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Abstract

In this paper, we consider robust Bayesian analysis of lifetime data from the Maxwell
distribution assuming an ε-contamination class of prior distributions for the parameter.
We obtain robust Bayes estimates of the parameter and mean lifetime under squared error
and LINEX loss functions in presence of uncensored as well as Type-I progressively hybrid
censored lifetime data. A real data set is analysed for numerical illustrations.
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1. Introduction

In Bayesian analysis, the investigator is supposed to posses some subjective a priori infor-
mation concerning the most probable values of the parameter. In many cases he is able to
successfully present his belief about the parameter in form of a single prior density. However,
when the belief of investigator cannot be adequately represented in form of a single prior den-
sity or there is a possibility of error in prior elicitation, a class of distributions may be used to
successfully present the prior belief. In such cases it becomes impossible to proceed with usual
Bayesian procedures to make decisions or inferences. The robust Bayesian viewpoint provides
a way to deal with such problems and to make decisions that behave satisfactorily when
the prior varies over a class of prior distributions. Many authors provided different methods
for implementing the robust Bayesian viewpoint. For some literature review one may refer
to Box and Tiao (1973), Good (1965, 1983), Dempster (1975) and Kadane and Chuang (1978).

A reasonable method for implementing uncertainties in prior elicitation is through the use of
ε-contamination class of prior distributions given by

Γ = {q : q = (1− ε)g0 + εg; g ∈ G} , (1)

where ε(0 ≤ ε ≤ 1) is pre-assigned and represents the probability of error in the prior elicita-
tion of the base prior g0 and g is a distribution from the class G of all possible contaminated
distributions. Many authors advocated Bayesian analysis based on the ε-contamination class
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of prior distributions [See Berger (1982), Berger (1983), Berger and Berliner (1986, 1984) ,
Sivaganesan and Berger (1987), Chaturvedi (1996) to cite a few].

Berger and Berliner (1986) provides a good review of literature and additional motivation for
consideration of ML-II procedure of Good (1983) for selecting a prior from an ε-contamination
class in a data dependent fashion. According to this procedure, one can select a prior from
the considered class by maximizing the predictive density corresponding to the prior. The
prior thus obtained is called type-II maximum likelihood prior or ML-II prior in short. The
Bayes estimators obtained under ML-II priors are termed as ML-II estimators. Chaturvedi,
Pati, and Tomer (2014) carried out robust Bayesian analysis of Weibull distribution by im-
plementing ML-II procedure.

In many real life investigations, for example life testing and reliability, we have to deal with
censored data which often arise when life testing experiments are terminated before observing
lifetimes of all units on test. In this context, plenty of censoring schemes have been studied and
proposed in literature during last few decades. For a general review of literature on censoring
schemes one may refer to Lawless (2003) and Balakrishnan and Aggarwala (2000). In this
paper we shall consider a very generalized censoring scheme termed as Type-I progressive hy-
brid censoring scheme(Type-I PHCS ) [Kundu and Joarder (2006) and Childs, Chandrasekar,
and Balakrishnan (2008)]. This censoring scheme is recent and quite popular in literature [see
Tomer and Panwar (2015)]. Type-I PHCS is described as follows. Suppose in a life testing
experiment, n units are put to test. The maximum duration of the experiment t0, the integers
R1, R2, · · · , Rm (1 ≤ m ≤ n) are fixed before beginning of the experiment. At the time of first
failure X1, R1 units, out of (n − 1) surviving units, are randomly withdrawn from the test.
At the time of second failure X2, R2 units, out of remaining (n−R1− 1) units, are randomly
withdrawn from the test. The process continues till time T = min {Xm, t0}. In the case when
Xm > t0, we observe the sample X1:m:n, X2:m:n, · · · , Xd:m:n, where d(≤ m) denotes the num-
ber of failures observed before time t0, and terminate the experiment at t0 by withdrawing
R∗d(= n−d−

∑d
i=1Ri) units, whereas if Xm < t0, we observe X1:m:n, X2:m:n, · · · , Xm:m:n and

the experiment is terminated at Xm. The data observed under type-I PHCS is termed as
type-I progressively hybrid censored (type-I PHC) data.

The purpose of this article is many fold. We consider robust Bayesian estimation of the
parameter and mean lifetime of the Maxwell distribution(MWD) under ε-contamination class
of prior distributions in presence of uncensored as well as censored (type-I PHC) lifetime data.
Under both types of data, we provide ML-II estimates under symmetric(squared error) and
asymmetric(LINEX) loss functions. Rest of the paper is organized as follows. In Section 2,
we derive ML-II estimator of the parameter and mean lifetime for uncensored sample. In
Section 3, we develop procedure to obtain ML-II estimates for Type-I PHC data. In Section
4, we give a numerical example based on a real data set. Finally, we conclude findings in
Section 5.

2. Estimation with uncensored data

A continuous non-negative random variable(rv) X is said to follow MWD if its probability
density function (pdf ) is given by

f(x, θ) =
4√
π

1

θ3/2
x2e−x

2/θ; 0 ≤ x <∞, θ > 0, (2)

where θ is the unknown parameter. When the lifetime of a device follows the pdf (2), its
mean lifetime is ξ = 2

√
(θ/π) and its reliability function F̄ (t), at a specified mission time
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t(≥ 0), comes out to be

F̄ (t) = P (X ≥ t)

=
2√
π

Γ3/2

( t2
θ

)
, (3)

where Γa(z) =
∫∞
z ua−1e−udu. Krishna and Malik (2009) has shown that MWD belongs to

the class of increasing failure rate distributions. Therefore, it can be used as a lifetime model
in various investigations where age of the device affects it adversely. Krishna and Malik
(2012) obtained ML and Bayes estimators of the parameter and reliability function of MWD
under Type-II progressive censoring scheme whereas Krishna, Vivekanand, and Kumar (2015)
worked out similar problem with randomly censored data.

Suppose that the rv X denotes the lifetime of a device and follows MWD(θ). A random
sample of such n independent and identically distributed lifetimes X1, X2, · · · , Xn (denoted
by x henceforth) is observed in a certain life testing experiment. The likelihood function of
θ, in the light of given sample, comes out to be

l(θ|x) =

(
4√
π

)n 1

θ3n/2

n∏
i=1

x2
i exp

(
−T
θ

)
, (4)

where T =
∑n

i=1 x
2
i . Following our discussion in Section 1, the considered ε-contamination

class of prior distributions for θ is given by

Γ = {q(θ) : q(θ) = (1− ε)g0(θ|µ0) + εg(θ|µ); g ∈ G} . (5)

Here, we take the base prior, a natural conjugate prior [see Chib and Tiwari (1991), Chaturvedi
et al. (2014)], given by the pdf

g0(θ|µ0) =
µν0

Γ(ν)θν+1
exp

(
−µ0

θ

)
; 0 < θ <∞;µ0, ν > 0, (6)

where (µ0, ν) represents the hyper parameters. The contamination class G is the class of all
natural conjugate priors with hyper parameters (µ, ν), given by

G =

{
g(θ|µ) =

µν

Γ(ν)
θν+1 exp

(
−µ
θ

)
;µ ∈ (µ0,∞)

}
. (7)

According to ML-II procedure, discussed in Section 1, we select a prior density from the
class Γ by maximizing the predictive density corresponding to q. For this, we first obtain the
predictive density corresponding to the base prior g0(θ|µ0) as follows.

m(x|g0) =

∞∫
0

l(θ|x)g0(θ|µ0)dθ

=

(
4√
π

)n µν0
Γ(ν)

m∏
i=1

x2
i

∞∫
0

1

θ3n/2+ν+1
exp

{
−1

θ
(T + µ0)

}

=

(
4√
π

)n µν0Γ (3n/2 + ν)

Γ(ν) (T + µ0)(3n/2+ν)

m∏
i=1

x2
i . (8)

Similarly, the predictive density for g(θ|µ) comes out to be

m(x|g) =

(
4√
π

)n µνΓ (3n/2 + ν)

Γ(ν) (T + µ)(3n/2+ν)

m∏
i=1

x2
i . (9)
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Now the predictive density corresponding to the generic prior q ∈ Γ is

m(x|q) = (1− ε)m(x|g0) + εm(x|g).

In the ML-II process we choose value of the unknown hyper parameter µ in a data dependent
fashion by maximizing the predictive density m(x|q) over the class of all priors q ∈ Γ. Since
g0 is fixed, we have

sup
q∈Γ

m(x|q) = (1− ε)m(x|g0) + ε sup
g∈G

m(x|g)

and m(x|g) is maximized when we replace µ by its maximum likelihood estimator in g(θ|µ)
which is given by

µ̂ = max

{
µ0,

2νT

3n

}
.

Then we get

ĝ(θ|µ̂) =

{
2νT

3nθν+1Γ(ν)
exp

(
−2νT

3nθ

)
= ĝ if µ0 <

2νT
3n

g0(θ|µ0) = g0 if µ0 ≥ 2νT
3n .

Thus, the ML-II prior density is given by

q̂(θ) = (1− ε)g0(θ|µ0) + εĝ(θ|µ̂). (10)

Following Berger and Berliner (1986), the ML-II posterior density of θ, obtained using (4)
and (10), comes out to be

q̂∗(θ) = λ̂g∗0(θ) + (1− λ̂)g∗(θ); 0 < θ <∞, (11)

where

g∗0(θ) =
l(θ|x)g0(θ|µ0)

∞∫
0

l(θ|x)g0(θ|µ0)dθ

=
(T + µ0)(3n/2+ν)

θ3n/2+ν+1Γ (3n/2 + ν)
exp

{
−1

θ
(T + µ0)

}
if µ0 ≥

2νT

3n
. (12)

Similarly, we get

g∗(θ) =

 (T+µ̂)(3n/2+ν)

θ3n/2+ν+1Γ(3n/2+ν)
exp

{
−1
θ (T + µ̂)

}
if µ0 <

2νT
3n

g∗0(θ) if µ0 ≥ 2νT
3n .

(13)

and

λ̂ =
(1− ε)m(x|g0)

(1− ε)m(x|g0) + εm(x|ĝ)

which on using (8) and (9), comes out to be

λ̂ =


{

1 + ε
(1−ε)

(
3n
T

)3n/2 ( 2ν
µ0

)ν (
T+µ0
3n+2ν

)(3n/2+ν)
}−1

if µ0 <
2νT
3n

(1− ε) if µ0 ≥ 2νT
3n .



42 Robust Bayesian Analysis of Lifetime Data from Maxwell Distribution

Remark 2.1. In order to show the feasibility of the ML-II prior, we have

∂λ̂

∂µ0
=


ε

(1−ε)(
3n
T )

3n/2 (2ν)ν (T+µ0)
3n/2+ν−1

(3n+2ν)3n/2+νµν+1

1+ ε
(1−ε)(

3n
T )

3n/2
(

2ν
µ0

)ν( T+µ0
3n+2ν

)(3n/2+ν) (2νT
3n − µ0

)
if µ0 <

2νT
3n

0 if µ0 ≥ 2νT
3n .

Notice that ∂λ̂
∂µ0

is greater than zero if µ0 <
2νT
3n and equal to zero if µ0 ≥ 2νT

3n . Thus, if the

base prior is not compatible with the data, λ̂ decreases and more weight is provided to the
data based part of the ML-II posterior density q̂∗(θ) i.e. ĝ∗(θ). As µ0 → 0, λ̂ → 0 and for
µ0 ≥ 2νT

3n , λ̂ = 1− ε, which is the maximum possible value of λ̂.

2.1. Estimation under SELF

We derive ML-II estimators of the parameter θ and mean lifetime ξ under squared error loss
function (SELF ) along with their posterior variances in the following theorems.

Theorem 1. The ML-II posterior mean and variance of θ are given, respectively, by

θ̂ =

 1
3n/2+ν−1

{(
1 + 2ν

3n

)
T + λ̂

(
µ0 − 2νT

3n

)}
if µ0 <

2νT
3n

1
3n/2+ν−1 (µ0 + T ) if µ0 ≥ 2νT

3n .
(14)

and

Vq∗(θ) =


1

(3n/2+ν−1)2

[
1

3n/2+ν−2

{
λ̂ (T + µ0)2 + (1− λ̂)T 2

(
1 + 2ν

3n

)2}]
+ λ̂(1−λ̂)

(3n/2+ν−1)2

(
µ0 − 2νT

3n

)
if µ0 <

2νT
3n

1
(3n/2+ν−1)2(3n/2+ν−2)

(T + µ0)2 if µ0 ≥ 2νT
3n .

(15)

Proof. See Appendix.

Theorem 2. The ML-II posterior mean and variance of ξ are given, respectively, by

ξ̂ =


2Γ(3n/2+ν− 1

2)√
πΓ(3n/2+ν)

[
λ̂ (T + µ0)1/2 + (1− λ̂)

√
T
(
1 + 2ν

3n

) 1
2

]
if µ0 <

2νT
3n

2Γ(3n/2+ν−1/2)√
πΓ(3n/2+ν)

(T + µ0)1/2 if µ0 ≥ 2νT
3n .

and

Vq∗(ξ) =



4
π(Γ(3n/2+ν))2

[{
Γ (3n/2 + ν) Γ (3n/2 + ν − 1)− (Γ (3n/2 + ν − (1/2)))2

}{(
1 + 2ν

3n

)
T + λ̂

(
µ0 − 2νT

3n

)}]
+ 4λ̂(1−λ̂)(Γ(3n/2+ν−1/2))2

π(Γ(3n/2+ν))2

.
{

(T + µ0)
1
2 −
√
T
(
1 + 2ν

3n

) 1
2

}2

if µ0 <
2νT
3n

4
π(3n/2+ν−1) (T + µ0) . if µ0 ≥ 2νT

3n .

Proof. The ML-II posterior mean of ξ is

ξ̂ =
2√
π
Eq∗(
√
θ)

=λ̂Eg∗0 (
√
θ) + (1− λ̂)Eg∗(

√
θ)

and rest part of the Proof is similar to that of Theorem 1.
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2.2. Estimation under LINEX loss function

In previous section, we used a symmetric loss function SELF for estimation of the unknown
parameter θ. This loss function is appropriate for the inferential problems when underesti-
mation and overestimation of the parameter are of equal consequences. However, there may
be circumstances when it does not happen. For example, overestimation of average lifetime
or reliability of a component of an aircraft may be more serious than its underestimation. In
such cases asymmetric loss functions are preferred. Among several asymmetric loss functions
[see Calabria and Pulcini (1994)], LINEX loss function introduced by Varian (1975) is quite
popular in literature. Zellner (1986) used LINEX loss function for Bayesian estimation of scale
parameter. Kim, Jung, and Chung (2011), Doostparast, Ahmadi, and Ahmadi (2013) and
Panwar, Tomer, and Kumar (2015) used it for different problems of estimation in presence
of censored lifetime data. The expression of the LINEX loss function while estimating the
parameter θ by its estimator θ̂ is

L(∆) = exp(a∆)− a∆− 1, a 6= 0 (16)

where ∆ = θ̂ − θ.
Under the LINEX loss function (16), the ML-II estimator of θ is given by

θ̂L =− 1

a
lnEq∗ [exp(−aθ)],

=

{
− 1
a ln

(
λ̂Eg∗0 [exp(−aθ)] + (1− λ̂)Eg∗ [exp(−aθ)]

)
if µ0 <

2νT
3n

− 1
a ln

(
Eg∗0 [exp(−aθ)]

)
if µ0 ≥ 2νT

3n .

Here, on using (13), we obtain for µ0 ≥ 2νT
3n that

Eg∗0 [exp(−aθ)] =
(T + µ0)(3n/2+ν)

Γ (3n/2 + ν)

∞∫
0

1

θ3n/2+ν+1
exp

{
−aθ − 1

θ
(T + µ0)

}
dθ

=
2{a(T + µ0)}(3n/2+ν)/2

Γ (3n/2 + ν)
H−(3n/2+ν)

(
2
√
a(T + µ0)

)
,

where Hν(z) is a modified Bessel function of third kind of order ν,[Gradshteyn and Ryzhik
(1965), pp.340].

Similarly, for µ0 <
2νT
3n , we get

Eg∗ [exp(−aθ)] =
2{a(1 + 2ν/3n)T}(3n/2+ν)/2

Γ (3n/2 + ν)
H−(3n/2+ν)

(
2
√
a(1 + 2ν/3n)T

)
.

The expectation of the LINEX loss function for θ̂L with respect to ML-II posterior distribution
of θ comes out to be

aEq̂∗ [θ − θ̂L] =a(Eq̂∗ [θ]− E[θ̂L]

=

a
[

1
3n
2

+ν−1

{(
1 + 2ν

3n

)
T + λ̂

(
µ0 − 2νT

3n

)}
− θ̂L

]
if µ0 <

2νT
3n

a
[

1
3n
2

+ν−1
(µ0 + T )− θ̂L

]
if µ0 ≥ 2νT

3n

Under the LINEX loss function (16), the ML-II estimator of ξ when A = 2a/
√
π is

ξ̂L =− 1

a
lnEq∗ [exp(−Aθ1/2)],

=

{
− 1
a ln(λ̂ξ̂L0 + (1− λ̂)ξ̂L∗) if µ0 <

2νT
3n

− 1
a ln(ξ̂L0) if µ0 ≥ 2νT

3n ,
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where ξ̂L0 = Eg∗0 [exp(−Aθ1/2)] and ξ̂L∗ = Eg∗0 [exp(−Aθ1/2)]. The expressions for these are

derived in Appendix. The expectation of the LINEX loss function for ξ̂L is

aEq̂∗ [ξ − ξ̂L] =


a

[
2Γ( 3n

2
+ν− 1

2)
√
πΓ( 3n

2
+ν)

[
λ̂ (T + µ0)

1
2 + (1− λ̂)

√
T
(
1 + 2ν

3n

) 1
2

]
− ξ̂L

]
if µ0 <

2νT
3n

a

[
2Γ( 3n

2
+ν− 1

2)
√
πΓ( 3n

2
+ν)

(T + µ0)
1
2 − ξ̂L

]
if µ0 ≥ 2νT

3n .

3. Estimation under type-I PHCS

Suppose that a type-I PHC sample x1:m:n, x2:m:n, · · · , xm:m:n (denoted by x˜ henceforth) is
obtained by placing n units on a lifetest and following type-I PHCS, described in Section 1.
Henceforth, we use notation xi instead of xi:m:n, for brevity. The likelihood function of given
observations x˜ [see Tomer and Panwar (2015)] can be written as follows

L(θ|x) = Cd

d∏
i=1

f(xi){F̄ (xi)}Ri{F̄ (t0)}R∗d , (17)

where Cd = n(n−R1 − 1)(n−R1 −R2 − 2) · · · (n−R1 − · · · −Rd−1 − d+ 1).

Remark 3.1. Note that for the case Xm ≤ t0 we get d = m and R∗m = n−m−
m∑
i=1

Ri = 0.

Therefore, (17) reduces to

L(θ|x) = Cm

m∏
i=1

f(xi){F̄ (xi)}Ri , xm < t0.

We proceed with the general case (17). Using (2) and (3), the likelihood (17) becomes

L(θ|x˜) = Cd

( 4√
π

)n 2d

θ3d/2
exp
(
− 1

θ

d∑
i=1

x2
i

){
Γ3/2

( t20
θ

)}R∗d d∏
i=1

x2
i

{
Γ3/2

(x2
i

θ

)}Ri
. (18)

The predictive density corresponding to the prior g(θ|µ) on using (18) comes out to be

m(x˜|g) =Cd
2n+2d−m

(
√
π)n+d−m

µν

Γ(ν)

d∏
i=1

x2
i

∞∫
0

1

θ3d/2+ν+1
exp

{
−1

θ
(Td + µ)

}
d∏
i=1

{
Γ3/2

(
x2
i /θ
)}Ri {Γ3/2

(
t20/θ

)}R∗d dθ.
= Cd

2n+2d−m

(
√
π)n+d−m

µν

Γ(ν)

d∏
i=1

x2
i

∞∫
0

I(θ, µ)dθ (19)

and the predictive density corresponding to the base prior g(θ|µ0) can be obtained from (19)
when µ = µ0.

Here, the value of µ which maximizes the predictive density m(x|g) is

µ̃ = max {µ0, µ̂d} ,
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where µ̂d is the solution of

µ̂d
ν

+

∞∫
0

1
θ I(θ, µ̂d)dθ

∞∫
0

I(θ, µ̂d)dθ

= 0.

Then we have

g(θ|µ̃) =

{
µ̂νd

Γ(ν)θν+1 exp
(
− µ̂d

θ

)
= g̃, if µ0 < µ̂d

g0(θ|µ0) = g0, if µ0 ≥ µ̂d.
(20)

We write the ML-II prior density for this case as follows.

q̃(θ) = (1− ε)g0(θ|µ0) + εg̃(θ|µ̃). (21)

On using (18) and (21), the ML-II posterior density of θ comes out to be

q̃∗(θ) = λ̃g′∗0 (θ) + (1− λ̃)g̃∗(θ), 0 < θ <∞, (22)

where

g′∗0 (θ) =
I(θ, µ0)

∞∫
0

I(θ, µ0)dθ

if µ0 ≥ µ̂d, (23)

g̃∗(θ) =


I(θ,µ̃)

∞∫
0

I(θ,µ̃)dθ
if µ0 ≤ µ̂d

g′∗0 (θ) if µ0 ≥ µ̂d
(24)

and

λ̃ =


1 + ε

(1−ε)
µ̃ν

µν0

∞∫
0

I(θ,µ̃)dθ

∞∫
0

I(θ,µ0)dθ

−1

if µ0 ≤ µ̂d

(1− ε) if µ0 ≥ µ̂d.

(25)

3.1. Estimation under SELF

In presence of type-I PHC data we obtain the ML-II estimator of θ under SELF, on using
(22), as follows

θ̃ =Eq∗(θ)

=λ̃Eg′∗0 (θ) + (1− λ̃)Eg̃∗(θ). (26)

Since the posterior densities g′∗0 (θ) and g̃∗(θ) given by expressions (23) and (24), respectively,
do not follow standard distributions, we use M-H algorithm [Metropolis and Ulam (1949)] to
evaluate the posterior expectations Eg′∗0 (θ) and Eg̃∗(θ). Similarly, by using M-H algorithm
ML-II estimate of mean lifetime can be obtained as follows.

ξ̃ =
2√
π
Eq∗(
√
θ)

=
2√
π

[
λ̃Eg′∗0 (

√
θ) + (1− λ̃)Eg̃∗(

√
θ)
]

(27)
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The posterior variances of θ can be obtained from (31) of Appendix on replacing g∗0 by g
′∗
0

and g∗ by g̃∗ and implementing M-H algorithm. Similarly, we evaluate the posterior variance
of ξ.

3.2. Estimation under LINEX loss function

The expressions for the ML-II estimators of θ and ξ under LINEX loss function can be
obtained on using (22) as

θ̃L =− 1

a
lnEq̃∗ [exp(−aθ)]

=

−
1
a ln

(
λ̃E

g
′∗
0

[exp(−aθ)] + (1− λ̃)Eg̃∗ [exp(−aθ)]
)

if µ0 ≤ µ̂d
− 1
a ln

(
E
g
′∗
0

[exp(−aθ)]
)

if µ0 ≥ µ̂d.

and

ξ̃L =− 1

a
lnEq̃∗ [exp(−Aθ1/2)]

=

−
1
a ln

[
λ̃E

g
′∗
0

[exp(−Aθ1/2)] + (1− λ̃)Eg̃∗ [exp(−Aθ1/2)]
]

if µ0 ≤ µ̂d
− 1
a ln

[
E
g
′∗
0

[exp(−Aθ1/2)]
]

if µ0 ≥ µ̂d.

The expectations of LINEX loss function for θ̃L and ξ̃L are respectively given by a(Eq̃∗ [θ]− θ̃L)
and a(Eq̃∗ [ξ]− ξ̃L). Like in Section 3.1, the ML-II estimates and their posterior risks can be
obtained using M-H algorithm.

4. Real data analysis

Here, we consider a real data set of 23 ball bearings from Lawless (2003). The data presents
the number of revolutions (in millions) completed by any ball bearing before its failure. Tomer
and Panwar (2015) have shown that MWD is a suitable model for this data. The data is given
below.

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84,

51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,

93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

In order to illustrate the ML-II procedure discussed in Section 2, we consider two different
base priors IG1(2000, 2) and IG2(7000, 2) for θ. Then we obtain ML-II estimates of θ as well
ξ assuming different values of ε that ranges from 0 to 1. The values of these estimates along
with their posterior standard deviations (SDs) under SELF and LINEX loss functions are
presented in Table 2. For each loss function, we observe from Table 2 that when ε = 0, the
ML-II estimates corresponding to the considered base priors differ significantly but as ε→ 1,
the estimates under two prior come closer and almost coincide at ε = 1.

Further, to study the behaviour of ML-II estimators in presence of Type-I PHC data, we use
expressions that are obtained in Section 3. We consider three Type-I PHC samples which
are generated from the original data. These samples are presented in Table 1. With these
samples, we obtained the ML-II estimates of θ and mean lifetime ξ under SELF and LINEX
loss functions with the same values of hyper-parameters of base priors i.e. IG1(2000, 2) and
IG2(7000, 2). The findings are presented in Tables 3-5 which exhibit same behaviour as we
observed in complete sample study.
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Table 1: Samples obtained under three different Type-I PHCS from the ball bearings data.

Scheme Sample observations

S18:23= ({1,0,0}*6), t0 = 120 17.88 28.92 33.00 41.52 42.12 45.60 51.84 51.96 54.12
55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12

S15:23= (1,{0,1}*7), t0 = 110 17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 54.12
55.56 67.80 68.64 68.64 68.88 93.12

S12:23= ({1}*5,1,0,{1}*5), t0 = 100 17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96
84.12 93.12 98.64

Note: a ∗ b=(a, a, a, ..., (b times))

5. Conclusion

We considered robust Bayesian estimation of the parameter and mean lifetime in the presence
of uncensored as well as Type-I PHC lifetime data. In this study, we have shown that ε-
contamination class of prior distributions can give robust results when the prior belief of the
investigator cannot be represented in form of a single prior density or there is a possibility
of error in the prior elicitation of unique prior for the parameter. We have illustrated with
the help of a real data set that ε-contamination class is a sensible class of priors which may
be thought to promote objective thinking by removing the judgment error in prior elicitation
process.
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Appendix

Proof of Theorem 1. We have

Eq∗(θ) = λ̂Eg∗0 (θ) + (1− λ̂)Eg∗(θ). (28)

For µ0 ≥ 2νT
3n , we obtain using (12) that

Eg∗0 (θ) =
(T + µ0)(3n/2+ν)

Γ (3n/2 + ν)

∞∫
0

1

θ3n/2+ν
exp

{
−1

θ
(T + µ0)

}
dθ

=
Γ(3n/2 + ν − 1)

Γ(3n/2 + ν)
(T + µ0) . (29)
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Similarly, for µ0 <
2νT
3n , it immediately follows from (13) that

Eg∗(θ) =
Γ(3n/2 + ν − 1)

Γ(3n/2 + ν)

(
1 +

2ν

3n

)
T. (30)

The first part of the theorem follows on substituting the expressions of Eg∗0 (θ) and Eg∗(θ) in
(28).
In order to prove second result of the theorem, we use following expression from Berger and
Berliner (1986)

Vq∗(θ) = λ̂Vg∗0 (θ) + (1− λ̂)Vg∗(θ) + λ̂(1− λ̂)
{
Eg∗0 (θ)− Eg∗(θ)

}2
. (31)

and the result follows from (31) by using (29), (30) with

Vg∗0 (θ) =Eg∗0 (θ2)− (Eg∗0 (θ))2

=
(T + µ0)2

Γ(3n/2 + ν − 2)(Γ(3n/2 + ν − 1)2)
µ0 ≥

2νT

3n
.

and

Vg∗(θ) =

(
1 + 2ν

3n

)2
T 2

Γ(3n/2 + ν − 2)(Γ(3n/2 + ν − 1)2)
µ0 <

2νT

3n
.

Expressions of θ̂L0 = Eg∗0 [exp(−Aθ1/2)] and θ̂L∗ = Eg∗0 [exp(−Aθ1/2)]

For µ0 ≥ 2νT
3n , we obtain

Eg∗0 [exp(−Aθ1/2)] =
(T + µ0)(3n/2+ν)

Γ (3n/2 + ν)

∞∫
0

1

θ3n/2+ν+1
exp

{
−Aθ1/2 − 1

θ
(T + µ0)

}
dθ

=
(T + µ0)(3n/2+ν)

Γ (3n/2 + ν)

∞∫
0

y3n/2+ν−1 exp
{
−Ay−1/2 − y (T + µ0)

}
dy

=
(T + µ0)(3n/2+ν)

Γ (3n/2 + ν)

J−1∑
j=0

(−A)j

j!
Γ

(
3n

2
+ ν − j

2

)
(T + µ0)j/2−3n/2−ν

1Fp+J(1; ∆(p, 1− 3n/2− ν + j/2),∆(J, 1 + j); z)

+

p−1∑
h=0

(−1)h

h!
2Γ(−3n− 2ν − 2h)A3n+2ν+2h(T + µ0)h

1Fp+J(1; ∆(J, 1 + 3n+ 2ν + 2h),∆(p, 1 + h); z)] (32)

where,

z = (−1)p+J
(
T + µ0

p

)p(A
J

)J

The last expression in (32) is obtained by utilizing Prudinikov, Brychkov, and Marichev



Austrian Journal of Statistics 55

(1986),(formula 14, p. 322). Similarly, for µ0 <
2νT
3n , it follows that

Eg∗ [exp(−Aθ1/2)] =
[T (1 + 2ν/3n)](3n/2+ν)

Γ (3n/2 + ν)

∞∫
0

y3n/2+ν−1 exp
{
−Ay−1/2 − y [T (1 + 2ν/3n)]

}
dy

=
[T (1 + 2ν/3n)](3n/2+ν)

Γ (3n/2 + ν)

J−1∑
j=0

(−A)j

j!
Γ

(
3n

2
+ ν − j

2

)
[T (1 + 2ν/3n)]j/2−3n/2−ν

1Fp+J(1; ∆(p, 1− 3n/2− ν + j/2),∆(J, 1 + j); z∗)

+

p−1∑
h=0

(−1)h

h!
2Γ(−3n− 2ν − 2h)A3n+2ν+2h[T (1 + 2ν/3n)]h

1Fp+J(1; ∆(J, 1 + 3n+ 2ν + 2h),∆(p, 1 + h); z∗)]

where,

z∗ = (−1)p+J
[
T (1 + 2ν/3n)

p

]p(A
J

)J
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