the use of one parameter Lindley distribution over exponential and
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other distributions has increased. It was originally proposed by Lindley (1958) in the context
of Bayesian statistics as a counter example of fiducial statistics and latter attracted the re-
searchers for its use in modeling lifetime data. This distribution has wider applicability than
other competitive models including exponential, log-normal and gamma etc. It is particularly
most suitable model when the data show increasing failure rate. Lindely distribution can be
seen as a mixture of exp(θ) and gamma(2, θ). Various statistical properties of the Lindley
distribution is discussed extensively by Ghitany, Atieh, and Nadarajah (2008) and they have
verified that Lindley distribution is particularly useful in modeling biological data from mor-
tality studies, see Ghitany, Alqallaf, Al-Mutairi, and Husain (2011), Sharma, Singh, Singh,
and Ul-Farhat (2017) and is also useful for estimation of the reliability of a stress-strength
system, see Ghitany, Al-Mutairi, and Aboukhamseen (2015).

A random variable X is said to have Lindley distribution with parameter θ, if its probability
density function is defined as;

f(x) =
θ2

1 + θ
(1 + x)e−θx, x > 0, θ > 0 (2)

The corresponding cumulative distribution function (c.d.f.) is:

F (x) = 1− 1 + θ + θx

1 + θ
e−θx, x > 0, θ > 0 (3)

and the survival function is:

S(x) =
1 + θ + θx

1 + θ
e−θx, x > 0, θ > 0 (4)

3. Parameter estimation

In statistical literature a number of estimation procedure see Yari and Tondpour (2017),
Louzada, Ramos, and Perdoná (2016), Bakouch, Dey, Ramos, and Louzada (2017), Mazucheli,
Ghitany, and Louzada (2017) are available under classical paradigm. Here, we shall consider
four such procedures, namely Kullback- Leibler divergence of survival functions(KLS), Least
square estimation(LSE), Maximum likelihood estimation(MLE) and Maximum product spac-
ing method(MPS).

3.1. Method of least square

Let x1 < x2 < ... < xn be n ordered random observations from Lindley distribution with
CDF F(x), then

E[F (xi)] =
i

(n+ 1)

The least square estimate is that value of the parameter which minimizes

SD(θ) =
n∑
i=1

(
F (xi)−

i

n+ 1

)2

(5)

Putting the value of F (x) in equation (5) we get

SD(θ) =

n∑
i=1

{(
1− 1 + θ + θxi

1 + θ
exp(−θxi)

)
− i

n+ 1

}2

(6)

In order to get the value of the parameter which minimizes equation (6), we differentiate it
with respect to θ and equating it to zero, which gives the following equation:

n∑
i=1

{
1− 1 + θ + θxi

1 + θ
exp(−θxi)−

i

n+ 1

}{
θ2(1 + xi)exp(−θxi)

1 + θ

}
= 0
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Since the above equation cannot be solved analytically, we propose the use of Newton-Rapson
method for its numerical solution.

3.2. Maximum likelihood estimation

The likelihood function of θ is

L(θ) =

(
θ2

1 + θ

)n n∏
i=1

(1 + xi)e
−θ

∑
xi (7)

and hence, the log-likelihood function is

lnL(θ) = 2n ∗ lnθ − n ∗ ln(1 + θ) +

n∑
i=1

ln(1 + xi)− θ
n∑
i=1

xi

For maximazation of equation (7), we differentiate the above expression with respet to θ and
equate it to zero, and get the following equation:

2n

θ
− n

1 + θ
−

n∑
i=1

xi = 0⇒ X̄θ2 + (X̄ − 1)θ − 2 = 0, θ > 0

Let θ̂ML be the maximum likelihood estimate of θ then solving the above equation for θ we
get

θ̂ML =
(1− X̄) +

√
X̄2 + 6X̄ + 1

2X̄
(8)

clearly, θ̂ML is a function of sample mean X̄.

3.3. Maximum product spacings method

Let x1 < x2 < ... < xn are be the n ordered random sample from Lindley distribution with
CDF given in equation(3). The spacing are defined as follows; see Singh, Singh, and Singh
(2014)

D1 = F (x1) = 1−
[

1 + θ + θx1

1 + θ
e−θx1

]

Dn+1 = 1− F (xn) =
1 + θ + θxn

1 + θ
e−θxn

and the general term of spacing Di for i= 2, 3, ... ,n is given by,

Di = F (xi)− F (xi−1) =

[
1 + θ + θxi−1

1 + θ
e−θxi−1

]
−
[

1 + θ + θxi
1 + θ

e−θxi
]

(9)

Note that
∑
Di = 1, The geometric mean of spacings is

G =

(
n+1∏
i=1

Di

) 1
n+1

The MPS method considers that value of θ as its estimate, which maximizes the logarithm of
the geometric mean of the spacings i.e.

P = lnG =
1

1 + n

n+1∑
i=1

lnDi

which reduces, after simplification to the following:
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P =
1

n+ 1

[
ln

{
1− 1 + θ + θx1

1 + θ
e−θx1

}]
+

1

n+ 1

[
n∑
i=1

ln

{(
1 + θ + θxi−1

1 + θ
e−θxi−1

)
−
(

1 + θ + θxi
1 + θ

e−θxi
)}]

+
1

n+ 1

[
ln

{
1 + θ + θxn

1 + θ
e−θxn

}] (10)

Thus, MPS estimate, denoted as θ̂MPS , is that value of the parameter θ which maximizes P.
In order to obtain the MPS estimate of θ, we have to maximised equation (10) with respect
to θ which can be obtained by setting the partial derivative of P with respect to θ equal to
zero and solve the resulting equation. But, it may be seen that the resulting equation will be
a non-linear equation having no closed form solution, therefore it is solved numerically. This
can be easily done by using Newton-Rapson method.

3.4. Kullback-Leibler divergence of survival functions method

Let x1, x2, ...xn be i.i.d. sample of size n from the Lindley distribution having distribution
function F (x; θ) with unknown parameter θ. Let S(x, θ) be the corresponding true survival
function and Gn(x) be the emprical survival function based on a random samples of size n.
The Kullback-Leibler divergence of Survival functions Gn(x) and S(x) is defined by

KLS(Gn||S) =

∫ ∞
0

Gn(x)ln
Gn(x)

S(x)
− [Gn(x)− S(x)]dx (11)

where Gn(x) is empirical survival function of a random sample of size n, defined by

Gn(x) =
n−1∑
i=0

(
1− i

n

)
I[X(i),X(i+1)](x) (12)

in the above expression, I is an indicator function and 0 = X(0) ≤ X(1) ≤ X(2) ≤ ... ≤ X(n)

is ordered sample.
Since Gn and S are integrable , it is easy to verify that equation (11) can be simplified to

KLS(Gn||S) =

∫ ∞
0

Gn(x)ln
Gn(x)

S(x)
dx− [X̄n − E(X1)] (13)

=

∫ ∞
0

Gn(x)lnGn(x)dx−
∫ ∞

0
Gn(x)lnS(x)dx− [X̄n − E(X1)] (14)

using equation(12), we get∫ ∞
0

Gn(x)lnGn(x)dx =
n−1∑
i=1

(1− i

n
)ln(1− i

n
)4xi+1 (15)

Now using the definition of Gn(x) given in (12), as n −→ ∞ for a fixed n, we can write∫ ∞
0

Gn(x)lnS(x)dx =

n−1∑
i=0

(1− i

n
)

∫ x(i+1)

x(i)

lnS(x)dx (16)

Let us define h(x) =
∫ x

0 lnS(t)dt for x ∈ Sx. h is well defined because S is monotone on its
support Sx and h(0) = 0. Using above substution in equation (16) and solving it, we get∫ ∞

0
Gn(x)lnS(x)dx =

1

n

n∑
i=1

h(xi) (17)
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For details of the above,one can refer Rao, Chen, Vemuri, and Wang (2004); Yari et al.
(2013). Now, in order to estimate the parameter of Lindley distribution using KLS, we
simplify equation (14) using equations (4),(15) and (17), we get

KLS(Gn(x)||S) =

n−1∑
i=1

(1− i

n
)ln(1− i

n
)4xi+1

− 1

n

n∑
i=1

[∫ xi

0
ln(1 + θ + θt)dt− ln(1 + θ)

∫ xi

0
dt− θ

∫ xi

0
tdt

]
−
[
X̄n −

2 + θ

θ(1 + θ)

]
(18)

Where 4xi+1 = xi+1 − xi, x0 = 0. After simplifying equation (18), we get

KLS(Gn(x)||S) =
1

n

n∑
i=1

[
(1 + xi +

1

θ
)ln(1 + θ)− (1 + xi +

1

θ
)ln(1 + xi + θxi)

]
n−1∑
i=1

(1− i

n
)ln(1− i

n
)4xi+1 +

1

n

n∑
i=1

[
xi +

θ

2
x2
i

]
−
[
X̄n −

2 + θ

θ(1 + θ)

] (19)

Let θ̂KLS denotes the KLS estimator of parameter θ. In order to obtain the KLS estimator
of θ, we have to minimize equation (19) with respect to θ. Therefore by setting its partial
derivative with respect to θ equal to zero, we get an equation. The solution of that equation
provides the desired estimate. But it may be noted here that the resulting equation is non-
linear equation and an analytical solution of it does not exist. However one can use numerical
method for its solution, we have used Newton-Rapson method.

4. Simulation study

In this section, we have studied the performances of the estimators, discussed in the previous
section based on a simulation study. For this purpose, we generated pseudo-random samples
from Lindley distribution for different sample size n (=10[10]70). Since the relative behavior
of the estimators are observed to be invariant with respect to θ, therefore the results are
reported here are for θ = 1. The estimate of the parameter is obtained for each case and the
whole process was repeated N = 50,000 times. The algorithm is coded in R software Team
(2015) and Leisch (2002). The simulated values were then used to compute average estimates
and MSEs of estimates. The formula for computing them are

θ̄ =
1

N

N∑
j=1

θj , MSE(θ̂) =
1

N

N∑
j=1

(θ̂j − θ)2,

respectively. It is clear that MSEs will depend on sample size n and parameter θ.

From Figure 1 it can be seen that the three methods i.e. KLS, MLE and LSE methods
overestimate, while MPS method underestimates the Lindley parameter θ. The KLS method
provides more biased estimator as compared with the other three methods. Though, its bias
decreseas more rapidely with incresing sample size n. From this point of view obviously the
LSE method provides a better estimator but precision of the estimator is not only related to
the bais, also to the mean square error of estimator.

5. Conclusion

In this paper, we have considered the problem of comparison of different method of estima-
tions. A new method (KLS) is used for the estimation of Lindley parameter, which mini-
mizes an entropy based distance between empirical survival function and the Lindley survival
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Figure 1: Figure (a) shows the average estimates of θ for the four different estimation methods
with the variation of sample size n. Figure (b) shows the MSE of the four different estimation
methods.

function. The general procedure to obtain the estimators are provided and then Lindley
distribution is used to validate the results. The simulation study shows that among all the
four considred estimation methods i.e. KLS, MLE, LSE and MPS, MPS method performs
efficiently in term of MSE criterion. But, for sample size greater than 40 one can estimate the
Lindley parameter θ using KLS method as efficient as the MLE and MPS. However, the KLS
method is quite flexible since it uses survival function instead of density function and survival
function can be easily estimated from the observed sample data . The KLS methodology can
be used with any distribution and will be very useful in the field of science, engineering and
medical science. Application of KLS method in goodness-of-fit tests and modeling censored
experimental data could be a fruitful future research.
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