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Abstract

For the analysis of square contingency tables with the same row and column ordinal
classifications, this article proposes a new model which indicates that the log-ratios of
symmetric cell probabilities are proportional to the difference between log-row category
and log-column category. The proposed model may be appropriate for a square ordinal
table if it is reasonable to assume an underlying bivariate log-normal distribution. Also,
this article gives the decomposition of the symmetry model using the proposed model with
the orthogonality of test statistics. Examples are given. The simulation studies based on
bivariate log-normal distribution are given.
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1. Introduction

Consider an R × R square contingency table with the same row and column classifications.
Let pij denote the probability that an observation will fall in the ith row and jth column of
the table (i = 1, . . . , R; j = 1, . . . , R). The symmetry (S) model is defined by

pij = ψij (i = 1, . . . , R; j = 1, . . . , R),

where ψij = ψji; see Bowker (1948), Bishop, Fienberg, and Holland (1975, p. 282) and
Agresti (2013, p. 426). This model indicates a structure of symmetry of the probabilities
{pij} with respect to the main diagonal of the table. Agresti (1983) proposed the linear
diagonals-parameter symmetry (LDPS) model, defined by

pij = αiβjψij (i = 1, . . . , R; j = 1, . . . , R),

where ψij = ψji. This model is also expressed as

pij
pji

= δj−i (i < j).
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This indicates that the log-odds that an observation will fall in the (i, j)th cell instead of in
the (j, i)th cell, i < j, is proportional to the distance j − i from the main diagonal of the
table. A special case of this model obtained by putting α = β is the S model.

Consider random variables (U, V ) having a bivariate normal distribution with means E(U) =
µ1 and E(V ) = µ2, variances Var(U) = Var(V ) = σ2, and correlation Corr(U, V ) = ρ. Then
the bivariate probability density function f(u, v) is

f(u, v) =
1

2πσ2
√

1− ρ2
exp

[
− 1

2σ2(1− ρ2)
{

(u− µ1)2 − 2ρ(u− µ1)(v − µ2) + (v − µ2)2
}]
.

It satisfies
f(u, v)

f(v, u)
= ∆v−u,

where

∆ = exp

[
µ2 − µ1
σ2(1− ρ)

]
.

Agresti (1983) described the relationship between the LDPS model and the bivariate normal
distribution with equal marginal variances as follows. The f(u, v)/f(v, u) has the form ∆v−u,
and hence the LDPS model may be appropriate for a square ordinal table if it is reasonable
to assume an underlying bivariate normal distribution with equal marginal variances.

Now, we consider a bivariate log-normal distribution. We are interested in proposing a new
model, which would be appropriate if it is reasonable to assume an underlying bivariate
log-normal distribution.

Section 2 proposes new models. Section 3 gives the decompositions of the S model using
the proposed models. Section 4 shows the orthogonality of decompositions given in Section
3. Section 5 gives examples. Section 6 simulates the relationships between the underlying
log-normal distribution and proposed models. Section 7 provides some concluding remarks.

2. Log-normal distribution type symmetry models

2.1. Properties of log-normal distribution

Consider random variables (U, V ) having a bivariate log-normal distribution, where U > 0
and V > 0. Define Z1 = logU and Z2 = log V . Then Z1 and Z2 have a bivariate normal
distribution, where means E(Z1) = µ1 and E(Z2) = µ2, variances Var(Z1) = σ21 and Var(Z2) =
σ22, and correlation Corr(Z1, Z2) = ρ. The bivariate probability density function h(u, v) is

h(u, v) =
1

2πσ1σ2
√

1− ρ2uv
exp

[
− 1

2(1− ρ2)
Q(u, v)

]
,

where

Q(u, v) =

(
log u− µ1

σ1

)2

− 2ρ

(
log u− µ1

σ1

)(
log v − µ2

σ2

)
+

(
log v − µ2

σ2

)2

.

It satisfies
h(u, v)

h(v, u)
= τ log v−log u1 τ

(log v)2−(log u)2
2 ,

where

τ1 = exp

[
1

1− ρ2

{
−
(
µ1
σ21
− µ2
σ22

)
− ρ(µ1 − µ2)

σ1σ2

}]
,

τ2 = exp

[
1

2(1− ρ2)

{
1

σ21
− 1

σ22

}]
.
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When Z1 and Z2 have equal marginal variances (i.e., Var(Z1) = Var(Z2) = σ2), the probability
density function satisfies

h(u, v)

h(v, u)
= τ log v−log u,

where

τ = exp

[
µ2 − µ1
σ2(1− ρ)

]
.

2.2. LNS: Log-normal distribution type symmetry

Consider the R × R square contingency table with ordered categories. We propose a model
defined by

pij = αlog iβlog jψij (i = 1, . . . , R; j = 1, . . . , R),

where ψij = ψji. This model is also expressed as

pij
pji

= θlog j−log i (i < j),

where θ = β/α. This indicates that the log-odds that an observation will fall in the (i, j)th
cell instead of in the (j, i)th cell, i < j, is proportional to the difference between log j and
log i. This model may be appropriate for a square ordinal table if it is reasonable to assume
an underlying bivariate log-normal distribution, where marginal variances of logarithms (i.e.,
of normally distributed variables) are equal. We shall refer to this model as the log-normal
distribution type symmetry (LNS) model. A special case of this model obtained by putting
θ = 1 is the S model.

2.3. ELNS: Extended log-normal distribution type symmetry

Moreover, we propose another model defined by

pij = αlog i
1 α

(log i)2

2 βlog j1 β
(log j)2

2 ψij (i = 1, . . . , R; j = 1, . . . , R),

where ψij = ψji. This model is also expressed as

pij
pji

= θlog j−log i1 θ
(log j)2−(log i)2
2 (i < j),

where θ1 = β1/α1 and θ2 = β2/α2. This indicates that the probability that an observation will

fall in the (i, j)th cell, i < j, is θlog j−log i1 θ
(log j)2−(log i)2
2 times higher than the probability that

the observation falls in the (j, i)th cell. This model may be appropriate for a square ordinal
table if it is reasonable to assume an underlying bivariate log-normal distribution without
equal marginal variances of logarithms. A special case of this model obtained by putting
θ1 = θ2 = 1 is the S model. Also, a special case of this model obtained by putting θ2 = 1 is
the LNS model. Thus, we shall refer to this model as the extended log-normal distribution
type symmetry (ELNS) model.

3. Decompositions of symmetry model

Let X and Y denote the row and column variables, respectively. Refer to model of equality
of log marginal means, i.e., E(logX) = E(log Y ), as the LME model. Also, refer to model
of equality of log marginal means and variances, i.e., E(logX) = E(log Y ) and Var(logX) =
Var(log Y ), as the LMVE model. We obtain the decompositions for the S model as follows.

Theorem 1. The S model holds if and only if both the LNS and LME models hold.
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Theorem 2. The S model holds if and only if both the ELNS and LMVE models hold.

The proof of Theorem 1 is given in Appendix 1. The proof of Theorem 2 is omitted because
it is obtained in a similar way. The LNS model is a special case of the ELNS model. These
models both relax symmetry assumptions needed in the S model. To ensure validity of the S
model, we have to add some assumptions on moments. Stronger assumptions (equality of the
first and second moments, i.e., the LMVE model) have to be added when the ELNS is hold,
while weaker assumptions (equality of the first moments, i.e., the LME model being a special
case of the LMVE model) have to be added when the LME model hold. In fact, we need
some basic assumptions on symmetry (the ELNS model), on moments (the LME model), and
one further assumption. It can be either stronger assumption on symmetry (θ2 = 1, i.e., the
LNS model, as described in Theorem 1) or equality of the second moments (i.e., the LMVE
model, as described in Theorem 2). Theorems 1 and 2 may be useful for seeing the reason for
the poor fit when the S model fits the data poorly.

4. Orthogonality of test statistics

Let nij denote the observed frequency in the (i, j)th cell of the table (i = 1, . . . , R; j =
1, . . . , R) with n =

∑∑
nij , and let mij denote the corresponding expected frequency. As-

sume that {nij} have a multinomial distribution. The maximum likelihood estimates (MLEs)
of {mij} under the LNS and ELNS models could be obtained using iterative procedures; for
example, see Darroch and Ratcliff (1972). Let G2(M) denote the likelihood ratio chi-squared
statistic for testing goodness-of-fit of model M . The number of degrees of freedom for the
LNS model is (R − 2)(R + 1)/2, which is one less than that for the S model. Also, that for
the ELNS model is (R2 −R− 4)/2, which is one less than that for the LNS model.

The orthogonality of the test statistics for goodness-of-fit of two models is discussed by, e.g.,
Lang and Agresti (1994) and Lang (1996). Generally suppose that model M3 holds if and
only if both models M1 and M2 hold. As described in Darroch and Silvey (1963), (i) when
the test statistic G2(M3) is asymptotically equivalent to the sum of G2(M1) and G2(M2),
where df(M3) equals the sum of df(M1) and df(M2), if both M1 and M2 are accepted (at the
α significance level) with high probability, then M3 would be accepted; however (ii) when the
asymptotic equivalence described above does not hold, such an incompatible situation that
both M1 and M2 are accepted with high probability but M3 is rejected with high probability
is quite possible. We obtain the following theorems.

Theorem 3. The test statistic G2(S) is asymptotically equivalent to the sum of G2(LNS)
and G2(LME). The number of degrees of freedom for the S model equals the sum of that of
the LNS and LME models.

Theorem 4. The test statistic G2(S) is asymptotically equivalent to the sum of G2(ELNS)
and G2(LMV E). The number of degrees of freedom for the S model equals the sum of that of
the ELNS and LMVE models.

The proof of Theorem 3 is given in Appendix 2. The proof of Theorem 4 is omitted because
it is obtained in a similar way.

5. Examples

Example 1. Table 1 taken from Tomizawa (1985) is constructed from the data of the unaided
distance vision of 3168 pupils aged 6-12, including about half the girls at elementary schools
in Tokyo, Japan examined in June 1984. In Table 1 the row variable is the right eye grade
and the column variable is the left eye grade with the categories ordered from Best (1) to
Worst (4).
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We see from Table 3 that each of the S, LNS, ELNS and LME models fits these data well
although the LMVE model fits poorly. We see that the value of the test statistic for the S
model is very close to the sum of the values of those for the LNS and LME models. We shall
compare the LNS and ELNS models being nested models. For testing hypothesis that the LNS
model holds assuming that the ELNS model holds for these data, we can use the likelihood
ratio chi-squared statistic G(LNS|ELNS), where G(LNS|ELNS) = G(LNS)−G(ELNS)
with one degree of freedom being the difference between the number of degree of freedom for
the LNS and ELNS models. Since G(LNS|ELNS) = 3.90, this hypothesis is rejected at the
0.05 significance level. Therefore, the ELNS model would be preferable to the LNS model.

Under the ELNS model, the maximum likelihood estimates of θ1 and θ2 are θ̂1 = 2.511 and
θ̂2 = 0.519, respectively. Therefore the probability that a pupil’s right eye grade is i and

his/her left eye grade is j (> i) is estimated to be θ̂log j−log i1 θ̂
(log j)2−(log i)2
2 times higher than

the probability that the pupil’s right eye grade is j and his/her left eye grade is i. Moreover,
the maximum likelihood estimates of {pij/pji} are p̂12/p̂21 = 1.381, p̂13/p̂31 = 1.245, p̂14/p̂41 =
1.014, p̂23/p̂32 = 0.901, p̂24/p̂42 = 0.735 and p̂34/p̂43 = 0.815, respectively. Therefore, for the
pupils that their right or left eye grade is Best (1), their right eye is estimated to be better
than their left eye. On the other hand, for the pupils that both right and left eyes grade is
not Best (1), their right eye is estimated to be worse than their left eye.

Table 1: Unaided distance vision of 3168 pupils comprising nearly equal number of boys and
girls aged 6-12 at elementary schools in Tokyo, Japan, examined in June 1984; from Tomizawa
(1985). (The parenthesized values are MLEs of expected frequencies under the ELNS model.)

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 2470 126 21 10 2627
(2470.00) (128.75) (17.19) (11.08)

Second (2) 96 138 33 5 272
(93.25) (138.00) (35.56) (5.08)

Third (3) 10 42 75 15 142
(13.81) (39.44) (75.00) (13.92)

Worst (4) 12 7 16 92 127
(10.92) (6.92) (17.08) (92.00)

Total 2588 313 145 122 3168

Example 2. Table 2 taken from Tomizawa (1984) is constructed from the data of unaided
distance vision of 4746 students aged 18 to about 25, including about 10% of the women of
the Faculty of Science and Technology, Tokyo University of Science in Japan examined in
April, 1982.

We see from Table 3 that the LNS and ELNS models fit these data well. However, the S,
LME and LMVE models fit poorly. We shall compare the LNS and ELNS models being nested
models. Since G(LNS|ELNS) = 1.56, this hypothesis that the LNS model holds assuming
that the ELNS model holds, is accepted at the 0.05 significance level. Therefore, the LNS
model would be preferable to the ELNS model, since it is simpler.

Under the LNS model, the maximum likelihood estimate of θ is θ̂ = 0.757. Therefore the
probability that a student’s right eye grade is i and his/her left eye grade is j (> i) is estimated
to be θ̂log j−log i times higher than the probability that the student’s right eye grade is j and
his/her left eye grade is i. In addition, since θ̂ < 1, the marginal probability that a student’s
right eye is i or below (i = 1, 2, 3) is estimated to be less than the marginal probability that
the student’s left eye is i or below. Thus, under the LNS model, a student’s right eye is
estimated to be worse than his/her left eye.

We see from Table 3 that the poor fit of the S model is caused by the influence of the lack of
structure of the LME (LMVE) model rather than the LNS (ELNS) model.
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Table 2: Unaided distance vision of 4746 students in Faculty of Science and Technology,
Tokyo University of Science in Japan examined in April, 1982; from Tomizawa (1984). (The
parenthesized values are MLEs of expected frequencies under the LNS model.)

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1291 130 40 22 1483
(1291.00) (126.10) (44.12) (17.00)

Second (2) 149 221 114 23 507
(152.90) (221.00) (112.30) (21.69)

Third (3) 64 124 660 185 1033
(59.88) (125.70) (660.00) (208.32)

Worst (4) 20 25 249 1429 1723
(25.00) (26.31) (225.68) (1429.00)

Total 1524 500 1063 1659 4746

Table 3: Likelihood ratio chi-squared values G2 for models applied to Tables 1 and 2.

Applied Table 1 Table 2
models Degrees of freedom G2 Degrees of freedom G2

S 6 9.69 6 16.95*
LNS 5 6.71 5 8.55

ELNS 4 2.81 4 6.99
LME 1 2.97 1 8.37*

LMVE 2 6.87* 2 9.90*
* means significant at 0.05 level.

6. Simulation study

Agresti (1983) showed that in terms of a simulation study, the LDPS model gives a good fit
(but the S model gives a poor fit) when there is an underlying bivariate normal distribution
with equal marginal variances. We now consider the relationship between the LNS (ELNS)
model and the joint bivariate log-normal distribution in terms of simulation studies.

Consider random variables (U, V ) having a bivariate log-normal distribution, where U > 0
and V > 0. Define Z1 = logU and Z2 = log V . Then Z1 and Z2 have a bivariate normal
distribution, where means E(Z1) = µ1 and E(Z2) = µ2, variances Var(Z1) = σ21 and Var(Z2) =
σ22, and correlation Corr(Z1, Z2) = ρ. As described in Section 2, the ratio of probability density

function h(u, v)/h(v, u) has the form τ log v−log u1 τ
(log v)2−(log u)2
2 for constants τ1 and τ2. We

consider the 4× 4 tables of sample size 5000 formed by using cut points for each variable at
1
2E(U),E(U), 2E(U), where E(U) = exp{µ1 +

σ2
1
2 } from an underlying bivariate log-normal

distribution with the conditions µ1 = 0, σ21 = 1, ρ = 0.3, µ2 = −0.2,−0.1, 0.0, 0.1, 0.2 and
σ22 = 0.8, 1.0, 1.2. We make 1000 tables under each condition, and test goodness-of-fit of the
S, LDPS, LNS and ELNS models at the 0.05 significance level. Table 4 gives the accepted
count under each condition.

We see from Table 4 that the ELNS model fits well for each condition, although the LNS
model fits well when σ22 is close to 1. The S models fit well when µ1 = µ2 and σ21 ≈ σ22.

7. Concluding remarks

The ELNS model may be appropriate for a square ordinal table if it is reasonable to assume
an underlying bivariate log-normal distribution without the equality of marginal variances,
although the LNS model may be appropriate if it is reasonable to assume it with equal
marginal variances (see Section 6).
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Table 4: The counts accepted by the likelihood ratio chi-squared test for models applied to
1000 tables at the 0.05 significance level.

Models
µ2 σ2

2 S LDPS LNS ELNS
−0.2 0.8 0 216 3 713
−0.2 1.0 0 867 850 919
−0.2 1.2 0 73 519 938
−0.1 0.8 0 87 0 784
−0.1 1.0 13 937 932 947
−0.1 1.2 23 132 328 935

0 0.8 15 33 15 862
0 1.0 940 945 947 939
0 1.2 159 210 151 891

0.1 0.8 0 17 88 923
0.1 1.0 13 942 912 944
0.1 1.2 0 270 32 849
0.2 0.8 0 3 325 929
0.2 1.0 0 911 782 908
0.2 1.2 0 288 1 726

For the orthogonality of test statistic in Theorem 3, we point out that the likelihood ratio
chi-squared statistic for testing goodness-of-fit of the S model assuming that the LNS model
holds true is G2(S) − G2(LNS) and this is asymptotically equivalent to the likelihood ratio
chi-squared statistic for testing goodness-of-fit of the LME model, i.e., G2(LME). We observe
from Table 3 that for each of the data in Tables 1 and 2 the value of G2(S) is very close to
the sum of values of G2(LNS) and G2(LME), and it is also very close to the sum of values
of G2(ELNS) and G2(LMV E).
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Appendix 1

Proof of Theorem 1. If the S model holds, then the LNS and LME models hold. Assuming
that both the LNS and LME models hold, then we shall show that the S model holds. Let
{p∗ij} denote the cell probabilities which satisfy both the LNS and LME models. Since the
LNS model holds, we see

log p∗ij = (log i)(logα) + (log j)(log β) + logψij (i = 1, . . . , R; j = 1, . . . , R),

where ψij = ψji. Let {πij = c−1ψij} with c =
∑R

i=1

∑R
j=1 ψij . We note that

∑R
i=1

∑R
i=1 πij =

1 with 0 < πij < 1. Then, since the {p∗ij} satisfy the LNS and LME models, we see

log

(
p∗ij
πij

)
= log c+ (log i)(logα) + (log j)(log β) (i = 1, . . . , R; j = 1, . . . , R), (1)

and

µ∗1 = µ∗2, (2)

where µ∗1 =
∑R

i=1

∑R
j=1(log i)p∗ij and µ∗2 =

∑R
i=1

∑R
j=1(log j)p∗ij . Then, we denote µ∗1 (= µ∗2)

by µ0.
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Consider the arbitrary cell probabilities {pij} satisfying

µ̃1 = µ̃2 = µ0, (3)

where µ̃1 =
∑R

i=1

∑R
j=1(log i)pij and µ̃2 =

∑R
i=1

∑R
j=1(log j)pij .

From (1), (2) and (3), we see

R∑
i=1

R∑
j=1

(pij − p∗ij) log

(
p∗ij
πij

)
= 0. (4)

Using the equation (4), we obtain

K({pij}, {πij}) = K({p∗ij}, {πij}) +K({pij}, {p∗ij}),

where

K({aij}, {bij}) =

R∑
i=1

R∑
j=1

aij log

(
aij
bij

)
,

and K({aij}, {bij}) is the Kullback-Leibler information between {aij} and {bij}. Since {πij}
being a function {p∗ij} is fixed, we see

min
{pij}

K({pij}, {πij}) = K({p∗ij}, {πij}),

and then {p∗ij} uniquely minimizes K({pij}, {πij}); see Bhapkar and Darroch (1990).

Let {p∗∗ij = p∗ji}. Then,

log p∗∗ij = log p∗ji = (log j)(logα) + (log i)(log β) + logψji (i = 1, . . . , R; j = 1, . . . , R), (5)

with ψij = ψji. Noting that {πij = πji}, the equation (5) is also expressed as

log

(
p∗∗ij
πij

)
= log c+ (log j)(logα) + (log i)(log β) (i = 1, . . . , R; j = 1, . . . , R), (6)

From (2), (3) and (6), we see

R∑
i=1

R∑
j=1

(pij − p∗∗ij ) log

(
p∗∗ij
πij

)
= 0. (7)

Using the equation (7), we obtain

K({pij}, {πij}) = K({p∗∗ij }, {πij}) +K({pij}, {p∗∗ij }).

Since {πij} being a function {p∗∗ij } is fixed, we see

min
{pij}

K({pij}, {πij}) = K({p∗∗ij }, {πij}),

and then {p∗∗ij } uniquely minimizes K({pij}, {πij}). Therefore, we see p∗ij = p∗∗ij . Thus,
p∗ij = p∗ji. Namely the S model holds.
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Appendix 2

Proof of Theorem 3. Let p = (p11, . . . , p1R, . . . , pR1, . . . , pRR)t denote the R2×1 vector, where
At denotes the transpose of vector (or matrix) A. Since parameter θ is expressed as the
function of {pij} in the LNS model, this model can be written as

H1(p) = 0d1 ,

where

H1(p) = (H13(p), . . . ,H1R(p), H23(p), . . . ,H2R(p), . . . ,HR−1,R(p))t,

with

Hij(p) = log pij − log pji −
log j − log i

log 2
(log p12 − log p21),

and 0s denotes the s× 1 vector (or scalar) with all elements zero with d1 = (R− 2)(R+ 1)/2.
The LME model is expressed as

H2(p) = 0d2 ,

where

H2(p) =

R∑
i=1

R∑
j=1

(log i− log j)pij ,

and d2 = 1. From Theorem 1, the S model is expressed as

H3(p) = 0d3 ,

where

H3(p) = (H1(p)
t, H2(p))

t,

and d3 = R(R−1)/2. Let hs(p) denote the ds×R2 matrix of partial derivatives of Hs(p) with
respect to p, i.e., hs(p) = ∂Hs(p)/∂p

t for s = 1, 2, 3. Let Σ(p) = diag(p)− ppt, where diag(p)
denotes a diagonal matrix with ith component of p as ith diagonal component. Let p̂ denote
estimate of p with {pij} replaced by {p̂ij = nij/n}. Using the delta method,

√
n(H3(p̂) −

H3(p)) has asymptotically a normal distribution with mean zero and covariance matrix

h3(p)Σ(p)h3(p)
t =

[
h1(p)Σ(p)h1(p)

t h1(p)Σ(p)h2(p)
t

h2(p)Σ(p)h1(p)
t h2(p)Σ(p)h2(p)

t

]
.

We see that all elements of h1(p)Σ(p)h2(p)
t equal zero. Thus we obtain ∆3(p) = ∆1(p)+∆2(p),

where

∆s(p) = Hs(p)
t[hs(p)Σ(p)hs(p)

t]−1Hs(p). (8)

Under each Hs(p) = 0ds (s = 1, 2, 3), the Wald statistic Ws = n∆s(p̂) has asymptotically a
chi-squared distribution with ds degrees of freedom. From equation (8), we see that W3 =
W1+W2. From the asymptotic equivalence of the Wald statistic and likelihood ratio statistic,
we obtain Theorem 3.
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