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Abstract

Calculating the p-value of any test statistic is of paramount importance to all statisti-
cally minded researchers across all areas of study. Many, these days, take for granted how
the p-value is calculated and yet it is a pivotal quantity in all forms of statistical analysis.
For the study of 2×2 tables where dichotomous variables are assessed for association, the
chi-squared statistic, and its p-value, are fundamental quantities to all analysts, especially
those in the health and allied disciplines. Examining the association between dichotomous
variables is easily achieved through a very simple formula for the chi-squared statistic and
yet the p-value of this statistic requires far more computational effort.

This paper proposes and explores a very simple approximation of the p-value for a
chi-squared statistic given its degrees of freedom. After providing a review of a variety of
common ways for determining the quantile of the chi-squared distribution given the level
of significance and degrees of freedom, we shall derive an approximation based on the
classic quantile formula given in 1977 by D. C. Hoaglin. We examine this approximation
using a simple 2×2 contingency table example then show that it is extremely precise for
all chi-squared values ranging from 0 to 50.

Keywords: chi-squared statistic, Fisher’s approximation, Hoaglin’s approximation, p-value
approximation, Wilson and Hilferty’s approximation.

1. Introduction

For over 100 years Pearson’s chi-squared statistic (Pearson 1904) has been one of the most
popular test statistics used within, and outside of, the statistics discipline. This is because
it can be generally used either as a test statistic when undertaking a test of independence
between two or more categorical variables or for goodness-of-fit purposes. Its popularity and
utility has therefore seen a great deal of attention (largely outside of the statistics literature)
given to its use and misuse for at least 60 years; see, for example, Lewis and Burke (1949),
Edwards (1950), Delucchi (1983) and Dijkers (2005). Even the name of the statistic − “chi-
square” versus “chi-squared” − has created much discussion (Beh and Lombardo 2014). We
shall not be drawn into that issue here but some excellent insights into the issues surrounding
the use of the chi-squared statistic in a variety of situations can also be found in Fienberg
(1979). Excellent discussions are available on the development of the chi-squared statistic
including those given by Lancaster (1969), Cressie and Read (1984) and Fleiss, Levin, and
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Paik (2003).

At the core of the chi-squared statistic lays its simplicity and applicability from which the
analyst may make conclusions on the statistical significance of the test being undertaken.
Central to making inferential decisions using the statistic is the calculation and determination
of its p-value. While it is relatively simple to calculate Pearson’s chi-squared statistic in many
cases, determining its p-value requires more computational effort. For example, when testing
the dependence between two variables of a 2×2 contingency table, the chi-squared statistic
can be calculated using a scientific desk calculator, although its p-value cannot be obtained
so easily.

Therefore, the aim of this paper is to derive a very simple expression for approximating the
p-value of a chi-squared statistic given its degrees of freedom. In doing so, the p-value may be
approximated without the aid of statistical packages. The resulting formula is based on the
classic approximation of the quantile of the chi-squared distribution given by Hoaglin (1977).
We shall demonstrate the accuracy and reliability of the simple approximation by comparing
the results with those obtained by more traditional, or computational, means.

2. A simple illustrative example

Suppose we have a 2×2 contingency table with the notation defined in Table 1. When
testing the statistical significance of the association between the rows and columns of Table
1, Pearson’s chi-squared statistic is

X2 = n
(ad− bc)2

(a+ c) (b+ d) (a+ b) (c+ d)
.

Yates’ continuity correction (Yates 1934) is often included in the calculation of the chi-squared
statistic such that

X2
Y = n

(|ad− bc| − n/2)2

(a+ c) (b+ d) (a+ b) (c+ d)
.

The statistical significance of both test statistics can be assessed by considering that they are
random variables from chi-squared distributed with 1 degree of freedom, for a given level of
significance, α.

Table 1: Notation for a 2× 2 contingency table

Column 1 Column 2 Total
Row 1 a b a+ b
Row 2 c d c+ d
Total a+ c b+ d n = a+ b+ c+ d

To help illustrate that calculating the chi-squared statistic for a 2×2 table is very straight-
forward, suppose we consider data collected as part of a study undertaken to examine kidney
function after transplant in paediatric patients (Chu, Jacobs, Schwen, and Schneck 2013).
The focus of the study was to look at factors of hydronephrosis (swelling of the kidney due
to a build-up of urine) after each of 51 kidney transplants had taken place at the Children’s
Hospital of Pittsburgh between May 1998 and May 2008. Table 2 is a cross-classification of
a patient’s gender and whether patients experienced hydronephrosis.

The simplicity of calculating the chi-squared statistic of Table 2 is apparent since

X2 = 51× (22× 13− 13× 3)2

25× 26× 35× 16
= 8.548
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and can be found without the need of using statistical packages; all that is required is a hand
held calculator (not even a scientific calculator). Incorporating Yates’ continuity correction
is an equally straight forward task:

X2
Y = 51× (|22× 13− 13× 3| − 51/2)2

25× 26× 35× 16
= 6.874 .

The p-value of X2 and X2
Y are 0.0035 and 0.0087, respectively, and both suggest that there is

a statistically significant association between a patient’s gender and whether they experience
hydronephrosis after a kidney transplant. However, these p-values cannot be calculated as
simply as their test statistic. Instead, their calculation requires more computational effort.

Table 2: 2× 2 table of gender and hydronephrosis status

Gender Yes No Total
Male 22 13 35

Female 3 13 16
Total 25 26 51

This paper shall derive and demonstrate a simple approximation for calculating the p-value
from a chi-squared test statistic. Before doing so, an overview will be given of some of the
popular ways in which the quantile of the chi-squared distribution can be estimated.

3. Overview of Pearson’s chi-squared statistic and its p-value

Suppose we consider an iid random sample, X1, X2, . . . , Xn from the chi-squared distribution
with probability density function

f (x|v) =
1

Γ (v/2) 2v/2
e−x/2x(v/2)−1, x ≥ 0

where v is the degrees of freedom of the distribution and Γ (•) is the gamma function. Ta-
bles of quantiles from the chi-squared distribution (historically also referred to as “percentage
points”) given specific levels of significance, α, and degrees of freedom, v, are well documented.
For example, there are many contributions that provide tables of quantiles for various levels
of significance and degrees of freedom at various levels of accuracy. Some of the earlier con-
tributions include those from Pearson (1922), Fisher (1928), Thompson (1941), Merrington
(1941), Aroian (1943), Goldberg and Levine (1946), Hald and Sinkbaek (1950), Vanderbeck
and Cooke (1961), Harter (1964) and Krauth and Steinebach (1976). While these contribu-
tions give tables of quantiles, others provide simple formulae for calculating these values for
any level of significance; see, for example, Wilson and Hilferty (1931) and Heyworth (1976).
A far more superior approximation was proposed by Hoaglin (1977) which we shall discuss
further in Section 4.

The issue of approximating the p-value of a chi-squared statistic given its degrees of freedom,
is less well documented. From a mathematical point of view, suppose we consider

P
(
χ2
α,v > X2

)
=

∫ ∞
X2

1

Γ (v/2) 2v/2
e−u/2x(u/2)−1du

which is the p-value of the test statistic X2. Evaluating this integral requires computational
procedures. However, tables of p-values have been documented in the past. For example,
Elderton (1902) provides the first set of tables based on the approximations

P
(
χ2 > X2

)
≈
√

2

π

∫ ∞
X

e−X
2/2dX +

√
2

π
e−X

2/2

(
X

1
+
X3

1 · 3
+ . . . ,

Xv−2

1 · 3 · . . . · (v − 2)

)
(1)
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for an odd number of degrees of freedom and

P
(
χ2 > X2

)
≈ e−X2/2

(
X

1
+
X3

1 · 3
+ . . . ,

Xv−2

1 · 3 · . . . · (v − 2)

)

for an even number of degrees of freedom. Elderton (1902) also provides an approximation
to the integral term in (1) and so gives approximations of the p-value for integer valued chi-
squared values ranging from 1 to 30, then 40, 50, 60 and 70 and where v = 2 to 29. Similarly,
Russell and Lal (1969) provide tables of p-values for v = 1 (1) 50 and X2 = 0.001 (0.001)
0.01 (0.01) 0.1 (0.1) 107. Here, for example, the notation 0.001 (0.001) 0.01 (0.01) 0.1 (0.1)
107 has been adopted to mean every value between 0.001 and 0.01 (inclusive) in increments
of 0.01 then from 0.1 to 107 (inclusive) in increments of 0.1. See also a review of these tables
in volume 23 of Mathematics of Computation (pages 211 − 212). More tables can be found
by considering Khamis and Rudert (1965). Alternative simple procedures for approximating
the p-value of a chi-squared statistic can also be found in Terrell (1984) and Lin (1988). The
approach that Lin (1988) takes is based on the approximation of the chi-squared quantile
proposed by Fisher (1928). While these approximations have been shown to be very effective,
they don’t lend themselves to such simplicity where anything but statistical, or mathematical,
computer packages can be used to approximate the p-value. It should also be noted that this
issue has also been explored for other distributions. For example, Koehler (1983) provides an
approximation for a random variable from the t-distribution which was subsequently improved
upon by Lin (1990).

4. Classical methods for calculating a chi-squared percentile

Given a level of significance, α, and the degrees of freedom v, classic approximations of the
quantile of the chi-squared distribution can be made in a number of simple ways. Here we
shall very briefly review four of them. They are the standardisation of the chi-squared random
variable and the approximations of Fisher (1928), Wilson and Hilferty (1931) and Hoaglin
(1977).

4.1. Central limit theorem

It is well known that when n is large, the mean and variance of the chi-squared distribution
is v and 2v, respectively; see, for example, Haldane (1940). Therefore, under the central limit
theorem, the chi-squared statistic may be normalised such that

zα =
χ2
α,v − v√

2v
.

So, the quantile of the chi-squared distribution can be approximated by

χ2
α,v ≈ v + zα

√
2v .

Here zα is the 100 (1− α)’th percentile of the standard normal distribution. This approxima-
tion works well when v is large, however, for many practical situations, this may not be the
case and so the approximation is not recommended.

4.2. Fisher’s approximation

Another approximation, proposed by Fisher (1928), deals with first considering that

zα =
√

2χ2
α,v −

√
2v − 1
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is a standard normally distributed random variable. Such an approximation is considered
accurate when the degrees of freedom, v, is large, usually v > 100. When this is the case χ2

α,v

can be approximated by Fisher’s approximation

χ2
α,v ≈

1

2

(
zα +

√
2v − 1

)2
(2)

while Heyworth (1976) suggested that, near the tails of the chi-squared distribution (eg, when
α is small and v is large), (2) may be modified to

χ2
α,v ≈

1

2

(
zα +

√
2v
)2

.

A study of this approximation in comparison with other approximations (including that of
Hoaglin (1977) which we shall soon discuss), reveals that Fisher’s approximation underesti-
mates χ2

α,v by as much as 10% for v = 3 and α = 0.005.

4.3. Wilson and Hilferty’s approximation

In response to the results obtained by Fisher (1928), Wilson and Hilferty (1931) presented a
number of alternative approximations to approximate χ2

α,v. One of the more popular approx-
imation is

χ2
α,v ≈ v

(
zα

√
2

9v
+

(
1− 2

9v

))2

.

Wilson and Hilferty (1931), on page 688, remarked that this result is “somewhat remarkable”.
Other approximations they considered lead to the following results

χ2
α,v ≈

1

2

(
zα +

√
2v − 2

)2
which is akin to that of Fisher (1928), and the following equations proposed by Heyworth
(1976)

χ2
α,v ≈ 2

(
zα
3

(
v

2
− 1

3

)−1/6
+

(
v

2
− 1

3

)1/3
)3

,

χ2
α,v ≈

(
zα
√

2

3

(
v − 2

3

)−1/6
+

(
v − 2

3

)1/3
)3

.

4.4. Hoaglin’s approximation

In all of the approximations of the chi-squared quantile described above, it is important to
first calculate the quantile of the standard normal distribution, zα, for the given level of
significance, α. To avoid having to determine this quantity, one way to approximate χ2

α,v is
to consider Hoaglin’s approximation (Hoaglin 1977)

√
χ2
α,v ≈ a+ b

√
v +

(
c+ d

√
v
)√
− log10 α (3)

where a, b, c and d are constants. After considering various specifications of these constants,
Hoaglin (1977) showed that

a = − 1.37266, b = 1.06807, c = 2.13161 and d = −0.04589 (4)
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provides an extremely good approximation to the chi-squared quantile; stating (on page 512)
that only 8 out of the 140 simulations that were carried out were not within 0.4% of the
theoretical quantile. Such an approximation is therefore both versatile and accurate. For this
reason, we shall be using (3) − (4) to propose, and adapt, a very simple approximation of
the p-value of a given chi-squared statistic with known degrees of freedom. Note that, since
Hoaglin (1977) considered these values of a, b, c and d up to five decimal places, we shall also
consider the same level of precision of the constants in in the following sections.

5. The simple approximation of the p-value

Since (3) can be used to approximate, given a level of significance, the quantile of the chi-
squared distribution, it can also be used to approximate the p-value of a chi-squared statistic.
To do so, we consider

√
X2 ≈ a+ b

√
v +

(
c+ d

√
v
)√
− log10 P (χ2 > X2) (5)

where X2 is the chi-squared statistic and P
(
χ2 > X2

)
is its p-value. Therefore, by rearranging

(5), we obtain a very simple approximation of the p-value of X2,

P
(
χ2 > X2

)
≈
(

1

10

)(√X2−(a+b
√
v)

(c−d
√
v)

)2

. (6)

Of course the approximation depends on the choice of a, b, c and d. To attain similar levels
of accuracy as Hoaglin’s approximation of the chi-squared quantile, a reasonable choice of the
constants are those given in (4). Thus, we consider

P
(
χ2 > X2

)
≈
(

1

10

)(√X2−(−1.37266+1.06807
√
v)

(2.13161−0.04589
√
v)

)2

(7)

Just as a simple example, when v = 1 (as is the case for any 2×c table, where c ≥ 2), (7)
shows that an approximation of the p-value of a chi-squared statistic, X2, is

P
(
χ2 > X2

)
≈
(

1

10

)(0.229873(
√
X2+0.304059))

2

Therefore, for X2 = 3.841459, its approximate p-value is P (X2) = 0.066, which compares
quite well with its theoretic p-value of 0.05. When we consider the chi-squared statistic of
18.30704 with 10 degrees of freedom the approximate p-value is 0.048 − within 4% of its
theoretic p-value of 0.05. A more comprehensive examination of the approximation is given
in Section 6.

Despite the simplicity of the approximation (7), P
(
χ2 > X2

)
is a quadratic function with a

maximum of 1 achieved at the turning point
√
X2 − (−1.37266 + 1.06807

√
v) = 0. This is

problematic for those values of
√
X2 − (−1.37266 + 1.06807

√
v) < 0. This is because, in this

region, the approximated p-value will approach zero as X2 → 0 when it should be approaching
1. Therefore one may adapt (7) so that

P
(
χ2 > X2

)
≈


(

1
10

)(√X2−(−1.37266+1.06807
√
v)

(2.13161−0.04589
√
v)

)2

, X2 ≥ (−1.37266 + 1.06807
√
v)

2

1 , X2 < (−1.37266 + 1.06807
√
v)

2

(8)
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6. An evaluation of the approximation of the p-value

6.1. An empirical evaluation

Let us revisit Table 2. Pearson’s chi-squared statistic (without Yates’ continuity correction)
was easily found to be 8.548 with a p-value of 0.0035. Equation (8) approximates this p-value
to be

P
(
χ2 > X2 = 8.548

)
≈
(

1

10

)(0.229873(
√
8.548+0.304059))

2

= 0.004

which compares very well with its theoretical value. When Yates’ continuity correction is
included in the calculation of the chi-squared statistic, this statistic was found to be 6.874
with a p-value of 0.0087. Its approximate p-value compares very well with this theoretical
result and is

P
(
χ2 > X2

Y = 6.874
)
≈
(

1

10

)(0.229873(
√
6.874+0.304059))

2

= 0.0107

For both test statistics, the theoretical and approximate p-values still leads to the same
conclusion concerning the test of association between the variables of hydronephrosis and
gender. Note that by making use of the approximation given by (8), these two p-values can
be obtained without resorting to statistical packages and can be easily calculated using a hand
held calculator.

In this illustrative example, the degrees of freedom is very small; v = 1. It also highlights
the how the approximation works in a single case. A more thorough examination of the
approximation with the p-value is now discussed.

6.2. A computational evaluation

To assess the accuracy of (8), we approximate the p-value for a series of chi-squared statistics
ranging from 0.5 to 50 in intervals of 0.5. Doing so gives a series of 100 chi-squared statistics.
We shall be comparing these p-value approximations with the theoretical p-values calculated
from R using the pchisq() function which utilises the algorithm of Ding (1992). The degrees
of freedom we shall consider will be 1, 5, 10 and 20. Of course, in situations where there
are a large number of degrees of freedom under consideration simulation studies of the type
described in this section can be easily extended.

Suppose we consider the case where the degrees of freedom, v, is 1 and 5. A plot of the
approximate p-value, using (8), against its theoretic p-value is given in Figure 1.

In Figure 1a) we can see that there is a very good linear comparison of the two p-values for v =
1. Although, in this case, the approximate values overestimate the theoretic p-values, however
this occurs only when the theoretic and approximate p-values are large (exceeding about 0.1).
The vertical and horizontal dashed lines coincide with a nominal level of significance of 0.05.
We can see that, at this level, only one of the approximated p-values (of the 92) would lead
to a different conclusion. This is where the chi-squared statistic is 4; the theoretic p-value is
0.0455 and the approximate p-value is 0.0601. However, even when performing a test at the
5% level of significance, obtaining either p-value does not provide compelling evidence for or
against the null hypothesis under consideration.

Suppose we now consider the case where the degrees of freedom is v = 5. Figure 1b) provides
a comparison of the approximate and theoretic p-values. Like we saw with Figure 1a), the
approximate p-values are exceptionally accurate for small p-values; for p-values between 0.001
and 0.05 the accuracy of (8) is between 0.2% and 0.7% of the theoretic p-value − practically
negligible.



70 Exploring How to Simply Approximate the P-value of a Chi-Squared Statistic

 
Figure 1: Approximate versus theoretic p-values. Approximate p-values are calculated from
(8) and the theoretic p-value is calculated using R. Figures 1a) and 1b) show this comparison
for 1 degree of freedom and 5 degrees of freedom, respectively.

Suppose we now consider Figure 2a) which compares the theoretic p-value with the approxi-
mated p-value of (8) for 10 degrees of freedom − for theoretic p-values of between 0.001 and
0.05 the approximation was accurate to within 0.5% and 2%. At the top end (where the
true p-value exceeded 0.996), there were only 5 cases where the level of accuracy exceeded
2.5%. Similarly, Figure 2b) compares the theoretic p-value with the approximate p-value and
shows that, for theoretic p-values between 0.001 and 0.05, their approximations were in error
of between 0.01% and 3.8%.

To monitor the accuracy of the approximation (8) as the chi-squared statistic increases, Fig-
ure’s 3, 4, 5 and 6 plot the chi-squared statistic versus its theoretic and approximate p-value,
for 1, 5, 10 and 20 degrees of freedom, respectively. The solid line in each figure summarises the
chi-squared statistic versus the theoretic p-value, while the dotted line shows the chi-squared
statistic versus the approximate p-value. We can see in all cases that the approximation is
extremely good for all degrees of freedom, especially when X2 exceeds 15 − 20.

Figure 3 compares the theoretic and approximate p-values of the chi-squared statistics ranging
from 0.5 and 100 for 1 degree of freedom. We can see here that in all cases the approximation
(8) is extremely accurate, especially for chi-squared statistics exceeding 10. For those chi-
squared statistics that are less than 10, the error between the theoretic and approximate
p-values does not exceed about 33%. As an example of this, the worst case scenario here
occurs when X2 = 3.5. The theoretic p-value of this statistic, for 1 degree of freedom, is
0.0614 while the approximate p-value is 0.0817. While the difference may seem large, the
approximate p-value does not lead to a contradictory conclusion about a hypothesis test
when compared with the theoretic p-values, even if a level of significance of 1% or 5% were
considered.

A similar demonstration of the accuracy of (8) can also be made for the case when we have
5 degrees of freedom; see Figure 4. For chi-squared values of between 10 and 30, the p-value
approximation is less than 2% in error of the theoretic p-value. For chi-squared values less
than 10, the error does not exceed 8% although in these cases, the theoretic and approximate
p-value exceed 0.05. For chi-squared statistics that exceed 50, the error between the theoretic
and approximate p-value increases. However for such values, the approximate and theoretic
p-values are effectively zero until the 7th decimal place.
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Figure 2: Approximate versus theoretic p-values. Approximate p-values are calculated from
(8) and the theoretic p-value is calculated using R. Figures 2a) and 1b) show this comparison
for 10 degree of freedom and 20 degrees of freedom, respectively.

Suppose we now consider Figure 5; it compares the theoretic and approximate p-values as the
chi-squared statistic ranges between 0.5 and 100 for 10 degrees of freedom. For chi-squared
statistics between 10 and 30 the approximate p-value is within 5% of the theoretic p-value.
This reduces down to less than 2% for chi-squared statistics ranging between 12 and 35
(inclusive). For chi-squared statistics less than 10, the most extreme difference occurs when
X2 is 5.5; the theoretic p-value is 0.8554 and the approximate p-value is 0.9346. For those
chi-squared values greater than 40, the relative error between the theoretic and approximate
p-values exceeds 10%. However, in these cases both p-values are effectively zero to the 5th
decimal place.

 

Figure 3: Plot of the chi-squared statistic versus its p-value for 1 degree of freedom. The solid
line is the theoretic p-value, the dashed line is approximate p-value using (8).

For 20 degrees of freedom, we obtain approximations of the chi-squared p-value that are just
as accurate as for those degrees of freedom that are smaller; see Figure 6. For X2 < 50. The
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Figure 4: Plot of the chi-squared statistic versus its p-value for 5 degrees of freedom. The
solid line is the theoretic p-value, the dashed line is approximate p-value using (8).

 

Figure 5: Plot of the chi-squared statistic versus its p-value for 10 degrees of freedom. The
solid line is the theoretic p-value, the dashed line is approximate p-value using (8).

largest relative difference in the p-values arises when X2 = 14.5 and is around 12%. In this
case the theoretic p-value is 0.8043 and the approximate p-value is 0.9037. For chi-squared
statistics of between 25 and 40, the approximate p-value is within 2% of the theoretic p-
value. For X2 > 50, the largest difference in the approximate p-value, when compared with
its theoretic value, is about 50%. However, in this case both p-values are zero to the fourth
decimal place. For values of X2 > 60, these theoretic and approximate p-values are zero to
the sixth decimal place. Therefore, for all values of X2 here, the approximate p-values provide
a very accurate and practical approximation of the chi-squared p-values.

7. Discussion

This paper has derived and explored the suitability and applicability of a very simple approx-
imation of the p-value for a chi-squared statistic given its degrees of freedom; see equation
(8). This approximation is based on the approximation of (the square root of) the chi-squared
statistic that Hoaglin (1977) presented. We have shown that, for chi-squared values ranging
from 0.5 to 50, the approximations are very accurate (generally within 5%) of the theoretic
p-values. This level of accuracy is comparable to the accuracy that Hoaglin found for his
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Figure 6: Plot of the chi-squared statistic versus its p-value for 20 degrees of freedom. The
solid line is the theoretic p-value, the dashed line is approximate p-value using (8).

approximations of X2. Approximations exceed this level when both the theoretic and ap-
proximate p-values are very large (exceeding 0.8). The approximation (8) works especially
well when for all large chi-squared values irrespective of the degrees of freedom considered
− while we have not documented further degrees of freedom (for the sake of brevity) such
conclusions apply. In all cases, the approximations work extremely well for small p-values not
exceeding 0.2. Such results are therefore promising since rarely are conclusions from statistical
inferences made using p-values that exceed 0.1. Further improvements on the approximation
can be made by considering improved estimators of the Hoaglin’s constants (a, b, c and d of
(4)) but this can be investigated at a later date. Further research can explore more compre-
hensively Hoaglin’s approximation of the chi-squared statistic and the p-value approximation
for all degrees of freedom.

The purpose of this paper is not to provide an alternative to the conventional, and compu-
tational, means of determining the p-value of a chi-squared statistic. Instead it provides the
analyst with a simple means of approximating the p-value using, something as technologi-
cally simple as a standard desk calculator. Of course, when more precise calculations of a
chi-squared p-value are needed, one can use the tools found in many of the programming
packages that are available to evaluate such values.
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