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Abstract

Strong laws of large numbers with arbitrary norming sequences for nonnegative not
necessarily independent random variables are obtained. From these results we establish,
among other things, stability results for weighted sums of nonnegative random variables.
A survey sampling application is provided on strong consistency of the Horvitz–Thompson
estimator and the ratio estimator.
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1. Introduction

Consider the sequence {Xi, i ≥ 1} of square integrable random variables (r.v.) that take
values in [0,∞). Put Sn =

∑
i≤nXi, and denote expectation and variance by, respectively,

EXi and VXi for all i. We say that the sequence {Xi, i ≥ 1} satisfies the strong law of large
numbers (SLLN) if (Sn − ESn)/n→ 0 almost surely (a.s.) as n→∞.

There exists a considerably large body of SLLN for nonnegative r.v.’s. Two strands of research
are noteworthy: the results of (i) Etemadi (1983a,b) or Csörgő, Tandori, and Totik (1983) and
(ii) the Petrov-type approach (which is inspired by Petrov (1969), hence the name); see e.g.
Korchevsky (2015), Kuczmaszewska (2016) or Petrov (2009). Korchevsky (2015) provides a
recent summary of the latter approach and Chen and Sung (2016) establish a theorem which
unifies both strands. In what follows, we pursue the approach of Etemadi (1983a), which can
be inferred from his theorem.

Theorem A (Etemadi, 1983a, Thm. 1). Let {Xi, i ≥ 1} be a sequence of nonnegative r.v.’s
with finite second moment such that

(i) supi≥1 EXi <∞,

(ii) E[XiXj ] ≤ EXiEXj for all j > i, and
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(iii)
∑∞

i=1VXi/i
2 <∞.

Then as n→∞,
Sn − ESn

n
→ 0 a.s. (1)

Remark. Walk (2005, Thm. 1) gave a generalization of Theorem A, having replaced hypothesis
(ii) and (iii) by the weaker assumption

∑∞
i=1V(X1 + · · ·+Xi)/i

3 <∞.

The two aforementioned strands differ primarily in terms of the assumptions imposed on
the pth moments (p ≥ 1) of the r.v.’s. The Petrov-type results replace hypotheses (ii) and
(iii) of Theorem A and require instead that Petrov’s condition holds (cf. Korchevsky 2015;
Kuczmaszewska 2016)

E|Sn − ESn|2 = O
(

n2

ψ(n)

)
for some ψ ∈ Ψc. (2)

The set of functions Ψc consists of all real-valued functions ψ(x) that are (i) positive and
nondecreasing in the domain of x > x0 for some positive real x0, and (ii) ψ is such that the
series

∑
n 1/(nψ(n)) is convergent. The value x0 is not assumed to be the same for different

ψ-functions. Examples of functions in Ψc are xδ and (log x)1+δ for any δ > 0.

Let {an, n ≥ 1} be an arbitrary monotone sequence of positive real numbers, 0 < an ↑ ∞ as
n→∞. Korchevsky (2015) formulated the generalized Petrov condition,

E|Sn − ESn|p = O
(

apn
ψ(an)

)
for some ψ ∈ Ψc and p ≥ 1. (3)

Observe that in (3) the classical normalization n is replaced by the arbitrary norming sequence
{an, n ≥ 1}. Under the assumptions in (3) and the additional hypothesis ESn = O(an),
Korchevsky (2015, Thm. 1) proved the following SLLN,

Sn − ESn
an

→ 0 a.s. as n→∞. (4)

In the main section, we provide an extension of Theorem A to an arbitrary norming sequence
in place of the classical one—similar to the Petrov-type result in (4). Our theorem provides
two interesting corollaries: an SLLN for weighted sums and a result on the strong stability
of sums of nonnegative r.v.’s. In addition, we give a generalization of Wu’s (1981) Lemma 2
(see Lem. B) that holds for nonnegative but not necessarily independent r.v.’s.

Lemma B (Wu, 1981, Lem. 2). Let {Xi, i ≥ 1} be a sequence of independent r.v.’s with
EXi = 0 and VXi = σ2i < ∞. Suppose a sequence of positive real numbers {An, n ≥ 1} such
that

An →∞, lim sup
n→∞

(∑
i≤n σ

2
i

)1/2+δ
An

<∞ for some δ > 0. (5)

Then as n→∞,
Sn
An
→ 0 a.s. (6)

Under the hypothesis of independence, Lemma B proved to be a very popular and valuable
tool in a large number of papers; see e.g., Fahrmeir and Kaufmann (1985) in the context of
the generalized linear model or Xie and Yang (2003) who provide a generalization for double
array sequences. In view of the wide applicability of Lemma B, our Corollary 5 can be useful
in its own right.
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2. Main results

Unless otherwise stated, we adhere to the following notation in this section. Denote by

{Xi, i ≥ 1} a sequence of nonnegative r.v.’s with finite second moment, (7)

{wi, i ≥ 1} a sequence of nonnegative real numbers, (8)

{ai, i ≥ 1} a monotone sequence of positive real numbers, (9)

where 0 < ai ↑ ∞ as i → ∞. Inspired by the methods used in Etemadi (1983a) and Kucz-
maszewska (2016), we prove the following theorem which replaces the classical normalization
in Theorem A by an arbitrary normalizing sequence and thus generalizes the theorem.

Theorem 1. Consider {Xi, i ≥ 1} and {ai, i ≥ 1} in, respectively, (7) and (9). Suppose the
hypotheses,

(i) ESn = O(an),

(ii) E[XiXj ] ≤ EXiEXj for all j > i,

(iii)
∑∞

i=1VXi/a
2
i <∞,

then as n→∞,
Sn − ESn

an
→ 0 a.s. (10)

Remark. The above theorem can be seen as a special case of the more general result in Chandra
and Goswami (1992, Thm. 1). These authors require the existence of a double sequence {ρij}
of real values such that VSn ≤

∑n
i=1

∑n
j=1 ρij for all n ≥ 1 with

∑∞
i=1

∑∞
j=1 ρij/a

2
max(i,j) <∞

instead of our hypotheses (ii) and (iii).

An immediate corollary of Theorem 1 is the following SLLN for weighted sums; cf. Etemadi
(1983b). Consider {wi, i ≥ 1} in (8), put

Wn =
n∑
i=1

wi, Tn =
n∑
i=1

wiXi, (11)

and let {wi, i ≥ 1} be such that

wn
Wn
→ 0 and Wn →∞ as n→∞. (12)

Corollary 2. Let {Xi, i ≥ 1} be given in (7), and let {wi, i ≥ 1} in (8) satisfy (12). Consider
Tn and Wn in (11). If

(i) ETn = O(Wn),

(ii) E[XiXj ] ≤ EXiEXj for all j > i,

(iii)
∑∞

i=1w
2
iV[Xi]/W

2
i <∞,

then as n→∞,
Tn − ETn

Wn
→ 0 a.s. (13)

The proof of Corollary 2 is straightforward. Put ai ≡ Wi and apply Theorem 1 using
{wiXi, i ≥ 1} and {Wi, i ≥ 1} in place of {Xi, i ≥ 1} and {ai, i ≥ 1}, hence the assertion
obtains.

Another interesting corollary of Theorem 1 refers to the (strong) stability of sums of r.v.’s.
Consider {Xi, i ≥ 1} in (7) and let Sn =

∑
i≤nXi be such that

ESn →∞ and
EXn

ESn
→ 0 as n→∞. (14)
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Corollary 3. Let {Xi, i ≥ 1} in (7) satisfy (14). If

(i) E[XiXj ] ≤ EXiEXj for all j > i,

(ii)
∑∞

n=1V[Xn]/(ESn)2 <∞,

then as n→∞,
Sn
ESn

→ 1 a.s. (15)

The proof of Corollary 3 obtains from Theorem 1. Define Yi = Xi/EXi (where we assume
without loss of generality that EXi > 0 for all i), and put wi = EXi. Note that Tn =∑

i≤nwiYi =
∑

i≤nXi and Wn =
∑

i≤nwi = ESn, hence the assertion follows by application
of Corollary 2.

The next theorem provides an SLLN under a suitable normalization when the sum of the
variances of the elements in the partial sum Sn,

Bn =
n∑
i=1

VXi, (16)

grows without bounds (i.e. Bn → ∞ as n → ∞). The result is comparable with Theorem 1
in Petrov (1969) except that it does not require the r.v.’s to be independently distributed.

Theorem 4. Let {Xi, i ≥ 1} be defined as in (7). Suppose the hypotheses

(i) ESn = O(an);

(ii) E[XiXj ] ≤ EXiEXj for all j > i.

Let Bn →∞ as n→∞, then

Sn − ESn√
Bnψ(Bn)

→ 0 a.s. for any ψ ∈ Ψc. (17)

As a corollary of Theorem 4 we obtain the next result, which can be regarded as a general-
ization of Lemma 2 in Wu (1981) – see Lemma B – under the hypothesis of nonnegative but
not necessarily independent r.v.’s.

Corollary 5. Suppose that the hypotheses of Theorem 4 hold. Let {wn, n ≥ 1} be a sequence
of positive real numbers such that

wn →∞, and lim sup
n→∞

B
1/2+δ
n

wn
<∞ for some δ > 0. (18)

Then as n→∞,
Sn − ESn

wn
→ 0 a.s. (19)

3. Application

We provide an application in the context of survey sampling, where the restriction to nonneg-
ative r.v.’s is quite natural. Our focus is on (strong) consistency of the Horvitz–Thompson
(HT) estimator and the ratio estimator for the population mean.

Suppose a finite population Ut of units labeled i = 1, . . . , Nt (the index t is unimportant for the
moment). Associated with the ith element in Ut is the (nonnegative) study variable yi, which
is unknown for all i ∈ Ut. The goal is to estimate the population y-mean, ȳUt =

∑
i∈Ut

yi/Nt.
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Sampling

Suppose a without-replacement sample st of fixed (i.e. non-random) size nt, 0 < nt < Nt,
is drawn from Ut, and error-free measurements yi, i ∈ st, are recorded. Denote by St =
{i ∈ Ut : 1i∈st = 1} a random set, where 1i∈st is the sample-inclusion indicator which equals
one (zero) in the presence (absence) of element i in the sample. The logical status of 1i∈st
is that of a r.v.; in the context of sampling, yi is regarded as a fixed quantity. Expectation
with respect to (w.r.t.) the randomization distribution (abbreviated by p-distr.) is denoted
by Ep; the operators Vp and Covp shall be defined analogously. Each sample st is regarded as
a realization of St, the probability distribution of which is called sampling design. The first-
and second-order sample-inclusion probabilities are denoted by, respectively, πi,t = Ep(1i∈st)
and πij,t = Ep(1i∈st1j∈st), i, j ∈ Ut; the covariance of the sample-inclusion indicators will be
denoted by

∆ij,t = Covp(1i∈st ,1j∈st) = πij,t − πi,tπj,t. (20)

By our hypothesis of fixed-size sampling designs, the identities (cf. Särndal, Swensson, and
Wretman 1992, Result 2.6.2),

Nt∑
i=1

πi,t = nt, and

Nt∑
j=1, j 6=i

πij,t = (nt − 1)πi,t for all i ∈ Ut, (21)

obtain, which imply

Nt∑
j=1, j 6=i

∆ij,t = πi,t(πi,t − 1) for all i ∈ Ut. (22)

Asymptotic framework

Our asymptotic framework is for the most part that of Robinson and Särndal (1983); see
also Isaki and Fuller (1982). Let {Ut, t ≥ 1} denote the nested sequence of populations Ut of
size Nt; the samples st form an analogous but not necessarily nested sequence. All limiting
processes will be taken as t → ∞. In what follows, we will impose some assumptions on the
behavior of the sampling design.

Assumption A. (i) The r.v.’s 1i∈st are independent of the study variable yi for all i ∈ Ut.

(ii) There exists a constant λ such that mini∈Ut(πi,t) ≥ λ > 0 for all Nt.

Assumption B. For all elements i, j ∈ Ut such that i 6= j, ∆ij,t ≤ 0.

Designs that satisfy hypothesis (i) of Assumption A are called non-informative designs (Särn-
dal et al. 1992, Remark 2.4.4). Assumption B refers to the covariance of the sample-inclusion
indicators. We say that two observations i, j ∈ Ut, i 6= j, are “tied” if ∆ij,t > 0. As Robinson
(1982, 237) shows (for the case of the Horvitz–Thompson estimator), tying can lessen the
rate of convergence. For extreme types of designs (e.g., when an ideal coin is tossed to decide
whether the sample should consist entirely of even natural numbers, or of odd ones), the
Horvitz–Thompson estimator will not be consistent. Clearly, our Assumption B does exclude
such situations. In fact, the vast majority of single-stage without-replacement sampling de-
signs obeys Assumption B; e.g., simple random sampling (SRS), stratified SRS, designs with
(unequal) probabilities proportional to certain size measures (πps-designs), etc. However, As-
sumption B usually fails for one-stage cluster sampling and multistage designs (due to positive
correlation within clusters).

The next assumption is concerned with the behavior of the sequence {yi, i ≥ 1} of real
numbers.

Assumption C. Let {yi, i ≥ 1} be such that

lim
t→∞

1

Nt

Nt∑
i=1

yi <∞ and lim
t→∞

1

Nt

Nt∑
i=1

y2i <∞.
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Horvitz–Thompson estimator

We shall derive sufficient conditions for the Horvitz–Thompson type estimator of the mean to
be strongly consistent for the population mean. Denote the HT estimator of the population
y-total Ty,t =

∑
i∈Ut

yi by

T̂y,t =
∑
i∈Ut

yi
πi,t
1i∈st . (23)

The HT estimator of the x-total, Tx,t, shall be defined in the same way. An obvious estimator
of the population y-mean, ȳUt , is the HT-type estimator given by

ˆ̄yHT,t =
T̂y,t
Nt

. (24)

Robinson (1982) studied mean square (weak) consistency of this estimator. For our purposes,
it is instructive to present Robinson’s main arguments (see his Thm. 1 and 2) in condensed
form. To this end, define the sets, for all i = 1, . . . , Nt,

D+
i =

{
j ∈ Ut : ∆ij,t > 0

}
, and D−i =

{
j ∈ Ut : ∆ij,t ≤ 0

}
, (25)

having suppressed the index t for the sake of simplicity. Note that these definitions enable us
to “separate” tied form untied observations. Let D+ = ∪Nt

i=1D
+
i and D− = ∪Nt

i=1D
−
i . Under

the hypothesis of fixed-size designs, the variance of ˆ̄yHT,t is given by (cf. Särndal et al. 1992,
Result 2.8.2)

N2
t Vp

(
ˆ̄yHT,t

)
= −1

2

∑∑
i 6=j

∆ij,t

(
yi
πi,t
− yj
πj,t

)2

≤ −1

2

∑∑
i∈D−

∆ij,t

(
yi
πi,t
− yj
πj,t

)2

(having exploited that the double sum over the index set D− is non-positive), moreover,

≤ −
∑∑
i∈D−

∆ij,t
y2i
π2i,t

= −
Nt∑
i=1

y2i
π2i,t

∑
D−

i

∆ij,t = −
Nt∑
i=1

y2i
π2i,t

( Nt∑
j=1, j 6=i

∆ij,t −
∑
D+

i

∆ij,t

)
,

which then, together with (21) and (22), implies

=

Nt∑
i=1

y2i
π2i,t

(
πi,t(1− πi,t) +

∑
D+

i

∆ij,t

)
≤

Nt∑
i=1

y2i
π2i,t

(
πi,t +

∑
D+

i

∆ij,t

)
. (26)

Under our Assumption C, Robinson (1982, Thm. 2) establishes from (26) that

N2
t Vp

(
ˆ̄yHT,t

)
= O(Nt)

(
min
i∈Ut

πi,t
)−1(

1 +
(

min
i∈Ut

πi,t
)−1

max
i∈Ut

∑
D+

i

∆ij,t

)
(27)

which implies, for large Nt,

ˆ̄yHT,t − ȳUt = O(N
−1/2
t δ−1/2) +O(N

−1/2
t δ−1ζ), (28)

where
δ = min

i∈Ut

πi,t, and ζ = max
i∈Ut

∑
D+

i

∆ij,t. (29)

Now, sufficient conditions of (weak) consistency of ˆ̄yHT,t for the population mean are i) δNt →
∞ and ii) ζ = o(δNt

1/2) as t → ∞. Note that condition ii) means that the observations are
not strongly tied. Moreover, as Robinson (1982, 237) points out, it is desirable if ∆ij,t ≤ 0
(cf. our Assumption B), for then the sets D+

i are empty sets for all i ∈ Ut, hence ζ = 0.
If in addition the terms πi,tNt/nt are bounded away from zero it follows that ˆ̄yHT,t − ȳUt is
O(nt

−1/2), implying weak consistency as nt →∞ (t→∞).

The next theorem establishes strong consistency of the Horvitz–Thompson type estimator
ˆ̄yHT,t under hypotheses similar to the ones used by Robinson (1982).
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Theorem 6. Let the sequences of populations {Ut, t ≥ 1} and samples {st, t ≥ 1} be as de-
scribed. Suppose Assumptions A and B. Let {yi, i ≥ 1} be a sequence of nonnegative real
numbers that satisfies Assumption C. Then, as t→∞,

ˆ̄yHT,t − ȳUt → 0 a.s.. (30)

Remarks. (i) In contrast to Robinson (1982, Thm. 2), our Theorem 6 requires {yi, i ≥ 1} to
be a sequence of nonnegative real numbers. With this additional assumption, however,
we obtain strong instead of weak consistency. The restriction to non-negativity does not
limit the applicability of the result in any noticeable manner as population totals are
only meaningful population characteristics in conjunction with nonnegative data.

(ii) The hypotheses of Theorem 6 can be slightly weakened. The assertion is still true when
the y2i ’s are allowed to grow (although not too much); thus, instead of Assumption C,
we require that

∑
i≤Nt

y2i = O(N2−δ
t ) with δ > 0 and

∑
i≤Nt

yi = O(Nt) as Nt →∞.

(iii) The results of Robinson (1982) establish error estimates (e.g., ˆ̄yHT,t − ȳUt is of order
O(nt

−1/2) in probability), while our results do not. However, we can easily obtain error
estimates by specifying assumptions in terms of the asymptotic behavior of πi,tNt/nt.

Ratio estimator

Let {xi, i ≥ 1} denote a sequence of nonnegative real numbers that are known for all i ∈ Ut;
hence, the population x-mean, x̄Ut , is a known quantity. We shall assume that the population-
level relationship between yi and xi can be approximated by the heteroscedastic model ξ:
yi = xiβ + Ei, i ∈ Ut, where Eξ(Ei | xi) = 0 and

Eξ(EiEj | xi, xj) =

{
xiσ

2 if i = j

0 otherwise.
(31)

The parameters β ∈ R+ and σ2 ∈ R+ are not known. Note that model ξ is merely motivated
as an assisting model. In this context, the ratio estimator of the population y-mean,

ˆ̄yrat,t = x̄Ut β̂t, where β̂t =
ˆ̄yHT,t
ˆ̄xHT,t

, (32)

is among survey statisticians’ preferred estimators because of its simplicity. Under model ξ,
estimator ˆ̄yrat,t proves to be more efficient as an estimator of ȳUt than the Horvitz–Thompson
type estimator of the mean, ˆ̄yHT,t.

The following result establishes that the ratio estimator ˆ̄yrat,t is a strongly consistent estimator
of ȳUt in the above asymptotic framework.

Theorem 7. Let the sequences of populations {Ut, t ≥ 1} and samples {st, t ≥ 1} be as de-
scribed, and suppose that Assumptions A and B hold. Let {yi, i ≥ 1} and {xi, i ≥ 1} denote,
respectively, a nonnegative and a positive sequence of real numbers; each sequence is assumed
to satisfy Assumption C. Then, as t→∞,

ˆ̄yrat,t − ȳUt → 0 a.s. (w.r.t. p-distr.)

Note that ˆ̄yrat,t is a strongly consistent estimator of ȳUt , whether model ξ holds or not. We
can do without the model because we have specified the behavior of the sequence {yi, i ≥ 1}
instead.

The next result makes explicit usage of model ξ. It is important to note that the model ξ
and the sampling design p induce separate stochastic behavior. It is thus natural to study
strong consistency of the estimator β̂t for β (more precisely, the sequence {β̂t, t ≥ 1}) under
the compound design–model distribution (abbreviated by ξp-distr.).
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Theorem 8. Let the sequences of populations {Ut, t ≥ 1} and samples {st, t ≥ 1} be as de-
scribed, and suppose Assumptions A and B. Let {xi, i ≥ 1} denote a sequence of positive real
numbers that satisfies Assumption C. Suppose model ξ and consider β̂t defined in (32). Then,
as t→∞,

ˆ̄yrat,t → ȳUt a.s. (w.r.t. ξp-distr.).

Theorems 7 and 8 extend some of the results in Robinson and Särndal (1983) under the
hypothesis of nonnegative r.v.’s.

4. Proofs

Proof of Thm. 1. Let η > 1 be a real number and m,n ∈ N. For all m ≥ 1, define

nm = inf
{
n : an ≥ ηm

}
. (33)

Note that {nm,m ≥ 1} is a monotone sequence of positive integers, 0 < n1 ≤ n2 ≤ · · · ≤ nm ↑
∞ as m → ∞ since {an, n ≥ 1} is monotone and 0 < an ↑ ∞ as n → ∞. By Chebyshev’s
inequality and hypothesis (ii), for any ε > 0,

ε2
∞∑
m=1

P
{∣∣Snm − ESnm

∣∣ > ε · anm

}
≤
∞∑
m=1

VSnm

a2nm

≤
∞∑
m=1

1

a2nm

nm∑
i=1

VXi =
∞∑
i=1

V[Xi]ti, (34)

where

ti =
∑
m∈M

1

a2nm

and Mi = {m : nm ≥ i}. (35)

Next, we use an argument similar to the one in Etemadi (1983b). Since an ↑ ∞ as n→∞, it
follows that anm ∼ ηm for all large m. Thus for some constant C1 > 0 and every i = 1, 2, 3, . . .,

Mi =
{
m : nm ≥ i

}
⊂
{
m : anm ≥ ai

}
⊂
{
m : C1η

m ≥ ai
}

=: M∗i , say, (36)

since nm ≥ i and monotonicity of {an, n ≥ 1} imply anm ≥ ai. By this and (33), the geometric
series on the far left in (35) obtains for all i ≥ 1

ti =
∑
m∈Mi

a−2nm
≤
∑
m∈Mi

η−2m ≤
∑
m∈M∗

i

η−2m =
Cη
η2mi

, (37)

where mi = inf M∗i and Cη = (1−1/η2)−1 is a constant. From (36) and the fact that mi ∈M∗i ,
it is easy to see that C2

1/a
2
i ≥ η−2mi . This together with hypothesis (iii) and (34) implies

ε2
∞∑
m=1

P
{∣∣Snm − ESnm

∣∣ > ε · anm

}
≤ C2

1Cη

∞∑
i=1

VXi

a2i
<∞. (38)

Since ε > 0 is arbitrary, (38) and the Borel–Cantelli lemma imply P{|Snm − ESnm | > ε ·
anm i.o.} = 0 (where i.o. stands for infinitely often), therefore as m→∞

Snm − ESnm

anm

→ 0 a.s. (39)

Thus we showed the desired result for the subsequence. This result can be extended to the
whole sequence. Let m ∈ [nm, nm+1). By monotonicity of Sm, we have

|Sm − ESm|
am

≤
|Snm+1 − ESnm |

anm

≤
anm+1

anm

|Snm+1 − ESnm+1 |
anm+1

+
|ESnm+1 − ESnm |

anm

. (40)



Austrian Journal of Statistics 9

By (39) and since anm+1/anm → η (as m → ∞), the first summand on the far right of (40)
converges a.s. to zero as m → ∞. By hypothesis (i), and for m large enough, there is a
constant C2 such that ESm ≤ C2am. Hence, for large m, we have obtain for the second
summand in (40) that

|ESnm+1 − ESnm |
anm

≤ C2
|anm+1 − anm |

anm

→ C2(η − 1) (as m→∞), (41)

thus,

lim sup
m→∞

∣∣∣∣Sm − ESm
am

∣∣∣∣ ≤ C2(η − 1). (42)

Likewise we obtain a lower bound of the left-hand side in (40), which then provides that
lim infm→∞ |(Sm − ESm)/am| ≥ C2(1− 1/η). Therefore,(

1− 1

η

)
C2 ≤ lim inf

m→∞

∣∣∣∣Sm − ESm
am

∣∣∣∣ ≤ lim sup
m→∞

∣∣∣∣Sm − ESm
am

∣∣∣∣ ≤ (η − 1)C2,

and as η > 1 is arbitrary, |(Sm − ESm)/am|
η↓1−−→ 0 a.s. This completes the proof.

Before we give the proof of Theorem 4, we need the following lemma.

Lemma 9 (generalized Abel–Dini Thm., cf. Petrov, 1969, Lem. 1). Let {bi, i ≥ 1} denote
a sequence of nonnegative real numbers, put Bn =

∑
i≤n bi, and assume that Bn → ∞ as

n→∞. Then the series
∑∞

n bn/(Bnψ(Bn)) converges for any ψ ∈ Ψc.

With Lemma 9 we are in the position to give the proof of Thm. 4.

Proof of Thm. 4. Put bn =
√
Bnψ(Bn), where Bn =

∑
i≤nVXi, and note that bn ↑ ∞ as

n → ∞. Application of Lemma 9 implies hypothesis (iii) of Theorem 1, hence the assertion
follows by Kronecker’s lemma.

Proof of Thm. 6. To facilitate the proof, we introduce a lemma on convergence of a series of
ratios of real numbers. The class of functions Ψc appearing in the lemma is defined in the
text following Equation (2); see Section 1.

Lemma 10 (Korchevsky, 2015, Thm. 5). (i) Let {ai, i ≥ 1} be a non-decreasing, unbounded
sequence of positive real numbers such that

a2n
an
≤ q (for sufficiently large n),

where q is a constant.

(ii) Let {bi, i ≥ 1} be a sequence of non-negative real numbers and suppose that

n∑
i=1

bi = O
(

a2n
ψ(n)

)
for some ψ ∈ Ψc.

Under the hypotheses i) and ii), we have

∞∑
i=1

bi
a2i

<∞.

The proof of Theorem 6 now follows by application of Theorem 1 and Lemma 10. Define
the r.v. Yi = yi1i∈st/πi,t, for all i ∈ Ut, and put T̂Nt =

∑
i≤Nt

Yi. Hypotheses i) and ii)
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of Theorem 1 are easily verified under our assumptions. Let us consider hypothesis iii). By
Assumption A, there exist λ > 0 such that

∞∑
i=1

VpYi
i2

=
∞∑
i=1

y2i
i2

(
1− πi,t
πi,t

)
≤
∞∑
i=1

y2i
i2πi,t

≤
(

min
1≤i≤Nt

(πi,t)
)−1 ∞∑

i=1

y2i
i2
≤ 1

λ

∞∑
i=1

y2i
i2
. (43)

Now, by application of Lemma 10 with ai = i, bi = y2i , and ψ(n) defined as n 7→ nδ with
δ > 0, we conclude that

∞∑
i=1

y2i
i2
<∞

if
Nt∑
i=1

y2i = O(N2−δ
t ). (44)

Note that Assumption C can be written as
∑

i≤Nt
y2i = O(Nt). From this we see that (44) is (a

fortiori) verified. Thus, the lemma and (43) imply hypothesis iii) limt→∞
∑

i≤Nt
Vp(Yi)/i

2 <
∞ of Theorem 1.

Proof of Thm. 7. Under the Assumptions A, B, and C, Theorem 6 implies (ˆ̄yHT,t, ˆ̄xHT,t)→
(ȳUt , x̄Ut) a.s. (as t→∞) w.r.t. p-distr.; thus, we conclude that

ˆ̄yrat,t − ȳUt = x̄Ut

(
ˆ̄yHT,t
ˆ̄xHT,t

− ȳUt

x̄Ut

)
→ 0 a.s. (as t→∞)

by application of the continuous mapping theorem (see e.g., Van der Vaart 1998, Thm. 2.3).

Proof of Thm. 8. For ease of simplicity, we write x̄U for x̄Ut and ˆ̄x instead of ˆ̄xHT,t (the same
applies for the y-means). Write

ˆ̄yrat − x̄Uβ = x̄U
(
β̂ − β

)
, where β̂ =

ˆ̄y

ˆ̄x
. (45)

Under model ξ, we have yi = xiβ + Ei. Substituting xiβ + Ei for yi in β̂ = ˆ̄y/ˆ̄x, we obtain

β̂ = β +
ˆ̄e

ˆ̄x
, (46)

where

ˆ̄e =
1

Nt

Nt∑
i=1

ei with ei =
Ei1i∈st
πi

.

We now show that ˆ̄e → 0 a.s. (w.r.t. the ξp-distr.) by application of Theorem 1. Note that
the compound expectation is Eξp(ei) = 0 (for all i = 1, 2, . . .). Also, with the help of the
identity Vξp(ei) = Vξ{Ep(ei)}+ Eξ{Vp(ei)}, we have (for all i = 1, 2, . . .)

Vξp(ei) = Vξ(Ei) + Eξ
(
E2
i

1− πi
πi

)
= xiσ

2 +
1− πi
πi

xiσ
2 =

xiσ
2

πi
.

With this and Assumption A, there exists λ such that

∞∑
i=1

Vξp(ei)
i2

≤ σ2

λ

∞∑
i=1

xi
i2
<∞,

where the last inequality follows from Assumption C and application of Lemma 10 with
ai = i, bi = xi, and ψ(u) = u2. This implies hypothesis iii) of Theorem 1. Hypothesis i) is
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implied by Assumption C. Lastly, hypothesis ii) holds because covξp(eiej) = 0 for all ei and
ej , i 6= j. Hence, we conclude that ˆ̄e→ 0 a.s. (w.r.t. the ξp-distr.) for t→∞. Moreover, by
application of Theorem 6, we have ˆ̄x→ x̄U a.s. with respect to the p-distr. as t→∞. Thus,
by application of the continuous mapping theorem (see e.g., Van der Vaart 1998, Thm. 2.3),
we conclude that

ˆ̄e

ˆ̄x
→ 0 a.s.

which implies in (46) that β̂ − β → 0 a.s. for t→∞.
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