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Abstract

In this paper, a new three-parameter distribution called the Alpha Logarithm
Transformed Fréchet (ALTF) distribution is introduced which offers a more flexible
distribution for modeling lifetime data. Various properties of the proposed distribu-
tion, including explicit expressions for the quantiles, moments, incomplete moments,
conditional moments, moment generating function Rényi and δ-entropies, stochastic
ordering, stress-strength reliability and order statistics are derived. The new dis-
tribution can have decreasing, reversed J-shaped and upside-down bathtub failure
rate functions depending on its parameter values. The maximum likelihood method
is used to estimate the distribution parameters. A simulation study is conducted
to evaluate the performance of the maximum likelihood estimates. Finally, the pro-
posed extended model is applied on real data sets and the results are given which
illustrate the superior performance of the ALTF distribution compared to some other
well-known distributions.

Keywords: logarithm transformed distribution, hazard rate function, maximum likeli-
hood estimation, asymptotic variance-covariance matrix.

1. Introduction

The Fréchet distribution occupies an important place in describing the lifetime of com-
ponents and analyzing several extreme events including earthquakes, floods, rain fall,
queues in supermarkets, wind speeds and sea waves etc. The Fréchet distribution is a
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special case of the generalized extreme value distribution and is equivalent to taking the
reciprocal of values from a standard Weibull distribution. Fréchet distribution provides
a reasonable parametric fit for modeling phenomenon with non-monotone failure rates,
such as the upside-down bathtub failure rates, which are common in reliability and bio-
logical studies. For example, such failure rates can be observed in the course of a disease
whose mortality reaches a peak after some finite period and then declines gradually. The
lifetime models that present upside-down bathtub shaped failure rates are very useful in
survival analysis. For greater details, readers may refer to (Kotz and Nadarajah 2000).
Moreover, (Zaharim, Najid, Razali, and Sopian 2009) applied the Fréchet model for
analyzing wind speed data. (Mubarak 2011) studied the Fréchet distribution based on
progressive type-II censored data with binomial removals.

Many generalizations of Fréchet distribution have been attempted by researchers. No-
table among them are : (Nadarajah and Kotz 2003) pioneered the exponentiated Fréchet,
(Nadarajah and Gupta 2004) and (Barreto-Souza, Cordeiro, and Simas 2011) studied
the beta Fréchet, (Mahmoud and Mandouh 2013) proposed the transmuted Fréchet,
(Krishna, Jose, Alice, and Ristic 2013) introduced the Marshall-Olkin Fréchet, (Silva,
de Andrade, Maciel, Campos, and Cordeiro 2013) defined the gamma extended Fréchet,
(Elbatal, Asha, and Raja 2014) studied the transmuted exponentiated Fréchet, (Mead
and R. 2014) introduced the Kumaraswamy Fréchet and (Afify, Hamedani, Ghosh, and
Mead 2015) investigated the transmuted Marshall-Olkin Fréchet distributions.

Let X follow a Fréchet random distribution with parameters β, λ > 0. Recall that the
probability density function (pdf) and cumulative density function (cdf) associated to
X are respectively given by

g(x;β, λ) = βλβx−β−1 exp

[
−
(
λ

x

)β]
, x > 0, β, λ > 0

and

G(x;β, λ) = exp

[
−
(
λ

x

)β]
, (1)

where λ and β are the scale and shape parameters, respectively.

If G(x) is an absolute continuous cdf with corresponding pdf g(x), (Pappas, Adamidis,
and Loukas 2012) introduced a new family of distributions with the following cdf and
pdf, respectively

F (x) =

{
1− log[α−(α−1)G(x)]

log(α) if α > 0, α 6= 1

G(x) if α = 1
(2)

and

f(x) =

{
(α−1)g(x)

log(α)[α−(α−1)G(x)] if α > 0, α 6= 1

g(x) if α = 1.
(3)

It has to be noted when α = 2, the cdf and the pdf in (2) and (3) reduce to the cdf and pdf
of the logarithmic transformed method proposed by (Maurya, Kaushik, Singh, Singh, and
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Singh 2016). (Dey, Nassar, and Kumar 2017) used the method of (Pappas et al. 2012) to
introduce a new generalization of the generalized exponential distribution and referred
to as Alpha Logarithmic Transformed (ALT) generalized exponential distribution.

The main aim of this paper is to propose and study a new life time model, called the
ALTF distribution as an extension of the Fréchet distribution using a similar idea as
(Pappas et al. 2012). The new distribution is very flexible in the sense that it can
be skewed depending upon the specific choices of the parameters. Furthermore, the
associated cdf is available in closed form. The major motivation of introducing the ALTF
distribution can be summarized as follows. (i) it contains several lifetime distributions
as special cases, such as the one parameter Fréchet (inverse Weibull), two parameter
Fréchet, inverse exponential, inverse Rayleigh distributions; (ii) The ALTF distribution
exhibits monotone as well as non-monotone hazard rates but does not exhibit a constant
hazard rate, which makes this distribution superior to other lifetime distributions, which
exhibit only monotonically increasing/decreasing, or constant hazard rates. (iii) It is
shown in Section 2 that the ALTF distribution can be viewed as a mixture of Fréchet
distribution; (iv) it can be viewed as a suitable model for fitting skewed data which may
not be properly fitted by other common distributions and can also be used in a variety
of problems in different areas such as public health, biomedical studies and industrial
reliability and survival analysis; and (v) The ALTF distribution outperforms several
well-known lifetime distributions with respect to two real data examples.

The contents of the rest of this paper are organized as follows. In Section 2, we introduce
the ALTF distribution, and discuss some properties of this distribution in Section 3.
In Section 4, maximum likelihood estimators of the unknown parameters along with
asymptotic confidence intervals are obtained. In Section 5, a simulation study is carried
out based on small, moderate and large sample sizes to study the behavior of the proposed
estimators along with confidence intervals. In Section 6, the usefulness of the ALTF
distribution is illustrated by means of two real data sets. Finally, Section 7 offers some
concluding remarks.

2. Model description

Combining (1) and (3), the cdf of the ALTF distribution can be written as

F (x;α, β, λ) = 1− log[α− (α− 1)e−(λx )
β

]

log(α)
, x > 0, α > 0, α 6= 1, β, λ > 0. (4)

The corresponding pdf and hazard rate function are, respectively, given by

f(x;α, β, λ) =
(α− 1)λββx−(β+1)e−(λx )

β

log(α)

[
α− (α− 1)e−(λx )

β
] , x > 0, α > 0, α 6= 1, β, λ > 0 (5)
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and

h(x;α, β, λ) =
(α− 1)λββx−(β+1)e−(λx )

β

log

[
α− (α− 1)e−(λx )

β
] [
α− (α− 1)e−(λx )

β
] (6)

where α and β are the shape parameters and λ is the scale parameter. Hereafter, a ran-
dom variable X that has the pdf given in (5) is denoted by X ∼ ALTF (α, β, λ). Figures
1a and 1b show the curves for pdf and hazard rate function of the ALTF distribution
with various values of α and β with λ = 1. Clearly, the pdf of the ALTF distribution is
decreasing or uni-modal and positively skewed while the hazard function is decreasing,
upside down bathtub and reversed J-shaped failure rate shapes.
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Figure 1: (a) Density and (b) hazard rate functions of ALTF distribution with λ = 1
and different values of α.

Remark 1. Using Maclaurin series and binomial expansion, the pdf of the ALTF distri-
bution in (5) can be written in the following mixture representation

f(x) =

∞∑
k=0

k∑
j=0

ωk,jgFr(x;β, λ(j + 1)1/β), (7)

where

ωk,j =
(α− 1)j+1

(α+ 1)k+1 log(α)

(
k
j

)
,

and gFr(x;β, λ(j + 1)1/β) is the pdf of the Fréchet distribution with scale parameter
λ(j + 1)1/β, and shape parameter β. Remark 1 is very useful to derive the various
properties of the ALTF distribution directly from the Fréchet distribution. For more
details about the ALT family of distributions, see (Dey et al. 2017).
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Special cases: Let X ∼ ALTF (α, β, λ).

1. If α→ 1 then X reduces to the two parameter Fréchet (inverse Weibull) distribu-
tion.

2. If α→ 1 and λ = 1, then X reduces to the one parameter Fréchet distribution.

3. If α→ 1 and β = 1, then X reduces to the inverse exponential distribution.

4. If α→ 1 and β = 2 then X reduces to inverse Rayleigh distribution.

3. Mathematical properties

In this section, we give some important mathematical properties of the ALTF distri-
bution such as quantiles, moments, incomplete moments, moment generating function,
Rényi and δ-entropies, stochastic ordering, stress-strength reliability and order statistics.
Established algebraic expressions to determine some structural properties of the ALTF
distribution can be more efficient than computing them directly by numerical integration
of its density function.

3.1. Quantiles and random numbers generation

Quantiles are fundamental for estimation (for example, quantile estimators) and simu-
lation.
The pth quantile xp of the ALTF distribution is the root of the equation

xp = Q(p) =
λ[

− log
(
α−α1−p

α−1

)]1/β . (8)

Let U ∼ uniform(0, 1), then equation (8) can be used to simulate a random sample of
size n from the ALTF distribution as follows

xi =
λ[

− log
(
α−α1−ui
α−1

)]1/β , i = 1, 2, ..., n.

3.2. Moments

The rth ordinary moments of the ALTF distribution is given by

µ′r = E(Xr) =

∫ ∞
−∞

xrf(x)dx

=
∞∑
k=0

∞∑
j=0

ωk,j

∫ ∞
0

xrgFr(x;β, λ(j + 1)1/β)dx

=

∞∑
k=0

∞∑
j=0

ωk,j λ
r(j + 1)r/βΓ

(
1− r

β

)
, r < β. (9)
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In particular,

µ′1 = E(X) = µ =
∞∑
k=0

∞∑
j=0

ωk,j λ(j + 1)1/βΓ

(
1− 1

β

)

and

µ′2 = E(X2) =
∞∑
k=0

∞∑
j=0

ωk,j λ
2(j + 1)2/βΓ

(
1− 2

β

)
.

The quantile function in (8) and the rth raw moments in (9) of the ALTF distribution
are used to obtain the values of median, mean, variance, skewness and kurtosis for some
selected values of α and β with scale parameter λ = 1. These values are displayed in
Table 1. Table 1 indicates that, for fixed λ and α as β increases the median, mean,
variance, skewness and kurtosis decreases. Also, for fixed λ and β, the median, mean
and variance increases when α increases, while the skewness and kurtosis are decreasing
functions of β.

Table 1: Median, mean, variance, skewness and kurtosis of the ALTF model for λ = 1
and various values of α and β.

α β Median Mean Variance Skewness Kurtosis

0.5 5 1.0256 1.1083 0.1120 3.7030 51.9404
7.5 1.0170 1.0624 0.0386 2.4304 16.8982
10 1.0127 1.0435 0.0195 2.0378 11.9526
15 1.0085 1.0269 0.0079 1.7839 8.9137

2.5 5 1.1533 1.2513 0.1749 3.3020 42.8450
7.5 1.0998 1.1497 0.0560 2.1087 13.8210
10 1.0739 1.1063 0.0273 1.7361 9.7381
15 1.0487 1.0672 0.0106 1.4653 7.2835

5 5 1.2202 1.3281 0.2192 3.1265 38.9772
7.5 1.1419 1.1948 0.0677 1.9700 12.5374
10 1.1046 1.1383 0.0325 1.6069 8.8292
15 1.0686 1.0874 0.0124 1.3356 6.6177

7.5 5 1.2629 1.3779 0.2522 3.0274 36.8227
7.5 1.1684 1.2235 0.0761 1.8921 11.8297
10 1.1238 1.1583 0.0361 1.5345 8.3198
15 1.0809 1.0999 0.0137 1.2638 6.2535

15 5 1.3421 1.4717 0.3242 2.8677 33.3976
7.5 1.2167 1.2763 0.0940 1.7675 10.7150
10 1.1585 1.1950 0.0437 1.4188 7.5408
15 1.1030 1.1225 0.0163 1.1377 5.6843
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3.3. Incomplete moments

The nth incomplete moment of ALTF distribution is given by mn(t) = E [Xn|x < t] =∫ t
0 x

nf(x)dx. We can write from equation (7)

mn(t) =
∞∑
k=0

∞∑
j=0

ωk,j

∫ t

0
xn gFr(x;β, λ(j + 1)1/β)dx

=
∞∑
k=0

∞∑
j=0

ωk,j λ
n(j + 1)n/β γ

(
1− n

β
, (j + 1)

(
λ

t

)β)
, n < β.

The important application of the first incomplete moment is related to Bonferroni and
Lorenz curves defined by L(p) = m1(xp)/µ

′
1 and B(p) = m1(xp)/pµ

′
1, respectively, where

xp can be evaluated numerically from equation (8) for a given probability. These curves
are very useful in economics, demography, insurance, engineering and medicine.

3.4. Conditional moments

For the ALTF distribution, it can be easily seen that the conditional moments, E(Xn|X >
x), can be written as

E(Xn|X > x) =
1

S(x)
Jn(x),

where

Jn(x) =
∞∑
k=0

∞∑
j=0

ωk,j

∫ ∞
x

xn gFr(y;β, λ(j + 1)1/β)dy

=
∞∑
k=0

∞∑
j=0

ωk,j λ
n(j + 1)n/β Γ

(
1− n

β
, (j + 1)

(
λ

x

)β)
, n < β, (10)

where Γ(a, x) denote the upper incomplete gamma function defined by Γ(a, x) =∫∞
x ta−1e−tdt and S(x) = 1− F (x).

An application of the conditional moments is the mean residual life (MRL). Thus, in
life testing experiments, the expected additional lifetime given that a component has
survived until time x is called the MRL. The MRL function is given by

mX(x) = E(X − x|X > x) =
1

S(x)
J1(x)− x,

where J1(x) can be obtained from (10) with n = 1.

Let µ and M denote the mean and the median of the ALTF distribution, respectively.
Thus the mean deviations about the mean and the median can be calculated as

δµ =

∫ ∞
0
|x− µ| f(x)dx = 2µF (µ)− 2µ+ 2J1(µ)
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and

δM =

∫ ∞
0
|x−M | f(x)dx = 2J1(M)− µ,

respectively, where J1(µ) and J1(M) can be obtained from (10). Also, F (µ) can be easily
obtained from (4).

3.5. Moment generating function

First, we obtain the moment generating function of Fréchet distribution by setting y =
x−1 as follows

M(t) = E(etx) =

∫ ∞
−∞

etyf(x)dx

= βλβ
∫ ∞
0

yβ−1 e
t
y e−(λy)

β
dy

= βλβ
∞∑
p=0

λptp

p!

∫ ∞
0

yβ−p−1 e−(λy)
β
dy

=
∞∑
p=0

λptp

p!
Γ

(
β − p
β

)
.

Recall the Wright generalized hyper-geometric function defined by

ψp q

[
(β1, A1), . . . , (βp, Ap)
(λ1, B1), . . . , (λq, Bq)

; z

]
=

∞∑
p=0

∏p
j=1 Γ(βj +Ajp)∏q
j=1 Γ(λj +Bjp)

zp

p!
.

Therefore the moment generating function of Fréchet distribution is

M(t) = ψ1 0

[
(1, − β−1)

− ;λt

]
. (11)

From (7) and (11), the moment generating function of ALTF distribution is given by

M(t) =
∞∑
k=0

∞∑
j=0

ωk,j ψ1 0

[
(1, − β−1)

− ;λ(j + 1)1/βt

]
.

3.6. Rényi entropy and δ−entropies

Entropy is used to measure the randomness of systems and it is widely used in areas like
physics, molecular imaging of tumors and sparse kernel density estimation. If X has the
probability distribution function f(·), Rényi entropy can be defined as

Hδ(x) =
1

1− δ
log

(∫ ∞
0

f δ(x)dx

)
, δ > 0, δ 6= 1.
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Using equation (5), we have

f δ(x) =

(
(α− 1)βλβ

logα

)δ
x−δ(β+1)

exp
{
−δ
(
λ
x

)β}[
α− (α− 1) exp

{
−
(
λ
x

)β}]δ .
After some algebra, we can write

f δ(x) =

∞∑
j=0

ωj x
−δ(β+1) exp

[
−(δ + j)

(
λ

x

)β]
,

where

ωj =

(
(α− 1)β

α logα

)δ λδβ δ(j)
j!

,

and a(j) = Γ(a+ j)/Γ(a) is the rising factorial defined for any real a.

Then, the Rényi entropy of X reduces to

Hδ(x) =
1

1− δ
log

 ∞∑
j=0

ωj

∫ ∞
0

x−δ(β+1) exp

{
−(δ + j)

(
λ

x

)β}
dx

 .

Finally, it can be expressed as

Hδ(x) =
1

1− δ
log

Γ

(
δ(β + 1)

β

) ∞∑
j=0

υj

 , (12)

where

υj =

(
α− 1

α logα

)δ δ(j)

j!

(
β

λ

)δ−1
(δ + j)((1−δ(β+1))/β).

The δ−entropy, say Iδ(x), is defined by

Iδ(x) =
1

δ − 1
log

[
1−

∫ ∞
0

f δ(x)dx

]
, δ > 0, δ 6= 1,

and then it follows from equation (12).

3.7. Stochastic ordering

Ordering of distributions, particularly among lifetime distributions play an important
role in the statistical literature. (Johnson, Kotz, and Balakrishnan 1995) have a major
section on ordering of different lifetime distributions. Here, we consider four different



Austrian Journal of Statistics 79

stochastic orders, namely, the usual, the hazard rate, the mean residual life, and the
likelihood ratio order for two independent ALTF random variables under a restricted
parameter space. It may be recalled that if a family has a likelihood ratio ordering, it
has the monotone likelihood ratio property. This implies there exists a uniformly most
powerful test for any one sided hypothesis when the other parameters are known. If X
and Y are independent random variables with CDFs FX and FY respectively, then X is
said to be smaller than Y in the

• stochastic order (X ≤st (Y )) if FX(x) ≥ FY (x) for all x

• hazard rate order (X ≤hr (Y )) if hX(x) ≥ hY (x) for all x

• mean residual life order (X ≤mrl (Y )) if mX(x) ≥ mY (x) for all x

• likelihood ratio order (X ≤lr (Y )) if fX(x)
fY (x) decreases in x.

The following results due to (Shaked and G. 1994) are well known for establishing
stochastic ordering of distributions.

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mlr Y
⇓

X ≤st Y

The ALTF distribution is ordered with respect to the strongest ’likelihood ratio’ order-
ing as shown in the following theorem. It shows the flexibility of three parameter ALTF
distribution.

Theorem 1: Let X ∼ ALTF (α1, β1, λ1) and Y ∼ ALTF (α2, β2, λ2). If β1 = β2 =
β and λ1 ≥ λ2, then X ≤lr Y , X ≤hr Y , X ≤mrl Y and X ≤st Y .

Proof. The likelihood ratio is

fX(x)

fY (x)
=

(α1 − 1)β1λ
β1
1 e−(λ1/x)

β1 logα2[α2 − (α2 − 1)e−(λ2/x)
β2 ]

(α2 − 1)β2λ
β2
2 e−(λ2/x)

β2 logα1[α1 − (α1 − 1)e−(λ1/x)
β1 ]

thus,

d

dx
log

fX(x)

fY (x)
= −(β1 + 1)

x
+
β1λ

β1
1

xβ1+1
+

(α2 − 1)β2λ
β2
2 e
−(λ2/x)β2

xβ2+1[α2 − (α2 − 1)e−(λ2/x)
β2 ]

+
(β2 + 1)

x
− β2λ

β2
2

xβ2+1
− (α1 − 1)β1λ

β1
1 e
−(λ1/x)β1

xβ1+1[α1 − (α1 − 1)e−(λ1/x)
β1 ]
.
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Now if α1 = α2 = α, β1 = β2 = β and λ1 ≥ λ2 then d
dx log fX(x)

fY (x) ≤ 0, which implies that
X ≤lr Y and hence X is similar than Y also hazard rate order, in mean residual lifetime
order and in stochastic order.

3.8. Stress strength reliability

Let X be the strength of a system which is subjected to a stress Y , and if X follows
ALTF (α1, β1, λ1) and Y follows ALTF (α2, β2, λ2), provided X and Y are statistically
independent random variables, then R = P (Y < X), the measure of system performance
(stress-strength reliability measure) is given by

R = P (Y < X)

=

∞∫
0

f1(x)F2(x)dx

=
(α1 − 1)β1λ

β1
1

logα1

∫ ∞
0

x−(β1+1)e−(λ1/x)
β1

[α1 − (α1 − 1)e−(λ1/x)
β1 ]

1−
log
{
α2 − (α2 − 1)e−(λ2/x)

β2
}

logα2

 dx
= 1− (α1 − 1)

logα1 logα2

∞∑
j=1

∞∑
k=0

α2(α2 − 1)

jα2(j + k + 1)

(
α1 − 1

α1

)k
,

where f1(x) ∼ X and F2(x) ∼ Y .

3.9. Order statistics

Let X1:n ≤ · · · ≤ Xn:n denote the order statistics of a random sample X1, . . . , Xn from
a continuous population with cdf F (x) and pdf f(x), then the pdf of Xj:n is given by

fj:n(x) =
n!

(j − 1)!(n− j)!
f(x) (F (x))j−1 (1− F (x))n−j ,

for j = 1, . . . , n. The pdf of the jth order statistic of the ALTF distribution is given by

fj:n(x) =
n!

(j − 1)!(n− j)!

j−1∑
u=0

(−1)u
(
j − 1
u

)[
log[α− (α− 1)e−(λ/x)

β
]

logα

]n−j+u

× (α− 1)βλβx−(β+1)e−(λ/x)
β

log(α)[α− (α− 1)e−(λ/x)β ]
,

=

∞∑
k=0

ωk gFr(x;β, λ(n− j + u+ v + k + 1)1/β), (13)
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where

ωk =
n!

(j − 1)!(n− j)!

j−1∑
u=0

∞∑
v=0

φv(n− j + u)(α− 1)n−j+u+v+1

α(logα)n−j+u+1(n− j + u+ v + k + 1)

× (−1)n−j+u
(
j − 1

u

)(
α− 1

α

)k
and φp(n−j+u) is the coefficient of (α−1)e−(λ/x)

β
in the expansion of

(∑∞
p=1

(α−1)e−(λ/x)β

p

)n−j+u
(see, Balakrishnan and Cohen (1991)), gFr(x;β, λ(n− j+u+ v+k+ 1)1/β) denotes the
Fréchet density function with parameters λ(n− j + u+ v + k + 1)1/β and β. Thus, the
density function of the ALTF order statistics is a linear mixture of the Fréchet densities.
Based on equation (13), we can obtain some structural properties of Xj:n from those
Fréchet properties. The corresponding cdf is

Fj:n(x) =
n∑
l=j

(
n
l

)
[F (x)]l[1− F (x)]n−l

=
n∑
l=j

l∑
u=0

(−1)u
(
n
l

)(
l
u

)
[1− F (x)]n−l+u

=

n∑
l=j

l∑
u=0

(−1)u
(
n
l

)(
l
u

)[
log[α− (α− 1)e−(λ/x)

β
]

logα

]n−l+u
.

The qth moments of Xj:n for (q < α) is given by

E[Xq
j:n] =

∞∑
k=0

ωkE[Y q
λ(n−j+u+v+k+1)], (14)

where Y q
λ(n−j+u+v+k+1) ∼ Fréchet distribution with scale parameter λ(n − j + u + v +

k + 1)1/β and shape parameter β. Other useful measures for lifetime models are the
L-moments Lk due to (Hoskings 1990). They can be obtained as a linear function of
expected order statistics defined by

λk =
1

k

k−1∑
i=0

(−1)i
(
k − 1

i

)
E(Xk−i:k), k ≥ 1.

Based on (14), the explicit expressions for L-moments of X can be obtained as infinite
weighted linear combinations of suitable ALTF means.

4. Maximum likelihood estimation

Parameter estimation is of utmost importance for any probability distribution. Among
all the estimation methods, the most frequently used method is the maximum likelihood
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(see Lehmann and Casella (1998); Pawitan (2001); Rohde (2014)) method. Its underly-
ing motivation is simple and intuitive. For example, they are asymptotically unbiased,
consistent, and asymptotically normally distributed. In this section, we describe the
maximum likelihood estimation method for estimating the parameters, α , β and λ of
the ALTF distribution.

4.1. Maximum likelihood estimation

We assume throughout the paper that x = (x1, x2, . . . , xn) is a random sample of size
n from the ALTF distribution with unknown parameters α, β and λ, the log-likelihood
function [` = `(α, β, λ;x)] of the density (5) without constant term is given by

` = n log
(α− 1)λββ

log(α)
−

n∑
i=1

(
λ

xi

)β
− (β+ 1)

n∑
i=1

log(xi)−
n∑
i=1

log

(
α− (α− 1)e

−
(
λ
xi

)β)
.

(15)
To obtain the normal equations for the unknown parameters, we differentiate (15) par-
tially with respect to α, β and λ and equate to zero. The resulting equations are

0 =
∂`

∂α
=

n

α− 1
− n

α logα
−

n∑
i=1

1− e−y
β
i

ψi
,

0 =
∂`

∂β
= n log λ+

n

β
−

n∑
i=1

yβi log(yi)−
n∑
i=1

log xi −
n∑
i=1

(α− 1)e−y
β
i yβi log yi

ψi

and

0 =
∂`

∂λ
=
nβ

λ
− β

λ

n∑
i=1

yβi −
β

λ

n∑
i=1

(α− 1)e−y
β
i yβi

ψi
,

where

yi =

(
λ

xi

)
and ψi = α− (α− 1)e

−
(
λ
xi

)β
.

The MLEs of the parameters α, β and λ are denoted by α̂, β̂ and λ̂ and are obtained by
solving the above nonlinear system of equations. It is usually more convenient to use
nonlinear optimization algorithms such as the quasi-Newton algorithm to numerically
maximize the sample likelihood function. To check whether a global maximum has been
attained, a number of starting values have been used.

4.2. Approximate confidence intervals

Since the MLE of the vector of unknown parameters Θ = (α, β, λ) cannot be derived
in closed forms, it is not easy to derive the exact distributions of the MLEs. Hence,
we cannot obtain exact confidence intervals for the parameters. The idea is to use
large sample approximation. It is known that the asymptotic distribution of the MLE
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Θ is [
√
n(α̂MLE − α),

√
n(β̂MLE − β),

√
n(λ̂MLE − λ)] → N3(0, I

−1(α, β, λ)), see (Law-
less 1982), where I−1(α, β, λ) is the inverse of the observed information matrix of the
unknown parameters Θ = (α, β, λ) and obtained as

I−1(Θ̂) =

−I11 −I12 −I13
−I21 −I22 −I23
−I31 −I32 −I33

−1 ∣∣∣∣∣
(α,β,λ)=(α̂,β̂,λ̂)

=

 var(α̂) cov(α̂, β̂) cov(α̂, λ̂)

cov(β̂, α̂) var(β̂) cov(β̂, λ̂)

cov(λ̂, α̂) cov(λ̂, β̂) var(λ̂)

 ,

where

I11 =
∂2`

∂α2
= − n

(α− 1)2
+
n[1 + log(α)]

(α log(α))2
+

n∑
i=1

ψ−2i

(
1− e−y

β
i

)2
,

I22 =
∂2`

∂β2
= − n

β2
−

n∑
i=1

yβi log2(yi)−
n∑
i=1

(α−1)ψ−2i e−y
β
i yβi log2(yi)

[
α− αyβi − (α− 1)e−y

β
i

]
,

I33 =
∂2`

∂λ2
= −nβ

λ2
− β(β − 1)

λ2

n∑
i=1

yβi −
β

λ2

n∑
i=1

(α− 1)ψ−2i e−y
β
i yβi [(β − 1)ψi − βαyβi ],

I12 = I21 =
∂2`

∂α∂β
= −

n∑
i=1

ψ−2i e−y
β
i yβi log(yi),

I13 = I31 =
∂2`

∂β∂λ
= −β

λ

n∑
i=1

ψ−2i e−y
β
i yβi

and

I23 = I32 =
n

λ
− 1

λ

n∑
i=1

yβi ηi −
α− 1

λ

n∑
i=1

ψ−2i e−y
β
i yβi [ψiηi − βαyβi log(yi)],

where
ηi = [1 + β log(yi)].

The above approach is used to derive approximate 100(1 − τ)% confidence intervals of
the parameters Θ = (α, β, λ) as in the following forms

α̂± zτ/2
√
var(α̂),

β̂ ± zτ/2
√
var(β̂)
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and

λ̂± zτ/2
√
var(λ̂),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.

5. Simulation study

In this section, a simulation study has been conducted using Mathcad program version
2007 to illustrate the behavior of the MLEs in terms of the sample size n. We consider
the values 1 and 2 for the parameter λ, 0.5, 2.5 for parameter β and 0.5, 2.5 and 5
for parameter α. For a total of 12 parameter combinations and 1000 replications for
sample sizes 25, 50, 100, 150, 200 and 250, we obtain the average values of the estimates,
mean squared errors (MSEs) and the approximate confidence intervals (CIs) lengths
and the corresponding coverage probabilities. The simulation results are reported in
Tables 2 and 3. Based on the simulation results, it is observed that as the sample size
increases the MSEs decreases which show the property of consistency of the estimates.
Also, the lengths of the approximate confidence intervals decreases as the sample size
increases in all cases. The simulation results also show that the MLEs of the unknown
parameters are quite stable and quite close to the true parameter values, therefore, the
maximum likelihood method works well to estimate the unknown parameters of the
ALTF distribution.

6. Data analysis

In this section, we provide two applications to show the flexibility of the ALTF distribu-
tion. The first real data set represents the survival times in weeks, of patients suffering
from acute Myelogeneous Leukaemia. These data sets have also been analyzed by (Feigl
and Zelen 1965) and (Mead, Afify, Hamedani, and Ghosh 2017). The data consists of
33 observations and are given by:

65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65 56 65 17
7 16 22 3 4 2 3 8 4 3 30 4 43

The second data set represents 46 observations reported on active repair times (hours)
for an airborne communication transceiver analysed by (Alven 1964), (Chhikara and
Folks 1977) and (Dimitrakopoulou, Adamidis, and Loukas 2007). The data are:

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5
1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0
7.5 8.8 9.0 10.3 22.0 24.5

We compare the ALTF distribution with the Fréchet (Fr), weighted Fréchet (WFr),
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Table 2: Average values of estimates, MSEs (in parentheses), lengths of the confidence
intervals and the coverage probabilities (in parentheses) for n = 25, 50 and 100.

Parameters MLEs CIs

λ β α λ̂ β̂ α̂ λ β α

n = 25

1 0.5 0.5 1.884 (2.395) 0.506 (0.010) 0.382 (0.179) 8.056 (95.2) 0.378 (92.8) 2.426 (90.4)
2.5 1.883 (2.254) 0.505 (0.010) 1.872 (3.744) 7.651 (98.2) 0.481 (90.4) 7.096 (90.7)
5 1.645 (2.114) 0.526 (0.013) 6.482 (11.31) 7.296 (96.0) 0.490 (90.0) 13.56 (91.6)

2.5 0.5 1.244 (0.230) 2.519 (0.352) 0.642 (1.001) 0.737 (92.5) 1.843 (90.6) 1.904 (93.1)
2.5 1.296 (0.327) 2.437 (0.330) 2.887 (10.22) 0.822 (92.6) 2.044 (92.4) 11.56 (90.0)
5 1.296 (0.355) 2.464 (0.350) 6.242 (9.451) 0.844 (91.6) 2.236 (91.5) 13.06 (91.1)

2 0.5 0.5 2.632 (3.688) 0.538 (0.014) 0.757 (1.019) 10.15 (91.1) 0.425 (90.8) 2.571 (90.5)
2.5 3.013 (4.010) 0.520 (0.010) 2.328 (3.750) 9.411 (96.9) 0.470 (91.9) 8.735 (92.1)
5 2.617 (2.230) 0.528 (0.011) 6.535 (10.39) 8.244 (98.0) 0.604 (93.9) 11.92 (94.2)

2.5 0.5 2.382 (0.643) 2.529 (0.293) 0.661 (1.429) 1.636 (90.9) 1.986 (91.3) 2.266 (92.7)
2.5 2.559 (0.990) 2.394 (0.326) 2.577 (7.201) 1.723 (91.6) 1.899 (96.6) 7.560 (92.0)
5 2.615 (1.221) 2.398 (0.343) 5.044 (10.78) 1.666 (93.9) 1.946 (93.4) 10.56 (92.2)

n = 50

1 0.5 0.5 1.671 (1.025) 0.486 (0.004) 0.327 (0.115) 6.506 (97.5) 0.286 (90.3) 1.703 (92.6)
2.5 1.367 (0.807) 0.503 (0.005) 2.653 (2.825) 5.620 (94.2) 0.369 (93.5) 6.494 (92.1)
5 1.353 (0.696) 0.501 (0.005) 5.307 (8.580) 5.734 (94.9) 0.393 (92.4) 10.08 (93.3)

2.5 0.5 1.147 (0.107) 2.449 (0.177) 0.547 (0.453) 0.649 (92.1) 1.406 (91.9) 0.808 (92.3)
2.5 1.183 (0.142) 2.399 (0.197) 2.592 (9.008) 0.659 (95.4) 1.484 (93.3) 9.556 (93.4)
5 1.171 (0.146) 2.411 (0.216) 6.106 (7.201) 0.681 (93.3) 1.640 (92.0) 10.57 (93.3)

2 0.5 0.5 2.558 (2.283) 0.513 (0.005) 0.535 (0.220) 9.963 (93.4) 0.350 (92.0) 2.185 (93.7)
2.5 2.578 (1.544) 0.500 (0.004) 2.376 (2.624) 8.046 (96.5) 0.390 (92.2) 10.93 (96.5)
5 2.383 (0.988) 0.508 (0.004) 4.898 (6.189) 7.240 (99.0) 0.457 (96.5) 10.83 (96.7)

2.5 0.5 2.312 (0.363) 2.423 (0.152) 0.492 (0.506) 1.393 (95.2) 1.381 (92.8) 1.129 (94.9)
2.5 2.429 (0.569) 2.337 (0.231) 2.426 (5.709) 1.326 (92.2) 1.301 (92.8) 5.206 (92.5)
5 2.424 (0.609) 2.340 (0.244) 5.306 (8.353) 1.302 (93.5) 1.388 (94.3) 8.388 (95.8)

n = 100

1 0.5 0.5 1.339 (0.361) 0.494 (0.002) 0.400 (0.097) 4.295 (95.1) 0.244 (91.7) 1.678 (94.2)
2.5 1.253 (0.315) 0.494 (0.002) 2.211 (1.944) 4.266 (96.1) 0.289 (93.7) 3.029 (94.7)
5 1.264 (0.308) 0.492 (0.002) 4.325 (7.333) 4.545 (97.2) 0.329 (93.1) 6.522 (94.0)

2.5 0.5 1.110 (0.056) 2.432 (0.112) 0.479 (0.298) 0.501 (93.7) 1.013 (93.2) 0.729 (94.0)
2.5 1.127 (0.072) 2.387 (0.137) 2.491 (6.330) 0.516 (95.3) 1.128 (96.5) 8.328 (96.2)
5 1.128 (0.073) 2.378 (0.151) 5.009 (6.659) 0.542 (94.4) 1.194 (94.3) 9.318 (94.8)

2 0.5 0.5 2.199 (0.627) 0.503 (0.002) 0.514 (0.095) 6.720 (95.5) 0.251 (93.4) 1.878 (95.3)
2.5 2.386 (0.664) 0.495 (0.002) 2.199 (1.252) 6.088 (97.6) 0.349 (94.1) 7.918 (96.3)
5 2.197 (0.284) 0.504 (0.002) 4.874 (2.835) 6.421 (99.6) 0.406 (97.1) 9.612 (99.4)

2.5 0.5 2.231 (0.213) 2.415 (0.115) 0.495 (0.495) 1.103 (92.8) 1.038 (93.8) 0.953 (93.5)
2.5 2.355 (0.351) 2.319 (0.178) 2.201 (4.198) 0.995 (95.5) 0.933 (93.6) 3.480 (94.7)
5 2.342 (0.367) 2.323 (0.198) 4.788 (6.487) 1.032 (95.6) 1.043 (94.0) 5.558 (96.1)
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Table 3: Average values of estimates, MSEs (in parentheses), lengths of the confidence
intervals and the coverage probabilities (in parentheses)for n = 150, 200 and 250.

Parameters MLEs CIs

λ β α λ̂ β̂ α̂ λ β α

n = 150

1 0.5 0.5 1.329 (0.267) 0.489 (0.002) 0.373 (0.055) 3.969 (95.6) 0.220 (94.6) 1.607 (93.7)
2.5 1.277 (0.289) 0.492 (0.002) 2.188 (1.984) 3.990 (95.9) 0.274 (94.2) 2.517 (94.2)
5 1.216 (0.189) 0.491 (0.002) 4.187 (5.355) 3.729 (97.9) 0.258 (94.3) 5.487 (96.0)

2.5 0.5 1.081 (0.036) 2.442 (0.086) 0.509 (0.276) 0.478 (94.9) 0.941 (94.9) 0.671 (96.9)
2.5 1.099 (0.039) 2.387 (0.098) 2.217 (4.166) 0.481 (95.9) 1.006 (95.6) 6.400 (96.5)
5 1.091 (0.037) 2.397 (0.104) 4.776 (6.043) 0.524 (95.6) 1.156 (95.9) 8.449 (97.4)

2 0.5 0.5 2.026 (0.336) 0.509 (0.002) 0.543 (0.060) 6.261 (95.1) 0.208 (94.3) 1.586 (97.3)
2.5 2.290 (0.335) 0.495 (0.001) 2.233 (0.890) 5.351 (98.7) 0.293 (97.7) 6.025 (98.8)
5 2.128 (0.230) 0.503 (0.001) 4.929 (1.881) 5.443 (99.3) 0.368 (97.6) 7.929 (98.7)

2.5 0.5 2.150 (0.111) 2.445 (0.079) 0.517 (0.352) 0.961 (95.4) 0.906 (94.1) 0.824 (97.5)
2.5 2.283 (0.225) 2.339 (0.141) 2.107 (2.842) 0.881 (96.6) 0.832 (95.5) 2.996 (98.7)
5 2.286 (0.259) 2.337 (0.162) 4.585 (4.837) 0.868 (95.1) 0.889 (95.8) 4.568 (97.8)

n = 200

1 0.5 0.5 1.319 (0.228) 0.487 (0.001) 0.364 (0.053) 3.866 (96.3) 0.207 (95.7) 1.450 (95.5)
2.5 1.163 (0.153) 0.494 (0.001) 2.227 (1.118) 2.857 (96.2) 0.217 (96.8) 2.168 (96.0)
5 1.204 (0.142) 0.489 (0.001) 4.054 (4.080) 3.464 (97.6) 0.235 (96.0) 3.624 (96.6)

2.5 0.5 1.067 (0.025) 2.447 (0.067) 0.500 (0.220) 0.422 (96.5) 0.823 (95.3) 0.488 (95.8)
2.5 1.087 (0.031) 2.392 (0.090) 2.226 (3.939) 0.459 (95.4) 0.954 (95.5) 6.077 (96.7)
5 1.077 (0.027) 2.410 (0.087) 4.833 (4.847) 0.458 (94.5) 1.032 (96.7) 6.978 (97.9)

2 0.5 0.5 2.030 (0.244) 0.505 (0.001) 0.533 (0.035) 5.803 (96.8) 0.184 (97.4) 1.368 (98.4)
2.5 2.269 (0.256) 0.493 (0.001) 2.143 (0.524) 4.790 (99.4) 0.276 (96.3) 5.260 (98.6)
5 2.079 (0.138) 0.502 (0.001) 5.003 (1.192) 4.681 (99.6) 0.342 (98.5) 5.589 (99.4)

2.5 0.5 2.154 (0.091) 2.419 (0.068) 0.461 (0.235) 0.904 (95.5) 0.782 (95.0) 0.646 (95.7)
2.5 2.257 (0.187) 2.334 (0.124) 2.070 (2.758) 0.819 (96.2) 0.755 (95.9) 2.659 (97.1)
5 2.240 (0.203) 2.364 (0.140) 4.779 (4.127) 0.832 (95.7) 0.879 (97.2) 4.485 (96.9)

n = 250

1 0.5 0.5 1.207 (0.119) 0.491 (0.001) 0.397 (0.039) 3.363 (95.8) 0.202 (95.7) 1.336 (95.7)
2.5 1.130 (0.102) 0.494 (0.001) 2.251 (0.766) 1.907 (97.7) 0.131 (96.3) 1.520 (97.9)
5 1.171 (0.106) 0.488 (0.001) 4.133 (3.724) 3.156 (97.8) 0.206 (97.6) 2.638 (98.3)

2.5 0.5 1.060 (0.021) 2.441 (0.059) 0.487 (0.185) 0.386 (95.2) 0.742 (93.4) 0.330 (95.0)
2.5 1.075 (0.026) 2.411 (0.076) 2.341 (3.823) 0.462 (96.1) 0.726 (95.8) 4.683 (96.0)
5 1.076 (0.023) 2.398 (0.078) 4.465 (3.058) 0.414 (94.1) 0.904 (95.6) 6.420 (96.5)

2 0.5 0.5 2.001 (0.157) 0.505 (0.001) 0.527 (0.025) 4.832 (97.2) 0.142 (96.6) 0.944 (97.8)
2.5 2.235 (0.204) 0.493 (0.001) 2.202 (0.394) 4.183 (99.6) 0.257 (98.4) 4.745 (99.1)
5 2.009 (0.102) 0.504 (0.001) 5.208 (1.579) 4.153 (99.6) 0.312 (98.8) 4.776 (99.5)

2.5 0.5 2.134 (0.074) 2.423 (0.060) 0.472 (0.206) 0.809 (95.1) 0.695 (95.9) 0.589 (97.0)
2.5 2.213 (0.147) 2.366 (0.109) 2.237 (2.697) 0.758 (95.5) 0.736 (96.6) 2.409 (97.6)
5 2.184 (0.146) 2.394 (0.110) 4.961 (3.903) 0.745 (96.2) 0.823 (96.6) 3.817 (97.1)
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Marshall Olkin Fréchet (MOFr), exponentiated Fréchet (EFr) and beta exponentiated
Fréchet (BEFr) distributions. Their density functions (for x > 0) are given by:

WFr : f(x;α, β) =
α(2β)1−1/αx−αe−2βx

−α

Γ(1− 1/α)
,

MOFr : f(x;α, β, λ) = αβλβx−(β+1)e−(λ/x)
β
[
α+ (1− α)e−(λ/x)

β
]−2

,

EFr : f(x;α, β, λ) = αβλβx−(β+1)e−(λ/x)
β
[
1− e−(λ/x)β

]α−1
,

BEFr : f(x;α, β, λ) =
αβλβ

B(a, b)
x−(β+1)e−(λ/x)

β
[
1− e−(λ/x)β

]αb−1 {
1−

[
1− e−(λ/x)β

]α}a−1
.

Tables 4 and 6 provide the MLEs and the corresponding standard errors (in parentheses)
of the parameters of all the models for data sets 1 and 2, respectively. In order to compare
our proposed distribution, Tables 5 and 7 list the values of −2ˆ̀, Akike information
criterion (AIC), Kolmogorov-Smirnov (K-S)and the corresponding p-value, Anderson-
Darling (A∗) and Cramér von Mises (W ∗) goodness of fit statistics for the fitted models
for data sets 1 and 2, respectively. From Tables 5 and 7, it is to be noted that the ALTF
distribution gives the lowest values of these statistics among all fitted models for both
the data sets, and can be used as a competitive model to the other considered models.
The histogram and the fitted ALTF distribution are displayed in Figure 2(a) and 3(a)
for data sets 1 and 2, respectively. Also, the plot of the fitted ALTF survival function
and empirical survival function are displayed in Figures 2(b) and 3(b) for the data sets
1 and 2, respectively. Figures 4 and 5 show that the log-likelihood functions for α, β and
λ, for data sets 1 and 2, respectively are log-concave, and therefore a global maximum
exists.

Table 4: MLEs and standard errors (in parentheses).

Model Estimates

Fr(β,λ) 0.6944 (0.0915) 7.8651 (2.0913)
WFr(α,β) 0.0070 (0.0838) 0.2461 (0.4961)
ALTF(α,β,λ) 188.55 (214.77) 1.3504 (0.2438) 2.0364 (0.1237)
MOFr(α,β,λ) 8.0682 (0.5111) 0.9875 (0.1215) 1.9073 (0.6347)
EFr(α,β,λ) 5.4684 (2.3151) 0.3336 (0.0623) 152.35 (37.235)
BEFr(α,β,λ,a,b) 1.7253 (4.5780) 0.1107 (0.1460) 29.588 (201.77) 21.0415 (64.5050) 19.7308 (62.632)
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Table 5: Goodness-of fit statistics.

Model −2ˆ̀ AIC K − S p− value A∗ W ∗

Fr(β,λ) 311.9971 315.997 0.1187 0.7412 1.0475 0.1731
WFr(α,β) 316.5028 320.503 0.1649 0.3308 1.3565 0.2136
ALTF(α,β,λ) 306.2983 312.298 0.0977 0.9111 0.6399 0.0976
MOFr(α,β,λ) 309.3784 315.378 0.1360 0.5749 0.7926 0.1279
EFr(α,β,λ) 308.5659 314.566 0.1285 0.5749 0.7291 0.1166
BEFr(α,β,λ,a,b) 308.1170 318.117 0.1302 0.6306 0.7049 0.1121

Table 6: MLEs and standard errors (in parentheses).

Model Estimates

Fr(β,λ) 1.0127 (0.1130) 1.1298 (0.1740)
WFr(α,β) 0.1599 (0.0361) 1.7408 (0.1049)
ALTF(α,β,λ) 298.97 (1093.2) 1.9532 (0.7469) 0.4093 (0.1485)
MOFr(α,β,λ) 1.3382 (0.1396) 0.5068 (0.0866) 4.9123 (0.0784)
EFr(α,β,λ) 0.5403 (0.0673) 5.3057 (0.4844) 3.8005 (1.0695)
BEFr(α,β,λ,a,b) 1.7282 (19.063) 0.5405 (0.0022) 5.2086 (0.0883) 1.0116 (0.0346) 2.1887 (24.2151)

Table 7: Goodness-of fit statistics.

Model −2ˆ̀ AIC K − S p− value A∗ W ∗

Fr(β,λ) 201.3814 205.381 0.0590 0.9972 0.4053 0.0634
WFr(α,β) 205.7220 209.722 0.0797 0.9320 0.6331 0.0930
ALTF(α,β,λ) 198.7777 204.778 0.0588 0.9973 0.2095 0.0260
MOFr(α,β,λ) 199.8606 205.861 0.0785 0.9394 0.2978 0.0479
EFr(α,β,λ) 199.4399 205.440 0.0827 0.9115 0.2735 0.0440
BEFr(α,β,λ,a,b) 199.4403 209.440 0.0825 0.9129 0.2735 0.0441
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Figure 2: (a) the histogram and the fitted ALTF distribution and (b) the fitted ALTF
survival function and empirical survival function for data 1.
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Figure 3: (a) the histogram and the fitted ALTF distribution and (b) the fitted ALTF
survival function and empirical survival function for data 2.
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Figure 4: The log-likelihood functions of α, β and λ for data 1.
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Figure 5: The log-likelihood functions of α, β and λ for data 2.

7. Conclusion

In this paper we have proposed a new three-parameter family of distributions, so-called
the ALTF distribution. The proposed ALTF model has two shape parameters and one
scale parameter. It includes as special sub-models: the one parameter Fréchet (in-
verse Weibull), two parameter Fréchet (inverse Weibull), inverse exponential and inverse
Rayleigh distributions. The ALTF density function can take various forms depending
on its shape parameters. Moreover, the LTF failure rate function can have the following
forms depending on its shape parameters: (i) decreasing (ii) upside down bathtub and
(iii) reversed J-shaped shaped. Therefore, it can be used quite effectively in analyzing
lifetime data. Additionally, the new ALTF model can be used as an alternative to the
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Fréchet, weighted Fréchet, Marshall Olkin Fréchet, exponentiated Fréchet and beta ex-
ponentiated Fréchet distributions and is expected that in some situations it might work
better (in terms of model fitting) than the models stated, although it cannot be always
guaranteed. In this paper, we have analyzed two real data sets and the proposed ALTF
distribution provides a very good fit to the data sets. We hope our new distribution
might attract wider sets of applications in lifetime data and reliability analysis.

Acknowledgments: The authors would like to thank the Editor, Associate Editor and
the referees for careful reading and for valuable comments that greatly improved the
presentation of article.
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