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Abstract

In this paper, we discuss modeling and analysis of competing risks data using the quantile
function. We introduce and study the cause specific hazard quantile function. We present
competing risks models using various functional forms for the cause specific hazard quantile
functions. A non-parametric estimator of the cause specific hazard quantile function is
derived. Asymptotic properties of the estimator are studied. Simulation studies are carried
out to assess the performance of the estimator. Finally, we apply the proposed procedure to
real life data sets.
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1. Introduction

In survival studies, it is common that the failure of subjects may be attributed to more than
one cause. Competing risks models are usually employed to analyze such type of data. In the
competing risks set up, for each subject under study we observe a random vector (T, J) where T
represents lifetime (possibly censored) and J = {1, 2, . . . , k} is a set of possible causes of failure.
Assume that the causes of failure are mutually exclusive. Two frameworks are often employed
to deal with standard competing risks data viz. cumulative incidence function formulations and
cause specific hazard formulations.

The cumulative incidence function Fj(t) is the probability of failure before time t due to cause
j given by,

Fj(t) = P [T ≤ t, J = j], j = 1, 2, . . . , k. (1)

Note that F (t) =
∑k

j=1 Fj(t) is the distribution function of T .
The cause specific hazard function hj(t) of T is defined as,

hj(t) = lim∆t→0
P [T < t+ ∆t, J = j|T ≥ t]

∆t
, j = 1, 2, . . . , k. (2)

The hj(t) is the instantaneous rate of failure due to the cause j at time t given the subject has
survived up to time t.
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Let fj(t) = d
dtFj(t) be the cause specific density of T . If the density fj(t) exists, (2) can be

written as,

hj(t) =
fj(t)

S(t)
, (3)

where S(t) is the survival function of T .
Another important function of interest used for the analysis of competing risks data is the
sub-survival function Sj(t), defined by,

Sj(t) = exp

(
−
∫ t

0
hj(x)dx

)
. (4)

The function (4) does not represent a proper survival function of an observable random variable
(Lawless (2003)). Further Sj(t) 6= 1− Fj(t).
When the causes of failure are mutually exclusive and exhaustive, then the hazard rate of T ,
h(t) can be written as,

h(t) =
k∑
j=1

hj(t).

Thus, S(t) is uniquely determined by the following identity,

S(t) = exp

− k∑
j=1

∫ t

0
hj(u)du

 =
k∏
j=1

Sj(t).

From (3), we get the cumulative incidence function Fj(t) as,

Fj(t) =

∫ t

0
S(u)hj(u)du.

For properties and applications of (1), (2) and (4), see Carriere and Kochar (2000), Lawless
(2003) and Crowder (2012).
An alternative approach for modeling and analysis of statistical data is to use the quantile
function. Both the distribution function and the quantile function convey the same informa-
tion about the random mechanism of the subject with different implications. The concepts
and methodologies based on the distribution function are traditionally employed in statistical
theory. However, the quantile function has several interesting properties that are not shared by
the distribution function. For example, the sum of two quantile functions is again a quantile
function. Parzen (1979) discussed non-parametric statistical modeling of data using the quantile
function. Recently, Peng and Fine (2007) developed non-parametric inference procedures for
competing risks data using the quantile function. Nair and Sankaran (2009) presented basic
reliability concepts viz, hazard rate, mean residual life function etc. in terms of the quantile
function. Sankaran, Nair, and Sreedevi (2010) derived a test procedure for comparing various
risks using sub-quantile functions and Soni, Dewan, and Jain (2015) proposed tests for successive
comparison of quantiles using the quantile functions. Soni, Dewan, and Jain (2012) developed a
non-parametric estimator of the quantile density function. Various properties and applications
of the quantile function are available in Gilchrist (2000) and Nair, Sankaran, and Balakrishnan
(2013).

The objective of the present work is to supplement the work of Peng and Fine (2007) by
introducing quantile based concepts in the competing risks set up. We define the cause specific
hazard quantile function which is the quantile version of (2). The proposed study has several
advantages. In many practical situations, the well known parametric models are not appropriate
for the analysis of lifetime data. The quantile approach provides new quantile function models,
as shown in Section 2, which are useful for the modeling and analysis of lifetime data. In survival
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studies, censoring is common. In such contexts, quantile based analysis is more appropriate as
quantiles are more robust (Nair et al. (2013)). Finally, the quantile approach gives an alternative
methodology for the statistical analysis of competing risks data.

The rest of the article is organized as follows. In Section 2, we present definitions of quantile
based reliability concepts useful in competing risks theory. Section 3 discusses non-parametric
estimation of the cause specific hazard quantile functions and study asymptotic properties of
the estimators. A simulation study is carried out in Section 4 to assess finite sample properties
of the estimators. The proposed estimation procedure is illustrated on two real data sets in
Section 5. Finally, Section 6 provides major conclusions of the study.

2. Cause specific hazard quantile functions

Let T be a non-negative continuous random variable representing the lifetime of a subject with
distribution function F (t) and density function f(t). Assume that F (t) is strictly increasing.
Denote Q(u) = inf{t : F (t) ≥ u} as the quantile function of T . Since F (t) is strictly increasing,
we have Q(u) = F−1(u). Let Qj(u) be the sub-quantile function defined by,

Qj(u) = inf{t : Fj(t) ≥ u}. (5)

Since Fj(∞) < 1, Qj(1) = vj < ∞. Let q(u) = d
duQ(u) and qj(u) = d

duQj(u) be the quantile
density and the sub-quantile density functions, respectively (see Peng and Fine (2007)). Taking
derivative on both sides of the identity F (Q(u)) = u, we get f(Q(u)) = 1

q(u) . Nair and Sankaran

(2009) defined the hazard quantile function of T which is the quantile version of h(t) as,

Λ(u) = h(Q(u)) =
f(Q(u))

1− F (Q(u))
=

1

(1− u)q(u)
. (6)

It is shown that Λ(u) uniquely determines the quantile function, Q(u), by

Q(u) =

∫ u

0

dp

(1− p)Λ(p)
. (7)

We now define the cause specific hazard quantile function as,

Λj(u) = hj(Q(u)) =
fj(Q(u))

1− F (Q(u))
=
fj(Q(u))

(1− u)
. (8)

The quantity Λj(u) is interpreted as the conditional probability of the failure of the subject in
the next small interval of time due to cause j given the survival of the subject at 100(1− u)%
point of the distribution.
Note that,

d

du
Fj(Q(u)) = q(u)fj(Q(u)) =

fj(Q(u))

f(Q(u))
. (9)

It is easy to see from (6) and (8), that
∑k

j=1 Λj(u) = Λ(u).

Thus the hazard quantile function is the sum of the cause specific hazard quantile functions.
Further, note that,

d

du
(Fj(Q(u))) =

Λj(u)

Λ(u)
.

Therefore,

Fj(Q(u)) =

∫ u

0

Λj(p)

Λ(p)
dp,

or

Q(u) = Qj

(∫ u

0

Λj(p)

Λ(p)
dp

)
. (10)

The identity (10) enables us to determine Q(u) or Qj(u) from Λj(u).
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Example 2.1 (Constant cause specific hazard quantile function). Suppose that the cause
specific hazard quantile function corresponding to jth risk is constant. That is,

Λj(u) = aj , aj > 0 for 0 < u < 1.

Hence the hazard function Λ(u) =
∑k

j=1 aj is a constant. This leads to the fact that the lifetime

T has an exponential distribution with F (t) = 1− e−(
∑k
j=1 aj) t. Then the quantile function is,

Q(u) =
−log(1− u)∑k

j=1 aj
.

Example 2.2 ( Proportional hazards model). When

hj(t) = πjh(t), πj > 0,

we obtain,
Λj(u) = πjΛ(u),

and Q(u) = Qj(πju). Thus the cause specific hazard functions are proportional.

3. Non-parametric estimation of the cause specific hazard quantile function

We develop a non-parametric estimator of Λj(u) under right censoring using the kernel density
estimation approach. Suppose that the lifetime T is randomly right censored by a variable Z.
Then we observe a random vector (Y, δ, δJ) where Y = min(T,Z) and δ = I(T ≤ Z). Note that
δJ is 0 for a censored observation, otherwise it is the cause of failure. Denote G(t) and H(t) as
the distribution functions of Z and Y , respectively. When Z and T are independent, we have,

1−H(t) = (1− F (t))(1−G(t)).

The tuples (Yi, δi, δiJi) are assumed to be realizations of random variables (Y, δ, δJ), for subjects
1, 2, · · · , n. Thus δJ equals zero for a censored observation, otherwise it is the cause of failure.
If censoring is assumed, the Kaplan-Meier estimator of S(t) for the ordered failure times Y(1) <
Y(2) < ... < Y(n), corresponding to Yi, i = 1, 2, 3, ...n. is given by,

Ŝ(t) =
∏

k:Y(k)<t

(
1− dk

nk

)
, (11)

where dk is the number of failures at Y(k) and nk is the number of subjects at risk in Y(k);k =

1, 2, . . . n. Then the non-parametric estimator of F (t) is F̂ (t) = 1− Ŝ(t).

Let Yj(1) < Yj(2) < ... < Yj(nj) be ordered failure times due to risk at j. The Kaplan-Meier
estimator of Sj(t) is obtained as

Ŝj(t) =
∏

k:Yj(k)<t

(
1−

djk
njk

)
, (12)

where djk is the number of failures at Yj(k) and njk is the number of subjects at risk in Yj(k).

Let

Ŝji =

{
Ŝj(Yj(i−1))− Ŝ(Yj(i)) i = 2, . . . , nj − 1

Ŝj(Yj(nj)) i = nj
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and

S∗(i) =


0 if i = 0

F̂ (Y(i)) if i = 1, 2, ..., n− 1

1 if i = n

A simple non-parametric estimator of Λj(u) is given by,

Λ̂j(u) =
f̂j(Q̂(u))

1− u
, (13)

where Q̂(u) = inf{x : F̂ (x) > u} is the non-parametric estimator of Q(u) and

f̂j(Q̂(u)) =
1

h(n)

1∫
0

K

(
p− u
h(n)

)
d(F̂j(Q̂(p))). (14)

Function K(x) is a kernel function satisfying following conditions:

(a) K(x) ≥ 0 for all x and
∫∞
−∞K(x)dx = 1;

(b) K(x) is symmetric about zero;

(c) K(x) has finite support and

(d) K(x) satisfies the Lipschitz condition.

Denote δ(i) as the indicator function corresponding to Y(i). Then a non-parametric estimator of

f̂j(Q̂(u)) given in (14) becomes,

f̂j(Q̂(u)) =
1

h(n)

n∑
i=1

ŜjiK

(
S∗(i)− u
h(n)

)
I(δ(i) = j), j = 1, 2, 3, . . . , k. (15)

Substituting (15) in (13), we get an estimator of Λj(u).
We now establish asymptotic properties of Λj(u). We first prove strong consistency of Λj(u), j =
1, 2, . . . , k.

Theorem 1. Suppose that K(x) satisfies conditions (a) to (d). Assume that both F (x) and
K(x) are differentiable. Then supu|Λ̂j(u)− Λj(u)| → 0 as n→∞ for j = 1, . . . , k.

The proof is given in Appendix A.
In the following theorem, we prove the limiting distribution of

√
n(Λ̂j(u)− Λj(u)).

Theorem 2. As n → ∞, for fixed u (0 < u < 1),
√
n(Λ̂j(u) − Λj(u)), j = 1, · · · , k follows a

normal distribution with mean 0 and variance σ2
j (u), where,

σ2
j (u) = E

[
1

h(n)(1−u)

∫ 1
0 K

∗(u, p)Z(p)dp
]2

, with Z(p) =
√
n[F̂j(Q̂(p))− Fj(Q(p))].

The proof is given in Appendix B.

Remark 1. Since the analytical expressions of σ2
j (u) is complex, we have to use the bootstrap

procedure for estimating the variance of Λ̂j(u), j = 1, 2, ..., k. The bootstrap method is based on
the resampling method from the original data. We take B samples of size n from the original

data using random sampling with replacement. The bootstrap samples are (Y
(k)
i , δ

(k)
i , J

(k)
i ), k =

1, 2, ..., B; i = 1, 2, ..., n. We then compute Λ̂j(u), using original data set and the estimate of

Λj(u) using the bootstrap sample k is Λ̂
(k)
j (u), k = 1, 2, ..., B. We then compute the bias by

taking differences Λ̂
(k)
j (u) − Λ̂j(u), j = 1, 2; k = 1, 2, ..., B. Then using these differences, the

average bias and MSE are calculated.
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4. Simulations

We now carry out extensive simulation studies to find out mean square error (MSE) and bias of
the estimator Λ̂j(u) for the uncensored as well as the censored case. We consider two causes of
failure. We take different samples of size 50, 100 and 200. We generated 5000 data sets for each
scenario. The order of sub-quantiles considered are u = 0.2 (0.2) 0.8. Simulations are carried
out for uncensored and censored cases to find the average bias and MSE of the estimators. We
have employed the triangular, uniform and Epanechnikov kernel functions in simulation studies.
However, results are being reported for the Epanechnikov kernel as this provides the smallest
MSE. The Epanechnikov kernel is defined by,

K(u) = 0.75(1− u2)I(|u| ≤ 1).

To generate random numbers, we consider the following two quantile function models.

(1) Linear cause specific hazard quantile function (Midhu, Sankaran, and Nair (2014))

Suppose that the cause specific hazard quantile function for the cause j is given by the
function,

Λj(u) = aj + bju, aj > 0, aj + bj > 0, 0 < u < 1.

Then we obtain,

Λ(u) = A+Bu, where A =

k∑
j=1

aj and B =

k∑
j=1

bj ,

and Q(u) = log

(
A+Bu

A(1− u)

) 1
A+B

.

(2) Weibull cause specific hazard model (Crowder (2012)).
The cause specific hazard quantile function for the risk j is,

Λj(u) = φξ−φj

(
− 1

β
log(1− u)

)1− 1
φ

. (16)

The relation Λ(u) =
∑k

j=1 Λj(u) and identity (7) provide the hazard quantile function
and quantile function as,

Λ(u) = φβ

(
− 1

β
log(1− u)

)1− 1
φ

and Q(u) =

(
− 1

β
log(1− u)

) 1
φ

, (17)

where β =
∑k

j=1 ξ
−φ
j .

Since the proposed estimator of the cause specific hazard quantile function is based on the
kernel function, the choice of bandwidth is an important issue. For the construction of kernel
type estimator of a quantile function, Padgett (1986) has considered separate bandwidths for
different regions of u ∈ (0, 1) in such a way that the mean squared error (MSE) is minimum. In
our study, we calculate the optimum bandwidths corresponding to different values of u such as
0.2, 0.4, 0.6, and 0.8. The average of the optimal bandwidths obtained for different values of u
is employed for the construction of the proposed estimators.
To perform the simulation study, we use the same parameter combinations for the linear cause
specific hazard quantile function model in both censored as well as uncensored cases. The same
procedure is adopted for the Weibull cause specific hazard model. The parameter values chosen
for the linear cause specific hazard quantile function model are a1 = 1

2 , b1 = 3, a2 = 1
3 , and b2 =

2. For the Weibull model, we take φ = 3, ξ1 = 1 and ξ2 = 2.
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4.1. Results for the uncensored case

We first consider the linear cause specific hazard quantile function for different sample sizes
n = 50, 100, and 200. The estimators Λ̂j(u), j = 1, 2 are calculated for all values of u (0 < u < 1),
which provides the smooth curves. Then the average bias and MSE of the estimators are
computed. The bandwidths for Λ̂1(u) and Λ̂2(u) are obtained as 0.52 and 0.64 respectively.
Figures 1(a) and 1(b) show mean of the estimators and true values of Λj(u), j = 1, 2 for n =
200. The results for n = 50 and 100 are similar. Table 1 presents the average bias and MSE

Estimator

original.

0.0 0.2 0.4 0.6 0.8 1.0
u0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LHUL

(a) Λ̂1(u) and Λ1(u))

Estimator

original.

0.0 0.2 0.4 0.6 0.8 1.0
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0.5
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1.5

2.0

2.5

3.0

3.5

LHUL

(b) Λ̂2(u) and Λ2(u)

Figure 1: Mean of the estimators and true values of Λj(u), j = 1, 2 for the linear cause specific
hazard model with optimal bandwidths for n = 200 (uncensored).

of Λj(u), j = 1, 2, for n= 50, 100 and 200. Both average bias and MSE decrease as sample size
increases.

Table 1: Average bias and MSE of Λ̂1(u) and Λ̂2(u) for the linear cause specific hazard
model (uncensored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Λ̂1(u)

MSE 0.0562 0.2758 0.3318 0.1729
BIAS -0.1445 -0.4912 -0.4314 0.5814

Λ̂2(u)
MSE 0.0384 0.1477 0.1686 0.3029
BIAS -0.1225 -0.3077 -0.2773 0.2433

100
Λ̂1(u)

MSE 0.0453 0.2400 0.2766 0.1525
BIAS -0.1312 -0.4732 -0.4040 0.3315

Λ̂2(u)
MSE 0.0328 0.1303 0.1417 0.2478
BIAS -0.1221 -0.3008 -0.2727 0.6292

200
Λ̂1(u)

MSE 0.0406 0.2238 0.2523 0.1380
BIAS -0.1239 -0.4638 -0.3921 0.3307

Λ̂2(u)
MSE 0.0303 0.1221 0.1293 0.1734
BIAS -0.1203 -0.2961 -0.2566 0.1922

We then consider the Weibull cause specific hazard model (15). The estimators Λ̂j(u), j = 1, 2
are calculated. The bandwidths which give minimum MSE for Λ̂1(u) and Λ̂2(u) are 0.72 and
0.44 respectively. Figures 2(a) and 2(b) show mean of the estimators of Λj(u), j = 1, 2 for n =
200. Table 2 gives average bias and MSE of the estimators of the cause specific hazard quantile
functions. Note that both average bias and MSE decrease as sample size increases.
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Figure 2: Mean of the estimators and true values of Λj(u), j = 1, 2 for the Weibull cause specific
hazard model with optimal bandwidths for n = 200 (uncensored).

Table 2: Average bias and MSE for Λ̂1(u) and Λ̂2(u) for the Weibull cause specific hazard
model (uncensored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Λ̂1(u)

MSE 0.0395 0.1511 0.1546 0.1776
BIAS -0.1670 -0.3421 -0.2833 0.4186

Λ̂2(u)
MSE 0.0160 0.0253 0.0301 0.0296
BIAS -0.0560 -0.1248 -0.1296 0.1410

100
Λ̂1(u)

MSE 0.0354 0.1387 0.1368 0.1594
BIAS -0.1555 -0.3319 -0.2822 0.3956

Λ̂2(u)
MSE 0.0142 0.0207 0.0231 0.0232
BIAS -0.0554 -0.1009 -0.0932 0.1125

200
Λ̂1(u)

MSE 0.0335 0.1328 0.1285 0.1262
BIAS -0.1533 -0.3231 -0.1541 0.3492

Λ̂2(u)
MSE 0.0136 0.0189 0.0207 0.0165
BIAS -0.0447 -0.0804 -0.0748 0.0168

4.2. Results for the censored case

The censored observations are generated using uniform distribution U(0, C), where C is chosen
such that 20% observations are censored. We first consider the linear cause specific hazard quan-
tile function model. We compute the average bias and MSE of the estimators Λ̂j(u), j = 1, 2.
The bandwidths which give minimum MSE for Λ̂1(u) and Λ̂2(u) are 0.67 and 0.31 respectively.
Figure 3 shows the mean of the estimators and the original values of Λj(u), j = 1, 2 for n =
200. Table 3 presents the average bias and MSE under censoring. Both average bias and MSE
decrease as sample size increases.

We generate observations from the Weibull cause specific hazard model with the censoring
scheme given above. The Λ̂j(u), j = 1, 2 are calculated and the average bias and MSE of the
estimators are computed. The bandwidths which give minimum MSE for Λ̂1(u) and Λ̂2(u)
are 0.59 and 0.38 respectively. Figure 4 shows the mean of the estimators and true values
of Λj(u), j = 1, 2 for n = 200. Table 4 presents average bias and MSE of the estimators of
Λj(u), j = 1, 2. It follows that the average bias and MSE of Λ̂j(u), j = 1, 2 are small and both
decrease as sample size increases.
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Figure 3: Mean of the estimators and true values of Λj(u), j = 1, 2 for the linear cause specific
hazard model with optimal bandwidths for n = 200 (censored).

Table 3: Average bias and MSE for Λ̂1(u) and Λ̂2(u) for the linear cause specific hazard
model (censored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Λ̂1(u)

MSE 0.0680 0.2764 0.3901 0.7679
BIAS -0.2179 -0.5230 -0.5746 0.6104

Λ̂2(u)
MSE 0.0548 0.1622 0.1862 0.4400
BIAS -0.1691 -0.3778 -0.4054 0.6832

100
Λ̂1(u)

MSE 0.0618 0.2401 0.1875 0.7560
BIAS -0.1898 -0.4870 -0.5239 0.6020

Λ̂2(u)
MSE 0.0337 0.1991 0.1856 0.4110
BIAS -0.1506 -0.3533 -0.3699 0.2796

200
Λ̂1(u)

MSE 0.0587 0.2284 0.1582 0.7032
BIAS -0.1760 -0.4697 -0.4997 0.5468

Λ̂2(u)
MSE 0.0323 0.1978 0.1816 0.3591
BIAS -0.1415 -0.3412 -0.3523 0.2642
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original
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(a) Λ̂1(u) and Λ1(u)
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(b) Λ̂2(u) and Λ2(u)

Figure 4: Mean of the estimators and true values of Λj(u), j = 1, 2 for the Weibull cause specific
hazard model with optimal bandwidths for n = 200 (censored).

5. Real data illustration

In this section, we apply the proposed procedure to two real life data sets. The first one is
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uncensored data and the second one is censored data.
Hoel Data (Hoel (1972)) The data were obtained from a laboratory experiment on two
groups of RFM strain male mice which had received a radiation dose of 300r at an age of 5-6
weeks. The first group of mice lived in a conventional laboratory environment while the second
group was in a germ-free environment.

Table 4: Average bias and MSE of Λ̂1(u) and Λ̂2(u) for the Weibull cause specific hazard
model (censored) for the optimal bandwidths.

n
u

0.2 0.4 0.6 0.8

50
Λ̂1(u)

MSE 0.0406 0.1512 0.1885 0.4045
BIAS -0.1750 -0.3827 -0.3864 0.6372

Λ̂2(u)
MSE 0.0168 0.0275 0.0339 0.0315
BIAS -0.0697 -0.1264 -0.1360 0.1430

100
Λ̂1(u)

MSE 0.0363 0.1415 0.1879 0.4041
BIAS -0.1619 -0.3658 -0.3619 0.6267

Λ̂2(u)
MSE 0.0149 0.0276 0.0341 0.0260
BIAS -0.0562 -0.1059 -0.1059 0.1344

200
Λ̂1(u)

MSE 0.0349 0.1501 0.1730 0.3757
BIAS -0.1554 -0.3574 -0.3497 0.6232

Λ̂2(u)
MSE 0.0157 0.0247 0.0295 0.0157
BIAS -0.0468 -0.0962 -0.0917 0.0177

There are three major causes for death viz. thymic lymphoma, reticulum cell sarcoma and
other cause. All mice died at the end of the study so that there is no censoring. We considered
data from first group of 99 mice for analysis. We combine the last two causes since the number
of deaths due to reticulum cell sarcoma is small. Thus two causes for the analysis are thymic
lymphoma (J1) and other causes (J2) which includes reticulum cell sarcoma. The interest is
to compare the mortality from these two modes of death. The estimators of Λj(u), j = 1, 2
are computed as described in Section 3. The bandwidth which minimizes the bootstrap MSE
has been chosen. Bandwidths thus obtained for Λ̂j(u), j = 1, 2, are 0.71 and 0.29 respectively.
Figure 5 shows the cause specific hazard quantile functions. From Figure 5, it is clear that the

Figure 5: Estimates of cause specific hazard quantile functions for Hoel data.

cause specific hazard quantile function due to thymic lymphoma is uniformly smaller than that
due to other causes. We also observe that the two cause specific hazard functions are closer to
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each other at the tails. The major cause of failure is not thymic lymphoma J1, but other causes
J2.
Davis and Lawrance Data (Davis and Lawrance (1989)). They considered the tyre-
testing data, which measure the failure times at hourly intervals of 171 tyres with 12% right
censoring. The major causes of failures are,

(i) an open joint on the inner lines,

(ii) rubber chunking on the shoulder

(iii) loose chunking, low on the shoulder,

(iv) cracking of tread rubber,

(v) cracking on the side wall,

and,

(vi) all other causes of failures.

Since there are few failures due to certain causes, we grouped the causes into three major
categories as,

cause 1 (J1) - for causes (iii) and (v) - 34 failures,

cause 2 (J2) - for cause (iv) - 69 failures,

and, cause 3 (J3) - for causes (i), (ii), and (vi) - 48 failures.

The optimal bandwidths for Λ̂1(u) Λ̂2(u) and Λ̂3(u) are 0.47, 0.61 and 0.51 respectively. Figure
6 shows the cause specific hazard quantile function due to three different causes. From Figure
6, it follows that the cause specific hazard quantile function due to cause 1 is larger than that
of cause 2. Further the cause specific hazard quantile function due to cause 3 lies between the
other two causes of failure. The major cause of failure is due to loose chunking, low on side wall
and cracking on side wall (J1).

Figure 6: Estimates of cause specific hazard quantile functions for Davis and Lawrence data.

6. Conclusion

The present work introduced the concept of cause specific hazard quantile function, which is
the quantile version of the cause specific hazard rates. The proposed methodology provided
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new lifetime models useful for the analysis of competing risks data. The smooth kernel type
estimator of cause specific hazard quantile function has been developed for uncensored as well
as censored data. Asymptotic properties of the proposed estimator were studied. The estimator
performs well in terms of average bias and MSE for linear cause specific hazard model as well
as for Weibull cause specific hazard model. The procedure has been applied to two real lifetime
data sets.
The proposed work based on the cause specific hazard quantile functions is an alternative
method of modeling and analysis of competing risks data. This technique has the ability to pick
up differences at extreme values of the data. The quantile models presented here will enable
the practitioner to differentiate between effects of various risks. In survival studies, it is often
interesting to compare various risks. The comparison of various risks can be done by developing
non-parametric tests using Λ̂j(u). The work in this direction will be reported elsewhere.
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Appendix A: Proof of Theorem 1.

From equation (9), we have dFj(Q(u)) = fj(Q(u))q(u)du. Then,

Λ̂j(u)− Λj(u) =
1

(1− u)h(n)

∫ 1

0
K

(
p− u
h(n)

)
dF̂j(Q̂(p))− fj(Q(u))

1− u
. (18)

We can write (18) as,

Λ̂j(u)− Λj(u) =
1

(1− u)h(n)

∫ 1

0
K

(
p− u
h(n)

)
d[F̂j(Q̂(p))− F̂j(Q(p)) + F̂j(Q(p))− Fj(Q(p))]

+
1

(1− u)h(n)

∫ 1

0
K

(
p− u
h(n)

)
dFj(Q(p))− fj(Q(u))

1− u
. (19)

Since, supu|Q̂(u) − Q(u)| → 0 as n → ∞ (Andersen, Borgan, Gill, and Keiding (1993)) and
supx|F̂j(x)−Fj(x)| → 0 as n→∞ (Lawless (2003)), the first term on the right side of (19) tends
to zero when n is large. Now consider,

1

h(n)

1∫
0

K

(
p− u
h(n)

)
d(Fj(Q(p))) =

1

h(n)

∞∫
−∞

K

(
t− x
h(n)

)
d(Fj(t))

=
1

h(n)

∞∫
−∞

K

(
t− x
h(n)

)
fj(t)dt. (20)

Let t−x
h(n) = z. Then (20) becomes,

∞∫
−∞

K(z) fj(x+ zh(n))dz. (21)

By Taylor series expansion of fj(x+ zh(n)), we obtain (21) as,

∞∫
−∞

K(z)
[
fj(x) + zh(n)f ′j(x) + ...

]
dz, (22)
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where prime denote derivative with respect to x.
As n→∞, h(n)→ 0 and hence (22) tends to,

∞∫
−∞

K(z)fj(x)dz = fj(x). (23)

Using (20) and substituting x = Q(u) in (23), the equation (19) becomes,
supu|Λ̂j(u)− Λj(u)| → 0 as n→∞.

Appendix B: Proof of Theorem 2.

From Theorem 1 as n→∞ and h(n)→ 0, the expression (19) asymptotically reduces to,

√
n(Λ̂j(u)−Λj(u)) =

√
n

h(n) (1− u)

∫ 1

0
K

(
p− u
h(n)

)
d[F̂j(Q̂(p))−Fj(Q̂(p))+Fj(Q̂(p))−Fj(Q(p))].

(24)
Using integration by parts, (24) becomes,

√
n(Λ̂j(u)− Λj(u)) =

√
n

h(n) (1− u)

(∫ 1

0
K∗(u, p)[F̂j(Q̂(p))− Fj(Q̂(p))]dp

+

∫ 1

0
K∗(u, p)[Fj(Q̂(p))− Fj(Q(p))]dp

)
, (25)

where K∗(u, p) = dK
dp

(
p−u
h(n)

)
.

From Andersen et al. (1993), for 0 < u < 1, we have
√
n
(
Q̂(u)−Q(u)

)
is asymptotically normal

with mean zero and variance σ2
1
∗
(u) = (S(u))2

∫ u

0

(−dS(t))

S(t)S∗(t)
, where S∗(t) is the probability that

a unit is alive and uncensored at time t.

It follows from Lawless (2003) that for 0 < x <∞,
√
n(F̂j(x)−Fj(x)) is asymptotically normal

with mean zero and variance σ2∗
2 (x), which can be estimated as given in Section 9.2 of Lawless

(2003).

Using functional delta method and Slutsky’s theorem (Serfling (1980)), we get that for 0 <
u < 1,

√
n(Λ̂j(u) − Λj(u)) follows normal distribution with mean as zero and variance σ2

j (u),

where σ2
j (u) = E

[
1

h(n)(1−u)

∫ 1
0 K

∗(u, p)Z(p)dp
]2

, with Z(p) =
√
n
(
F̂j(Q̂(p))− Fj(Q(p))

)
. This

completes the proof.
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