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Abstract

Two-Parameter Gompertz distribution is considered here for the Bayesian inference
under the Constant-Stress Partially Accelerated Life Test (CS-PALT). The first-failure
Progressive (FFP) censoring pattern and its special cases have used for the analysis based
on Bayes estimators of all the parameters under two different asymmetric loss functions
and their special cases. A numerical study based on the real and simulated data has
carried out for the analysis of the proposed method.
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1. Introduction

In the life testing experiments and the consistency analysis, the cost and time limitation
push to experimenters, to end the experiments before all the units on test fail. In general,
it is known as censoring process. The estimate based on the censored data is less accurate
than the estimate from the complete data. However, the censoring reduces the test time
and expense of the life test. In literature, a number of censoring patterns available and the
researcher’s from time to time show their recommendations based on these censoring schemes.

Most common censoring patterns in literature are named as Type-II censoring and in this
censoring, all the test units placed on a test and the test dismisses after an assumed number
of units fail. The major disadvantage of Type-II censoring is, only smallest lifetimes of the test
units are observed. The generalization of this censoring pattern is known as the Progressive
Type-II censoring pattern. In this pattern, a well-organized scheme has used for the removal
of a pre-specified number of surviving test units at each failure time during the experiments.
Elimination of test units before the failure may be planned to save the time and experimental
cost (See Balakrishnan and Aggarwala (2000) for more details about the Progressive censoring
scheme). A huge literature is available on these censoring, a little few of them are, Ahmadia,
Mir-Mostafaee, and Balakrishnan (2011), Azimi, Yaghmaei, and Azimi (2012), Prakash and
Singh (2013), Prakash (2015 a), and Prakash (2016).
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It is known facts that, the basic goal of Progressive censoring is to save some live test units for
another test, which is mainly useful when units being tested are expensive. Johnson (1964)
discussed a live test in which the experimenter should divide the test units into a number of
sets and each set as an assembly of test units, and run simultaneously. The test terminated
when the first failure is occurring in each group. This censoring pattern is named as first fail-
ure censoring. If an experimenter wants to remove some test units before first failures occur
in these sets, this life test plan is called a First-Failure Progressive (FFP) censoring scheme
(Wu and Kus (2009)). The focus of the present study is to study about the Bayes estimators
under different cases of the FFP censoring based on CP-ALT. Four different censoring plans
are the special cases of the FFP censoring and used here them.

Again, in some experiments where the life of the product was tested, it is not always easy to
collect lifetimes on highly reliable products with a long lifetime under the normal operating
conditions. The accelerated life testing (ALT) or partially accelerated life testing (PALT) are
applicable and widely used in such test situation. In ALT, all test units are kept under higher
stress levels, but in the PALT only few of them are running under severe condition.

Three different methods of stress loading in ALT are available. The first method is constant-
stress ALT, in which stress is kept at a constant level throughout the test (Bagdonavicius
and Nikulin (2002)). The stress applied to the test product is continuously increasing with
time, known as progressive-stress ALT (Al-Hussaini and Abdel-Hamid (2010)). In step-stress
ALT, the test condition changes at a given time or upon the occurrence of a specified number
of failures (Ismail, Abdel-Ghalyb, and El-Khodary (2011), Tangi, Guani, Xu, and Xu (2012),
Hyun and Lee (2015), Abdel-Hamid (2016) and Prakash (2017 a)).

In all the above cases the acceleration factor is pre-assumed, but in case when accelera-
tion factor can’t assume as a known value, the partially accelerated life test (PALT) will be
a better choice for the life testing. In PALT, the test units are tested in both the conditions
and also has three major stress loading named as progressive-stress, constant-stress and step-
stress. In the Constant-Stress PALT (CS-PALT), the item under the test, runs either use or
accelerated condition only.

2. FFP censoring under CS-PALT

The Gompertz distribution inhabits a significant place in modeling human mortality and fit-
ting actuarial tables. The present distribution is getting some more attention nowadays in
the areas of technology, medicine, biology and natural sciences also. The underlying distri-
bution was introduced by Gompertz (1825), and contribution to the statistical method and
characterization of this distribution by many authors. Few of them are Gordon (1990), Rao
and Damaraju (1992) and Wu and Lee (1999).

Garg, Rao, and Redmond (1970) studied the properties of the maximum likelihood estimates,
whereas Chen (1997) developed an exact confidence interval and exact joint confidence re-
gion for the parameters of the concerned distribution. Applications and more survey for the
Gompertz model are given by Al-Hussaini, Al-Dayian, and Adham (2000). Wu, Hung, and
Tsai (2004) uses the least square method for the estimation of the parameters, while the
progressive first-failure censored data used for the estimation of the parameters by Soliman,
Ahmed, Naser, and Gamal (2012).

The probability density and cumulative density function of the two-parameter Gompertz
life distribution are given as
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f (x; θ, σ) = σ eθx exp
(
−σ
θ

(
eθx − 1

))
; x > 0, σ > 0, θ > 0 (1)

and
F (x; θ, σ) = 1− exp

(
−σ
θ

(
eθx − 1

))
; x > 0, σ > 0, θ > 0. (2)

Here, the parameter θ is the shape parameter and parameter σ is called the scale parameter
respectively. The underlying distribution is an Uni-model with positive skewness and an in-
creasing hazard rate function. It is also noted that when θ → 0, the distribution will tend to
an Exponential distribution.

In CS-PALT, n1 test units (selected randomly) from total of n test units, are run at the
normal test condition and the remaining n2(= n− n1) test units are at accelerated test con-
dition. The probability density function, distribution function and failure rate are defined,
when an item tested in normal test condition as

f1 (x1; θ, σ) = σ eθx1 exp
(
−σ
θ

(
eθx1 − 1

))
, (3)

F1 (x1; θ, σ) = 1− exp
(
−σ
θ

(
eθx1 − 1

))
(4)

and
ρ1 (x1) = σeθx1 ; x1 > 0, σ > 0, θ > 0. (5)

Let the failure rate function ρ2 (x2) is denoted for an item tested at accelerated condition
with the acceleration factor λ(> 1), and defined for considering model given in Eq. (3) as

ρ2 (x2) = λσeθx2 ; x2 > 0, σ > 0, θ > 0. (6)

Based on failure rate function ρ2 (x2) given in Eq. (6), the probability density function and
the distribution function under the accelerated condition are obtained as

f2 (x2; θ, σ) = σλ eθx2 exp

(
−σλ
θ

(
eθx2 − 1

))
, (7)

and

F2 (x2; θ, σ) = 1− exp
(
−σλ
θ

(
eθx2 − 1

))
. (8)

Following Prakash (2017 b), the joint probability density function of order statistics based on
first-failure progressively Type-II censoring scheme (FFP) under CS-PALT is defined as

L (θ, σ, λ|x) ∝

{
m1∏
i=1

f1

(
x(1i); θ, σ

) (
1− F1

(
x(1i); θ, σ

))k(R1i+1)−1

}

×

{
m2∏
i=1

f2

(
x(2i); θ, σ, λ

) (
1− F2

(
x(2i); θ, σ, λ

))k(R2i+1)−1

}
. (9)

In FPP censoring, total test units are divided into a number of independent groups with an
equal number of test units in each group. In the present case, FFP censoring is combined
with CS-PALT. Hence, the total n test units divided between two groups, each have n1 and
n2 test units. The n1 units are kept in a normal test condition and n2 are at accelerated
test condition. Each group further break into m groups with an equal number of test units
k. Here, R1i and R2i are the progressive censoring scheme for normal and accelerated test
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group, respectively and FFP censoring runs until m1 and m2 failure are observed in each test
condition respectively. Using Eq. (3-4) & Eq. (7-8) in Eq. (9), we get

L (θ, σ, λ|x) ∝

{
m1∏
i=1

σ eθx(1i) exp
(
−σ
θ

(
eθx(1i) − 1

))(
exp

(
−σ
θ

(
eθx(1i) − 1

)))k(R1i+1)−1
}

×

{
m2∏
i=1

λσ eθx(2i) exp

(
−λσ
θ

(
eθx(2i) − 1

))(
exp

(
−λσ
θ

(
eθx(2i) − 1

)))k(R2i+1)−1
}

L (θ, σ, λ|x) ∝ σm1+m2λm2eθT0 exp
{
−kσ

θ
(T1 (x, θ) + λT2 (x, θ))

}
; (10)

where T0 =
∑m1

i=1 x(1i) +
∑m2

i=1 x(2i), T1 (x, θ) =
∑m1

i=1 (1 +R1i)
(
eθx(1i) − 1

)
and T2 (x, θ) =∑m2

i=1 (1 +R2i)
(
eθx(2i) − 1

)
.

The Maximum Likelihood (ML) estimation of the parameter under consideration are obtained
by taking logarithm of Eq. (10) as

Log L (θ, σ, λ|x) = (m1 +m2) log σ +m2 log λ+ θT0

−kσ
θ
T1 (x, θ)− kλσ

θ
T2 (x, θ) . (11)

The first order Differentiation of Eq. (11) with respect to the parameter θ, σ and λ are given
respectively as

T0 = k
σ̂ML

θ̂ML

{
m1∑
i=1

(1 +R1i)x(1i) e
θ̂MLx(1i) + λ̂ML

m2∑
i=1

(1 +R2i)x(2i) e
θ̂MLx(2i)

}

−k σ̂ML

θ̂2
ML

(
T1 (x, θ) + λ̂MLT2 (x, θ)

)
, (12)

σ̂ML =
θ̂ML (m1 +m2)

k
{∑m1

i=1 (1 +R1i)
(
eθ̂MLx(1i) − 1

)
+ λ̂ML

∑m2
i=1 (1 +R2i)

(
eθ̂MLx(2i) − 1

)} (13)

and

λ̂ML =
θ̂MLm2

kσ̂ML
∑m2

i=1 (1 +R2i)
(
eθ̂MLx(2i) − 1

) . (14)

The unknown parameters are involved in the expressions of ML estimation. A numerical
technique (Newton Raphson integral method) is applied here for the numerical findings of
these ML estimates.

3. Bayes estimation under asymmetric loss function

Selection of prior density in the Bayesian analysis plays an important role, however, re-
searchers have pointed out from time to time that there is no any true way of choice of prior
distribution. It depends completely upon personal belief of the researchers. If one may have
satisfactory information about the parameter under study, one should use, informative prior;
otherwise it is preferable to use non-informative prior.
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Osman (1987) was derived a compound Gompertz model by considering one of the parame-
ters of the Gompertz distribution as a random variable following the Gamma distribution. He
studied the properties of compound Gompertz distribution and suggested its use for modeling
lifetime data and analyzing the survivals in heterogeneous populations. Following, him in the
present study, informative one-parameter Gamma distribution assumed here as the conjugate
family of prior density for the parameters under study and defined as

πθ =
θα−1 e−θ

Γ(α)

and

πσ =
σβ−1 e−σ

Γ(β)
.

The vague prior is selected for the acceleration factor λ here, so that the prior do not play
any significant roles in the analyses. The selected vague prior for the parameter λ and the
joint prior distribution are given as

πλ =
1

λ
; λ > 0

and
π(θ,σ,λ) ∝ θα−1 σβ−1 λ−1 e−θ−σ.

The resultant joint and marginal posterior densities corresponding to the parameters θ, σ and
λ are obtained and given as

π∗(θ,σ,λ) = Ω σm1+m2+β−1 θα−1 λm2−1 eθ(T0−1)e−σ

×exp
{
−kσ

θ
(T1 (x, θ) + λT2 (x, θ))

}
,

π∗(θ) = Ωθ
θm2+α−1 eθ(T0−1)

(T2 (x, θ))m2
(
1 + k

θT1 (x, θ)
)m1+β

, (15)

π∗(σ) = Ωσ σ
m1+β−1 e−σ

∫
θ

θm2+α−1 eθ(T0−1)

(T2 (x, θ))m2
exp

{
−kσ

θ
T1 (x, θ)

}
dθ (16)

and

π∗(λ) = Ωλλ
m2−1

∫
θ

θα−1 eθ(T0−1)(
1 + k

θ (T1 (x, θ) + λT2 (x, θ))
)m1+m2+β

dθ (17)

where Ωθ = Ω Γ(m1+β) Γ(m2)
km2 , Ωσ = Ω Γ(m2)

km2 , Ωλ = Ω Γ (m1 +m2 + β) and Ω =
{

Γ(m2)
km2

Γ (m1 + β)
∫
θ

θm2+α−1 eθ(T0−1)

(T2(x,θ))m2 (1+ k
θ
T1(x,θ))

m1+β
dθ

}−1

.

Again, the selection of loss function is also crucial in Bayesian analysis. The most com-
mon loss function is squared error loss function, which is the posterior mean of the parameter
under consideration. This is symmetric in nature, but in real life experiments, there is not
always possible the symmetric situation. In some situation overestimation is more serious
than underestimation and vice versa. In the present article, we considered two different kinds
of the asymmetric loss function. One is derived by Al-Bayyati (2002) named as Al-Bayyati
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loss function (AbLF) and the second one is Linex loss function (LLF) derived Varian (1975).

Properties of Bayes estimation of the life parameters of the Rayleigh distribution under Pro-
gressive censoring were recently studied by Prakash (2015 b). AbLF is the result of a slight
modification in squared error loss function and is defined for any estimate θ̂ corresponding to
the parameter θ as

LAl

(
θ̂, θ
)

= θa
(
θ̂ − θ

)2
; a ∈ R+.

The Bayes estimator θ̂Al under AbLF corresponding to the any parameter θ is defined as

θ̂Al =

∫
θ θ

a+1 π∗(θ) dθ∫
θ θ

a π∗(θ) dθ
. (18)

For the particular, a = 0 the Bayes estimator under AbLF is simply the posterior mean
(Bayes estimator under squared error loss function) and for a = −2, the Bayes estimator
under invariant squared error loss function (Prakash (2011)).

The Bayes estimators corresponding to the parameters θ, σ and λ under the AbLF given
in Eq. (18) are obtained as

θ̂Al =

∫
θ

θm2+α+a eθ(T0−1)

(T2(x,θ))m2 (1+ k
θ
T1(x,θ))

m1+β
dθ∫

θ
θm2+α+a−1 eθ(T0−1)

(T2(x,θ))m2 (1+ k
θ
T1(x,θ))

m1+β
dθ
, (19)

σ̂Al = Γ (m1 + β + a)

∫
θ

θm2+α−1 eθ(T0−1)

(T2(x,θ))m2 (1+ k
θ
T1(x,θ))

m1+β+a+1dθ∫
θ

θm2+α−1 eθ(T0−1)

(T2(x,θ))m2 (1+ k
θ
T1(x,θ))

m1+β+a
dθ

(20)

and

λ̂Al =

∫
λ λ

m2+a
∫
θ

θα−1 eθ(T0−1)

(1+ k
θ

(T1(x,θ)+λT2(x,θ)))
m1+m2+β

dθ dλ∫
λ λ

m2+a−1
∫
θ

θα−1 eθ(T0−1)

(1+ k
θ

(T1(x,θ)+λT2(x,θ)))
m1+m2+β

dθ dλ
(21)

Varian (1975) discussed about the convex loss function, which is appropriate in the situations
where overestimation is more serious than underestimation and vice versa. The sign of shape
parameter ′c′ reflects the direction of asymmetry whereas the magnitude reflects the degree
of asymmetry (see Prakash (2011) for more details). The Linex loss function (LLF) is defined
for any parameter θ as

L
(
θ̂, θ
)

= ec(θ̂−θ) − c
(
θ̂ − θ

)
− 1 ; c 6= 0. (22)

The Bayes estimators corresponding to the parameters θ, σ and λ under LLF are obtained as

θ̂L = −1

c
log

∫
θ
e−cθ π∗(θ) dθ

⇒ θ̂L = −1

c
log

{
Ωθ

∫
θ

θm2+α−1 eθ(T0−c−1)

(T2 (x, θ))m2
(
1 + k

θT1 (x, θ)
)m1+β

d θ

}
, (23)

σ̂L = −1

c
log

{
ΩσΓ (m1 + β)

∫
θ

θm2+α−1 eθ(T0−1)

(T2 (x, θ))m2

(
k

θ
T1 (x, θ) + c+ 1

)−m1−β
dθ

}
(24)
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and

λ̂L = −1

c
log

{
Ωλ

∫
λ
λm2−1 e−cλ

∫
θ

θα−1 eθ(T0−1)(
1 + k

θ (T1 (x, θ) + λT2 (x, θ))
)m1+m2+β

dθ dλ

}
. (25)

The expressions of Bayes estimators and their corresponding Bayes risks for the unknown
parameters under both loss functions are not obtained in nice closed form. A numerical
technique with the simulation was applied here for obtaining the numerical findings.

4. Numerical illustration

Based on pre-assumed values of α(= 0.50, 1.00, 2.50) and β(= 0.50, 1.00, 2.50) the values of θ
and σ are generated from the prior distribution πθ and πσ respectively. Using these generated
values, a set of 10, 000 random sample generated, each of size n = 30 by using following
relation

x(i) =
1

θ
log

{
1− θ

σ
log

(
1− U(i)

)}
.

Here, U(i) are independently distributed U(0, 1). Monte Carlo simulation technique was ap-
plied here for generating FFP censored samples for each simulation (See details for algorithms
described in Balakrishnan and Sandhu (1995)). For different special cases of FFP censoring
scheme along with different values of k are given in Table 1. Here the values of m1 and m2

are assumed equal only for simplicity in calculation.

The calculated ML estimate of the parameters under consideration are given in Table 2
under all possible special cases of the FFP censoring. It is observed from the tables that,
as hyper-parameter increases the magnitude of the ML estimate first increase and then de-
creases. Increasing trend also have seen when the sample size getting larger. The magnitude
of the ML estimate is observed maximum for the FFP censoring whereas the minimum is
noted for the Type-II censoring for all the considered values. However, the magnitudes of ML
estimates are smaller.

Table 1: Special cases of FFP censoring scheme

Case k m1 m2 Ri; 1, 2, ..., Different Censoring Plans
1 5 05 05 1 2 0 2 1 First-Failure Progressive Type-II Censoring (FFP)
2 5 05 05 0 0 0 0 0 Progressive Type-II Censoring (PC)
3 1 05 05 1 2 0 2 1 First-Failure Censoring (FFC)
4 1 05 05 0 0 0 0 25 Type-II Censoring (T-II)
5 1 05 05 0 0 0 0 0 Complete Sample (CS)
1 5 10 10 1 0 0 5 0 0 1 4 2 1 First-Failure Progressive Type-II Censoring (FFP)
2 5 10 10 0 0 0 0 0 0 0 0 0 0 Progressive Type-II Censoring (PC)
3 1 10 10 1 0 0 5 0 0 1 4 2 1 First-Failure Censoring (FFC)
4 1 10 10 0 0 0 0 0 0 0 0 0 20 Type-II Censoring (T-II)
5 1 10 10 0 0 0 0 0 0 0 0 0 0 Complete Sample (CS)
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Table 2: ML estimate under FFP censoring scheme

m1 m2 (α, β) FFP PC FFC T-II CS

θ̂ML

0.50, 0.50 1.4113 1.3714 1.2853 1.1204 1.3153
05 05 1.00, 1.00 1.4323 1.3845 1.3231 1.1303 1.3207

2.50, 2.50 1.4227 1.3759 1.3101 1.1118 1.3193
0.50, 0.50 1.4387 1.3783 1.3112 1.1542 1.3416

10 10 1.00, 1.00 1.4589 1.4116 1.3494 1.1743 1.3437
2.50, 2.50 1.4473 1.3829 1.3363 1.1455 1.3356

σ̂ML

0.50, 0.50 1.2710 1.2498 1.1966 1.1169 1.1738
05 05 1.00, 1.00 1.2930 1.2636 1.2009 1.1259 1.1987

2.50, 2.50 1.2813 1.2488 1.1791 1.0991 1.1675
0.50, 0.50 1.3018 1.2651 1.2301 1.1476 1.2171

10 10 1.00, 1.00 1.3142 1.2712 1.2348 1.1659 1.2396
2.50, 2.50 1.3036 1.2552 1.2229 1.1397 1.2127

λ̂ML

0.50, 0.50 1.1627 1.1298 1.0589 0.9230 1.0836
05 05 1.00, 1.00 1.1800 1.1406 1.0900 0.9312 1.0880

2.50, 2.50 1.1721 1.1335 1.0793 0.9159 1.0869
0.50, 0.50 1.1852 1.1355 1.0802 0.9509 1.1053

10 10 1.00, 1.00 1.2019 1.1629 1.1117 0.9675 1.1070
2.50, 2.50 1.1923 1.1393 1.1009 0.9437 1.1003

Result Based on Real Data

θ̂ML
05 05 1.00, 1.00 1.4007 1.3449 1.2649 1.1162 1.2725
10 10 1.00, 1.00 1.4178 1.3515 1.3306 1.1692 1.3050

σ̂ML
05 05 1.00, 1.00 1.2471 1.2262 1.1635 1.0947 1.1410
10 10 1.00, 1.00 1.2676 1.2313 1.1767 1.1451 1.1838

λ̂ML
05 05 0.50, 0.50 1.1672 1.1179 1.0574 0.9139 1.0754
10 10 0.50, 0.50 1.1691 1.1502 1.1091 0.9352 1.0844

Table 3-5 shows the Bayes risks for the Bayes estimators corresponding to the parameters θ, σ
and λ respectively under AbLF. Four possible cases of AbLF are assumed here for the analysis.
The values of the shape parameter ′a′ of AbLF are assumed here as a(= 1,−1,−2, 0), a = −2,
shows the Bayes risk under ISELF and for a = 0 it is the Posterior risk. The numerical findings
shows, the maximum risks under the complete sample case, whereas the minimum risk under
FFP censoring. It is also observed that, for higher hyper-parametric values, the Bayes risks
are smaller for Type-II censoring when compared with FFC. Otherwise Bayes risks increase
as the censoring patterns changed. Other properties are seen similar as discussed above.

The Gompertz distribution is often applied to describe the distribution of adult lifespans by
actuaries and demographers. Computer scientists have also started to model the failure rates
of computer codes by said model. Biology and gerontology also considered the Gompertz
distribution for the analysis of survival. More recently, In Marketing Science, it has been
used as an individual-level simulation for customer lifetime value modeling. In all the said
applications, overestimation is more serious than underestimation. Hence, the positive value
of shape parameter c(> 0) is considered here for LLF and it shows the loss function is quite
asymmetric about 0 with overestimation being more costly than underestimation.

The Bayes risks corresponding to the Bayes estimators under LLF are given in Tables 6-
8 respectively for c = 0.50, 1.00. The minimum Bayes risks are obtained for FFP censoring
whereas the maximum for complete sample case and the risk increases as the censoring pat-
terns changed. The Bayes risks are increased when the shape parameter of LLF ′c′ increases.
Other properties are seen similar as discussed above. Hence, for minimum Bayes risk one may
prefer the FFP censoring over other censoring patterns.
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5. Real data illustration

Real life data of the cancer survival times in years (Bekker, Roux, and Mostert (2000)) has
been examined to illustrate the real-world applicability of the results. All the results have
been obtained for analysis purpose for all selected parametric values as assumed in previous
section, but presents only the results for α = β = 1.00 in concerned tables. All the properties
have been seen similar as discussed above. One remarkable point is that, the risk magnitude
is smaller as compared to simulated data, however the difference in risk magnitude is nominal.

Table 3: Bayes risk of θ̂Al under AbLF

m1 m2 a (α, β) FFP PC FFC T-II CS

05 05

0.50, 0.50 0.9415 1.0601 1.0953 1.1425 1.1761
1 1.00, 1.00 0.9499 1.0919 1.1099 1.1634 1.1837

2.50, 2.50 0.9343 1.0809 1.1563 1.1087 1.1756
0.50, 0.50 1.0189 1.1033 1.1313 1.1839 1.2213

-1 1.00, 1.00 1.0282 1.1364 1.1387 1.1961 1.2409
2.50, 2.50 1.0208 1.1264 1.1881 1.1351 1.2319
0.50, 0.50 1.1116 1.2603 1.3001 1.3529 1.4131

-2 (ISELF) 1.00, 1.00 1.1259 1.3079 1.3155 1.3861 1.4332
2.50, 2.50 1.1074 1.2841 1.3574 1.3049 1.4216
0.50, 0.50 1.1651 1.3066 1.3677 1.4261 1.4876

0 (SELF) 1.00, 1.00 1.1754 1.3259 1.3834 1.4307 1.5094
2.50, 2.50 1.1561 1.3123 1.4301 1.3719 1.4940

10 10

0.50, 0.50 0.9699 1.1020 1.1274 1.1482 1.1809
1 1.00, 1.00 0.9869 1.1292 1.1340 1.1663 1.2026

2.50, 2.50 0.9626 1.1224 1.1581 1.1230 1.1962
0.50, 0.50 1.0405 1.1276 1.1559 1.1903 1.2469

-1 1.00, 1.00 1.0594 1.1579 1.1633 1.2216 1.2658
2.50, 2.50 1.0424 1.1504 1.1946 1.1511 1.2549
0.50, 0.50 1.1296 1.2861 1.3063 1.3760 1.4158

-2 (ISELF) 1.00, 1.00 1.1397 1.3241 1.3284 1.3890 1.4367
2.50, 2.50 1.1241 1.2904 1.3805 1.3111 1.4271
0.50, 0.50 1.2002 1.3635 1.3951 1.4333 1.4961

0 (SELF) 1.00, 1.00 1.2211 1.3973 1.4032 1.4679 1.5171
2.50, 2.50 1.1912 1.3889 1.4380 1.3896 1.5050
Result Based on Real Data

05 05

1 1.00, 1.00 0.9155 1.0651 1.0864 1.1299 1.1595
-1 1.00, 1.00 0.9930 1.1091 1.1149 1.1622 1.2161

-2 (ISELF) 1.00, 1.00 1.0897 1.2789 1.2899 1.3503 1.4065
0 (SELF) 1.00, 1.00 1.1387 1.2967 1.3572 1.3945 1.4819

10 10

1 1.00, 1.00 0.9521 1.1020 1.1102 1.1327 1.1782
-1 1.00, 1.00 1.0239 1.1304 1.1393 1.1875 1.2407

-2 (ISELF) 1.00, 1.00 1.1034 1.2950 1.3027 1.3532 1.4099
0 (SELF) 1.00, 1.00 1.1840 1.3674 1.3768 1.4313 1.4895
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Table 4: Bayes risk of σ̂Al under AbLF

m1 m2 a (α, β) FFP PC FFC T-II CS

05 05

0.50, 0.50 0.8352 0.9596 1.0445 1.0746 1.0922
1 1.00, 1.00 0.8426 0.9882 1.0545 1.0905 1.0963

2.50, 2.50 0.8287 0.9783 1.0832 1.0480 1.0952
0.50, 0.50 0.9316 1.0702 1.1153 1.1625 1.1960

-1 1.00, 1.00 0.9398 1.1012 1.1199 1.1736 1.2137
2.50, 2.50 0.9243 1.0901 1.1663 1.1187 1.2056
0.50, 0.50 1.0018 1.1076 1.1193 1.1962 1.2319

-2 (ISELF) 1.00, 1.00 1.0106 1.1409 1.1631 1.2180 1.2607
2.50, 2.50 0.9941 1.1396 1.1514 1.2003 1.2521
0.50, 0.50 1.0459 1.1998 1.2177 1.2501 1.3074

0 (SELF) 1.00, 1.00 1.0551 1.2351 1.2528 1.2624 1.3137
2.50, 2.50 1.0378 1.2029 1.2544 1.2315 1.3008

10 10

0.50, 0.50 0.8706 0.9891 1.0497 1.0853 1.0952
1 1.00, 1.00 0.8858 1.0179 1.0749 1.1005 1.1137

2.50, 2.50 0.8642 1.0081 1.0918 1.0532 1.1076
0.50, 0.50 0.9699 1.1019 1.1274 1.1683 1.2090

-1 1.00, 1.00 0.9868 1.1293 1.1340 1.1963 1.2260
2.50, 2.50 0.9627 1.1225 1.1721 1.1230 1.2163
0.50, 0.50 1.0320 1.1795 1.1924 1.2324 1.2864

-2 (ISELF) 1.00, 1.00 1.0499 1.2015 1.2065 1.2622 1.3044
2.50, 2.50 1.0243 1.1943 1.2364 1.1948 1.2941
0.50, 0.50 1.0774 1.2123 1.2240 1.2866 1.3430

0 (SELF) 1.00, 1.00 1.0961 1.2543 1.2596 1.3177 1.3618
2.50, 2.50 1.0693 1.2468 1.2908 1.2474 1.3510
Result Based on Real Data

05 05

1 1.00, 1.00 0.7940 0.9445 1.0125 1.0380 1.0531
-1 1.00, 1.00 0.8885 1.0544 1.0760 1.1187 1.1672

-2 (ISELF) 1.00, 1.00 0.9573 1.0929 1.1180 1.1619 1.2129
0 (SELF) 1.00, 1.00 1.0005 1.1845 1.2052 1.2150 1.2644

10 10

1 1.00, 1.00 0.8360 0.9734 1.0323 1.0477 1.0701
-1 1.00, 1.00 0.9342 1.0817 1.0897 1.1408 1.1792

-2 (ISELF) 1.00, 1.00 0.9955 1.1518 1.1602 1.2048 1.2554
0 (SELF) 1.00, 1.00 1.0404 1.2032 1.2118 1.2588 1.3112
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Table 5: Bayes risk of λ̂Al under AbLF

m1 m2 a (α, β) FFP PC FFC T-II CS

05 05

0.50, 0.50 0.7051 0.8104 0.8126 0.8348 0.9039
1 1.00, 1.00 0.7214 0.8245 0.8466 0.8632 0.9183

2.50, 2.50 0.7096 0.8104 0.8577 0.8312 0.8904
0.50, 0.50 0.7350 0.8291 0.9023 0.9364 0.9588

-1 1.00, 1.00 0.7518 0.9052 0.9284 0.9655 0.9835
2.50, 2.50 0.7490 0.8913 0.9395 0.9126 0.9639
0.50, 0.50 0.8307 0.9144 0.9678 1.0148 1.0308

-2 (ISELF) 1.00, 1.00 0.8418 0.9227 1.0017 1.0207 1.0559
2.50, 2.50 0.8324 0.9168 1.0082 0.9899 1.0455
0.50, 0.50 0.9377 1.0757 1.0917 1.1208 1.1721

0 (SELF) 1.00, 1.00 0.9459 1.1073 1.1232 1.1318 1.1778
2.50, 2.50 0.9304 1.0784 1.1246 1.1041 1.1662

10 10

0.50, 0.50 0.7366 0.8189 0.8369 0.8897 0.9283
1 1.00, 1.00 0.7495 0.8276 0.8613 0.9101 0.9411

2.50, 2.50 0.7312 0.8125 0.8826 0.8529 0.9337
0.50, 0.50 0.7684 0.8784 0.9107 0.9434 0.9652

-1 1.00, 1.00 0.8022 0.9094 0.9334 0.9665 1.0091
2.50, 2.50 0.7924 0.8939 0.9466 0.9243 1.0011
0.50, 0.50 0.8466 0.9244 0.9739 1.0542 1.0795

-2 (ISELF) 1.00, 1.00 0.8811 1.0082 1.0225 1.0792 1.0946
2.50, 2.50 0.8595 1.0022 1.0176 1.0026 1.0759
0.50, 0.50 0.9659 1.0869 1.0974 1.1535 1.2041

0 (SELF) 1.00, 1.00 0.9827 1.1245 1.1293 1.1814 1.2209
2.50, 2.50 0.9587 1.1178 1.1573 1.1183 1.2112
Result Based on Real Data

05 05

1 1.00, 1.00 0.6794 0.7891 0.8142 0.8209 0.8842
-1 1.00, 1.00 0.7091 0.8679 0.8941 0.9208 0.9479

-2 (ISELF) 1.00, 1.00 0.7970 0.8850 0.9657 0.9747 1.0186
0 (SELF) 1.00, 1.00 0.8987 1.0653 1.0743 1.0832 1.1376

10 10

1 1.00, 1.00 0.7069 0.7922 0.8286 0.8667 0.9065
-1 1.00, 1.00 0.7583 0.8720 0.8990 0.9218 0.9729

-2 (ISELF) 1.00, 1.00 0.8354 0.9685 0.9860 1.0318 1.0564
0 (SELF) 1.00, 1.00 0.9346 1.0821 1.0903 1.1316 1.1797
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Table 6: Bayes risk of θ̂L under LLF

m1 m2 c (α, β) FFP PC FFC T-II CS

05 05

0.50
0.50, 0.50 0.8675 0.9188 0.9574 1.0103 1.0354
1.00, 1.00 0.8853 0.9376 0.9715 1.0231 1.0427
2.50, 2.50 0.8608 0.9276 0.9703 1.0163 1.0349

1.00
0.50, 0.50 0.8989 0.9234 0.9908 1.0348 1.0561
1.00, 1.00 0.9107 0.9541 1.0004 1.0702 1.0732
2.50, 2.50 0.9002 0.9435 0.9933 1.0477 1.0556

10 10

0.50
0.50, 0.50 0.9139 0.9471 0.9707 1.0201 1.0506
1.00, 1.00 0.9298 0.9724 0.9869 1.0569 1.0808
2.50, 2.50 0.9171 0.9661 0.9706 1.0393 1.0548

1.00
0.50, 0.50 0.9363 1.0176 1.0410 1.0602 1.0903
1.00, 1.00 0.9528 1.0426 1.0471 1.0768 1.1104
2.50, 2.50 0.9293 1.0364 1.0369 1.0693 1.1045

Result Based on Real Data

05 05
0.50 0.50, 0.50 0.8359 0.8866 0.9195 0.9696 0.9886
1.00 0.50, 0.50 0.8791 0.9204 0.9344 1.0024 1.0255

10 10
0.50 0.50, 0.50 0.8121 0.8769 0.9183 0.9630 0.9810
1.00 0.50, 0.50 0.8667 0.9143 0.9186 0.9853 1.0003

Table 7: Bayes risk of σ̂L under LLF

m1 m2 c (α, β) FFP PC FFC T-II CS

05 05

0.50
0.50, 0.50 0.8364 0.8764 0.9141 0.9457 1.0202
1.00, 1.00 0.8537 0.9048 0.9478 0.9982 1.0473
2.50, 2.50 0.8498 0.9015 0.9267 0.9816 1.0297

1.00
0.50, 0.50 0.8771 0.9009 0.9567 1.0196 1.0304
1.00, 1.00 0.8985 0.9409 0.9776 1.0241 1.0479
2.50, 2.50 0.8783 0.9305 0.9691 1.0122 1.0299

10 10

0.50
0.50, 0.50 0.8916 0.9214 0.9471 0.9953 1.0325
1.00, 1.00 0.9172 0.9487 0.9629 1.0312 1.0545
2.50, 2.50 0.9048 0.9326 0.9437 1.0114 1.0301

1.00
0.50, 0.50 0.9235 0.9728 1.0157 1.0284 1.0538
1.00, 1.00 0.9296 1.0102 1.0216 1.0506 1.0834
2.50, 2.50 0.9067 1.0012 1.0117 1.0433 1.0776

Result Based on Real Data

05 05
0.50 0.50, 0.50 0.8052 0.8548 0.8965 0.9454 0.9930
1.00 0.50, 0.50 0.8668 0.8974 0.9112 0.9774 1.0082

10 10
0.50 0.50, 0.50 0.8014 0.8516 0.8760 0.9293 0.9760
1.00 0.50, 0.50 0.8548 0.8818 0.8925 0.9582 0.9764
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Table 8: Bayes risk of λ̂L under LLF

m1 m2 c (α, β) FFP PC FFC T-II CS

05 05

0.50
0.50, 0.50 0.9197 0.9632 0.9842 1.0286 1.0996
1.00, 1.00 0.9385 0.9941 1.0209 1.0857 1.1191
2.50, 2.50 0.9343 0.9905 1.0079 1.0676 1.1012

1.00
0.50, 0.50 0.9439 0.9899 1.0406 1.0909 1.1207
1.00, 1.00 0.9673 1.0134 1.0733 1.1139 1.1397
2.50, 2.50 0.9553 1.0021 1.0154 1.0809 1.1102

10 10

0.50
0.50, 0.50 0.9497 1.0122 1.0401 1.0725 1.1230
1.00, 1.00 0.9776 1.0419 1.0673 1.0996 1.1469
2.50, 2.50 0.9641 1.0243 1.0264 1.0901 1.1204

1.00
0.50, 0.50 1.0044 1.0381 1.1047 1.1085 1.1462
1.00, 1.00 1.0101 1.0987 1.1211 1.1427 1.1784
2.50, 2.50 0.9762 1.0890 1.1004 1.1347 1.1721

Result Based on Real Data

05 05
0.50 0.50, 0.50 0.8875 0.9414 0.9674 1.0303 1.0627
1.00 0.50, 0.50 0.9254 0.9878 1.0124 1.0438 1.0897

10 10
0.50 0.50, 0.50 0.8834 0.9379 0.9548 1.0127 1.0453
1.00 0.50, 0.50 0.9123 0.9707 0.9728 1.0346 1.0640

6. Conclusion

In the life testing experiments, the cost and time limitation pushed to experimenters, to end
the experiments before all the units on test fail. The First-Failure Progressive (FFP) cen-
soring scheme is the combination of first-failure censoring and Progressive Type-II censoring
and gives an opportunity to remove some sets of test units before observing the first failures
in these sets.

Two-parameter Gompertz distribution is considered here for the Bayesian inference under
FFP censoring with Constant-Stress Partially Accelerated Life Test. The properties of the
Bayes estimators of all the parameters under two different asymmetric loss functions and
special cases of FFP censoring have been study based on real and simulated data.

The numerical findings shows, the highest risks for the complete sample case, whereas the
least risk has been noted under FFP censoring. It is also observed that, for higher hyper pa-
rameter values, the Bayes risks are smaller for Type-II censoring when compared with FFC.
Hence, one may prefer the FFP censoring over others, for the selected parametric values and
small censored sample size.
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