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Abstract

In this paper we propose the zero-modified Poisson-Sujatha distribution as an alter-
native to model overdispersed count data exhibiting inflation or deflation of zeros. It
will be shown that the zero modification can be incorporated by using the zero-truncated
Poisson-Sujatha distribution. A simple reparametrization of the probability function will
allow us to represent the zero-modified Poisson-Sujatha distribution as a hurdle model.
This trick leads to the fact that proposed model can be fitted without any previously
information about the zero modification present in a given dataset. The maximum likeli-
hood theory will be used for parameter estimation and asymptotic inference concerns. A
simulation study will be conducted in order to evaluate some frequentist properties of the
developed methodology. The usefulness of the proposed model will be illustrated using
real datasets of the biological sciences field and comparing it with other models available
in the literature.

Keywords: zero-modified Poisson-Sujatha, overdispersion, inflation/deflation of zeros, hurdle
models, maximum likelihood estimation.

1. Introduction

Most applications involving the analysis of count data are performed using the Poisson and
Negative Binomial distributions. The latter is a well-known 2-parameter Poisson compound
model that arises as alternative to fit overdispersed data since Poisson models are not ap-
plicable in this case. The literature concerning discrete models that accommodate different
levels of dispersion is wide and provides several composed distributions as Poisson-Lindley
(Sankaran 1970), Negative Binomial-Lindley (Zamani and Ismail 2010), Poisson-Exponential
(Cancho, Louzada-Neto, and Barriga 2011), Poisson-Shanker (Shanker 2016a), among others.

A relevant drawback of such compound models is the fact that they do not fit well when
a large amount of zeros is observed. To overcome this issue, several zero-inflated and hur-
dle approaches for standard Poisson model were proposed (Mullahy 1986; Lambert 1992;
Zorn 1996). McDowell (2003) provides a insightful discussion about hurdle models. Such
approaches were considered by several authors for applications and we will pointed out a
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few. Bohara and Krieg (1996) show that the modelling of migratory frequency data can be
improved using zero-inflated Poisson models. Gurmu and Trivedi (1996) seek to deal with
the excess of zeros on data from recreational trips. Ridout, Demétrio, and Hinde (1998) use
several zero-inflated Poisson regression models for Apple shoot propagation data. In the social
sciences, Bahn and Massenburg (2008) consider the hurdle Poisson model for the number of
homicides in Chicago (Illinois - USA). Further applications were considered for quantitative
studies on HIV-risk reduction (Heilbron and Gibson 1990; Hu, Pavlicova, and Nunes 2011)
and for DNA sequencing data (Beuf, Schrijver, Thas, Criekinge, Irizarry, and Clement 2012).
As zero-deflated data seldom arises in practice, there are very few literature addressing this
case (Angers and Biswas 2003; Conceição, Andrade, and Louzada 2013) even if this situation
is often referred in papers dealing with zero-inflated models.

Recently, the Poisson-Sujatha distribution was obtained by compounding the Poisson with
a Sujatha distribution. The latter was introduced by Shanker (2016b) for modelling real
lifetime in biological and engineering contexts. The author has shown that this model is a
three component mixture of an Exponential distribution with scale parameter θ, a Gamma
distribution having shape parameter 2 and scale parameter θ and a Gamma distribution
having shape parameter 3 and scale parameter θ with mixing proportions given, respectively,
by θ2υ−1, θυ−1 and 2υ−1, being υ = θ2 + θ + 2. A comprehensive discussion about the
statistical properties of the Sujatha distribution such as moments, hazard function, stochastic
orderings, parameter estimation, among others is also presented on the mentioned paper.

The Poisson-Sujatha distribution was introduced and extensively studied by Shanker (2016c)
which have discussed its various mathematical properties. Shanker and Fesshaye (2016a)
consider the Poisson-Sujatha distribution to model overdispersed counts provided by ecological
and genetic experiments. Shanker and Fesshaye (2016b) obtained the size-biased version of
the Poisson-Sujatha distribution, presenting its properties and discussing its applications.
The zero-truncated Poisson-Sujatha distribution, which will be of particular interest in this
paper, was presented by Shanker and Fesshaye (2016c). Further, a detailed report on zero-
truncated Poisson, Poisson-Lindley and Poisson-Sujatha distributions is provided by Shanker
and Fesshaye (2016d).

Zero-modified models may arise when no information about the kind of zero modification in
a given dataset is available. Dietz and Böhning (2000) proposed the zero-modified Poisson
regression model for zero inflated/deflated samples and Conceição et al. (2013) consider a
Bayesian approach for this model as an alternative to model Brazilian leptospirosis notifica-
tion data. Once zero inflated/deflated models may also be useful to deal with data presenting
overdispersion, this paper aims to introduce and present the usefulness of the zero modified
version of the Poisson-Sujatha distribution, which is itself overdispersed. The proposed model
is naturally more flexible than the original one since it takes into account inflation or deflation
of zeros, being the first an issue often encountered when analysing count data. For our pur-
pose, we consider a reparameterization of the zero-modified Poisson-Sujatha probability mass
function, which will allow the likelihood function to be separable on the model parameters.
The estimation procedure will be conducted under the frequentist point of view by the usual
likelihood theory. A simulation study will be conducted in order to evaluate some frequentist
properties of the maximum likelihood estimators. The usefulness of the proposed model will
be illustrated by considering applications to real datasets from the biological sciences field.
Standard model comparison will be also provided.

This paper is organized as follows. In Section 2, we briefly present the Poisson-Sujatha
distribution, some of its mathematical properties and its zero-truncated version. In Section
3, we introduce the zero-modified Poisson-Sujatha distribution, demonstrating its flexibility
to deal with zero inflated/deflated data. In Section 4, the zero-modified Poisson-Sujatha
distribution is presented as a hurdle model. In Section 5, maximum likelihood estimation for
the unknown parameters as well the asymptotic standard errors and confidence intervals are
discussed. In Section 6, a simulation study is presented. In Section 7, the proposed model is
considered for application to real datasets. Concluding remarks are addressed in Section 8.
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2. Poisson-Sujatha distribution

A random variable ψ is said to have Sujatha (S) distribution if its probability density function
(pdf) can be written as

g (ψ; θ) =
θ3

θ2 + θ + 2

(
ψ2 + ψ + 1

)
e−θψ, ψ > 0,

for θ > 0.

The Poisson-Sujatha (PS) distribution is a probabilistic model that arises when the S distribu-
tion is chosen to describe the rate parameter (ψ) of the Poisson (P) distribution. In this case,
a random variable X is said to have PS distribution if it follows the stochastic representation

X|ψ ∼ P (ψ) and ψ ∼ S (θ) .

The unconditional distribution of the random variable X can be denoted by PS (θ). Let
Xz = {z, z + 1, . . .} the set of the integers greater or equal to z. We completed the definition
by stating that a random variable X, defined on X0, will have PS distribution if its probability
mass function (pmf) can be written as

f (x; θ) =
θ3

θ2 + θ + 2

[
x2 + x (θ + 4) +

(
θ2 + 3θ + 4

)
(θ + 1)x+3

]
, x ∈ X0, (1)

for θ > 0. Using the gamma integral, the above result can be easily proved by integrating
f (x|ψ) g (ψ; θ) respect to ψ over R+, being f (x|ψ) the conditional pmf of a P variable.

From the results provided by Shanker (2016c) we have that the rth factorial moment about
the origin of the PS distribution is given by

µ′r =
r!
[
θ2 + (r + 1) θ + (r + 1) (r + 2)

]
θr (θ2 + θ + 2)

, (2)

which provides the moments about origin. Thus, the expected value and the variance are

µ = µ′1 =
θ2 + 2θ + 6

θ (θ2 + θ + 2)
, (3)

and

σ2 = µ′2 −
(
µ′1
)2

=
θ5 + 4θ4 + 14θ3 + 28θ2 + 24θ + 12

θ2(θ2 + θ + 2)2
. (4)

It is easily to see that the variance term can be written as

σ2 = µ

[
1 +

θ4 + 4θ3 + 18θ2 + 12θ + 12

θ (θ2 + θ + 2) (θ2 + 2θ + 6)

]
= µτ, (5)

being the ratio involving the parameter θ always positive. This implies that the PS distribu-
tion is overdispersed, i.e. whichever θ > 0 we have that σ2 > µ. Further, the useful index
of dispersion (τ) is clearly greater than 1, also implying overdispersion since τ = σ2µ−1. On
the other hand, we have that τ → 1

(
σ2 → µ

)
as θ → ∞, i.e. the PS distribution has the

property of equidispersion for large values of θ.

Again, using the relationship between the moments about mean and the moments about
origin, some useful measures as the coefficient of variation (β), the coefficient of skewness (γ)
and the coefficient of kurtosis (ζ) can be derived from equation (2). The expressions of such
measures are

β =
σ

µ
=

√
θ5 + 4θ4 + 14θ3 + 28θ2 + 24θ + 12

θ2 + 2θ + 6
,
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γ =
µ3

µ
3/2
2

=
θ8 + 7θ7 + 32θ6 + 110θ5 + 228θ4 + 300θ3 + 240θ2 + 144θ + 48

(θ5 + 4θ4 + 14θ3 + 28θ2 + 24θ + 12)
3/2

,

and

ζ =
µ4
µ22

=
θ11 + 15θ10 + 99θ9 + 488θ8 + 1682θ7 + 4016θ6

(θ5 + 4θ4 + 14θ3 + 28θ2 + 24θ + 12)2
+

7008θ5 + 9016θ4 + 8784θ3 + 6240θ2 + 2880θ + 720

(θ5 + 4θ4 + 14θ3 + 28θ2 + 24θ + 12)2
.

The definition of the zero-truncated Poisson-Sujatha (ZTPS) distribution will be quite useful
for the purpose of this paper. A random variable X is said to have ZTPS if its pmf can be
written as

f
ZTPS

(x; θ) =
θ3

θ4 + 4θ3 + 10θ2 + 7θ + 2

[
x2 + x (θ + 4) +

(
θ2 + 3θ + 4

)
(θ + 1)x

]
, x ∈ X1, (6)

for θ > 0. See Shanker and Fesshaye (2016c) for further details about the ZTPS distribution.

3. Zero-modified Poisson-Sujatha distribution

Let X be a random variable defined on X0. Thus, X is said to have zero-modified Poisson-
Sujatha (ZMPS) distribution if its pmf can be written as

f
ZMPS

(x; θ, π) = (1− π) δx + π f (x; θ) , x ∈ X0, (7)

for θ > 0 and the parameter π is subject to the condition (called π-condition) given by

0 6 π 6
1

1− f (0; θ)
, (8)

being f (x; θ) the pmf of a PS random variable. Further, δx is the indicator function, so that
δx = 1 if x = 0 and δx = 0 otherwise. Note that (7) is not a mixture distribution typically
fitted to zero-inflated data, since parameter π can assume values greater than 1. However, for
all values of π between 0 and its upper boundary, the equation (7) corresponds to a properly
pmf since f

ZMPS
(x; θ, π) is positive for each x and sums to 1 on X0.

The expected value and the variance of X are

µ
ZMPS

= πµ and σ2
ZMPS

= π
[
σ2 + (1− π)µ2

]
, (9)

where µ and σ2 are given in equations (3) and (4). Under the ZMPS distribution, the index
of dispersion and the coefficients of variation, skewness and kurtosis are given, respectively,
by

τ
ZMPS

=

(
θ5 + 5θ4 + 18θ3 + 44θ2 + 48θ + 48

)
− π

(
θ4 + 4θ3 + 16θ2 + 24θ + 36

)
θ (θ2 + θ + 2) (θ2 + 2θ + 6)

,

β
ZMPS

=

√
π (θ5 + 5θ4 + 18θ3 + 44θ2 + 48θ + 48)− π2 (θ4 + 4θ3 + 16θ2 + 24θ + 36)

π (θ2 + 2θ + 6)
,
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γ
ZMPS

=

[
θ4 + 8θ3 + 30θ2 + 96θ + 120

θ2 + 2θ + 6
−

3π
(
θ3 + 4θ2 + 12θ + 24

)
θ2 + θ + 2

+

2π2
(
θ2 + 2θ + 6

)2
(θ2 + θ + 2)2

]
π
(
θ2 + 2θ + 6

)
θ3 (θ2 + θ + 2)h3/2

.

and

ζ
ZMPS

=

[
θ5 + 16θ4 + 84θ3 + 336θ2 + 840θ + 720

θ2 + 2θ + 6
−

4π
(
θ4 + 8θ3 + 30θ2 + 96θ + 120

)
θ2 + θ + 2

+

6π2
(
θ3 + 4θ2 + 12θ + 24

) (
θ2 + 2θ + 6

)
(θ2 + θ + 2)2

−
3π3

(
θ2 + 2θ + 6

)3
(θ2 + θ + 2)3

]
π
(
θ2 + 2θ + 6

)
θ4 (θ2 + θ + 2)h2

.

where

h =
π
(
θ2 + 2θ + 6

)
θ2 (θ2 + θ + 2)

[
θ3 + 4θ2 + 12θ + 24

(θ2 + 2θ + 6)
−
π
(
θ2 + 2θ + 6

)
(θ2 + θ + 2)

]
.

The ZMPS distribution may be considered an interesting alternative to the usual zero-modified
Poisson (ZMP) model since the basis distribution of the former can accommodate several
levels of overdisperson, issue that the P distribution generally fails in deal with. Table 1
summarizes the nature and the behaviour of the presented measures, using selected values for
the parameters θ and π.

Table 1: Theoretical descriptive measures for different values of θ and π.

θ π
Measures

µ
ZMPS

σ2
ZMPS

τ
ZMPS

β
ZMPS

γ
ZMPS

ζ
ZMPS

1.0
0.5 1.1250 3.8594 3.4306 1.7462 2.2984 9.4194

1.2 2.7000 5.0100 1.8556 0.8290 1.4478 6.0346

3.0
0.5 0.2500 0.4256 1.7024 2.6095 3.4391 18.3409

1.2 0.6000 0.8114 1.3523 1.5013 1.9409 8.1560

5.0
0.5 0.1281 0.1767 1.3794 3.2809 4.0635 24.0585

1.2 0.3075 0.3689 1.1997 1.9753 2.3341 9.9550

7.0
0.5 0.0850 0.1066 1.2541 3.8424 4.5498 28.6871

1.2 0.2039 0.2316 1.1359 2.3597 2.6613 11.5852

9.0
0.5 0.0634 0.0755 1.1909 4.3332 4.9771 32.9873

1.2 0.1522 0.1677 1.1018 2.6908 2.9534 13.2027

It is clear that the coefficient of variation, the coefficient of skewness, and the coefficient of
kurtosis are increasing as θ increases and π decreases. The higher values for the index of
dispersion are obtained for small values of θ and π. On the other hand, combining small
values of θ with higher as possible values of π will provide bigger values for the expected
value and for the variance.

Theorem 1. The following statements holds.

i) If π = 0 then f
ZMPS

(0; θ, π) = 1 and therefore, equation (7) relates to a degenerate
distribution with all mass at zero;

ii) If π = 1 then f
ZMPS

(0; θ, π) = f (0; θ). Hence (7) is the usual PS distribution;
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iii) If π = [1− f (0; θ)]−1 then f
ZMPS

(0; θ, π) = 0;

iv) If 0 < π < 1 then f
ZMPS

(0; θ, π) > f (0; θ) and therefore, the ZMPS distribution has a
proportion of zeros greater than the usual PS distribution;

v) If 1 < π < [1− f (0; θ)]−1 then f
ZMPS

(0; θ, π) < f (0; θ) and therefore, the ZMPS distri-
bution has a proportion of zeros smaller than the usual PS distribution.

Proof. Define the proportion of additional or missing zeros by

f
ZMPS

(0; θ, π)− f (0; θ) = (1− π) + π f (0; θ)− f (0; θ)

= (1− π) [1− f (0; θ)] . (10)

Follows from the previous expression that (i) and (ii) are obvious. As for (iii),

f
ZMPS

(0; θ, π)− f (0; θ) =
{

1− [1− f (0; θ)]−1
}

[1− f (0; θ)]

= f (0; θ) ,

hence f
ZMPS

(0; θ, π) = 0. Statement (iv) follows from the fact that if 0 < π < 1 then 0 <
(1− π) [1− f (0; θ)] < 1 since f is a probability measure. Therefore f

ZMPS
(0; θ, π) > f (0; θ).

For the latter, whichever π > 1, (1− π) < 0 and the result follows by the same argument for
(iv). Hence, f

ZMPS
(0; θ, π) < f (0; θ), which completes the proof.

The inflation and deflation of zeros are characterized, respectively, by statements (iv) and (v)
of the previous Theorem. We observe from (10) that the main role of the parameter π is to
control the frequency of zeros. In such a way, very different values of π lead to completely
different ZMPS distributions. For instance, fixing θ = 1.5, if π = 0.05 then P (X = 0) ≈ 0.97
and if π = 0.95 then P (X = 0) ≈ 0.43.
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Figure 1: Behaviour of the ZMPS distribution for different values of θ and π.

Figure 1 depicts the pmf of the ZMPS distribution for θ = 1.0 (implying 0 6 π 6 1.33), for
θ = 5.0 (implying 0 6 π 6 4.90) and for θ = 10.0 (implying 0 6 π 6 9.90).

4. Hurdle version of the ZMPS distribution

The class of hurdle models was introduced by Mullahy (1986). The relevant feature of such
models is that the zero outcomes are treated separately from the positive ones. In the formu-
lation, a binary probability model determines whether a zero or a non-zero outcome occurs
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and hence, an appropriated truncated discrete distribution is chosen to describe the positive
outcomes (Saffar, Adnan, and Greene 2012).

Let us define the hurdle version of the ZMPS distribution. Firstly, the equation (7) can be
expressed as

f
ZMPS

(x; θ, π) = {1− π [1− f (0; θ)]} δx + π (1− δx) f (x; θ) , x ∈ X0, (11)

Now, setting ω = π [1− f (0; θ)], expression (11) becomes

fZMPS (x; θ, ω) = (1− ω)δx + ω f
ZTPS

(x; θ) , x ∈ X0, (12)

being f
ZTPS

(x; θ) the ZTPS distribution given by (6). Since 0 6 p 6 [1 − f(0;µ)]−1 then
0 6 p [1− f(0;µ)] 6 1. Hence 0 6 ω 6 1.

The pmf (12) can be seen as a hurdle version of the ZMPS distribution, where the probability
of X = 0 is (1− ω) and the probability of X > 0, is ω f

ZTPS
(x; θ). Moreover, from equation

(9) we have that the expected value and the variance of the ZMPS distribution, expressed in
its hurdle version, depends on the probability of X = 0 under the PS distribution.

The ZMPS distribution expressed in a hurdle version contains the ZTPS distribution as one
of its components, which differs from the traditional mixture representation of zero-inflated
distributions. Indeed, this representation of the ZMPS distribution can be interpreted as
a superposition of two processes, i.e. one that produces positive observations from a ZTPS
distribution and another that produces only zero valued observations with probability (1−ω).

The hurdle version of the ZMPS distribution can be used to derive the maximum likelihood
estimators (MLEs) for the parameters θ and ω. Furthermore, such approach allow us to use
only the positive observations in a given dataset to estimate the parameter θ assuming that
these observations comes from a ZTPS distribution, while the parameter ω can be estimated
as the proportion of zeros in the sample. Hence, parameter π can be estimated subsequently
using the equation

π =
ω

1− f (0; θ)
. (13)

It is noteworthy that make inferences about the parameter π is essential to identify the kind
of zero modification (inflation or deflation) is present in the analysed dataset.

5. Maximum likelihood estimation

Let X = (X1, . . . ,Xn) a random sample of size n from the ZMPS distribution and
x = (x1, . . . , xn) its observed values. Thus, the likelihood function for the parameters θ
and ω is given by

Ln (θ, ω;x) =
n∏
j=1

(1− ω)δxj
[
ω f

ZTPS
(xj ; θ)

]1−δxj
. (14)

One can note that the likelihood values of hurdle models are computed separately for each
pmf. The MLEs of θ and ω can be obtained by direct maximization of the log-likelihood
function

`n (θ, ω;x) =

n∑
j=1

(
1− δxj

){
log
[
f
ZTPS

(xj ; θ)
]

+ log (ω)
}

+
n∑
j=1

δxj log (1− ω)

=

n∑
j=1

(
1− δxj

)
×



8 On Zero-Modified Poisson-Sujatha Distribution to Model Overdispersed Count Data

log

[
θ3

θ4 + 4θ3 + 10θ2 + 7θ + 2

(
x2j + xj (θ + 4) +

(
θ2 + 3θ + 4

)
(θ + 1)xj

)]
+

n∑
j=1

[
log (ω)− δxj log

(
ω

1− ω

)]

=
m∑
j=1

log

[
θ3

θ4 + 4θ3 + 10θ2 + 7θ + 2

(
x2j + xj (θ + 4) +

(
θ2 + 3θ + 4

)
(θ + 1)xj

)]
+

n∑
j=1

log (ω)−
q∑
j=1

log

(
ω

1− ω

)
= 3m log (θ)−m log

(
θ4 + 4θ3 + 10θ2 + 7θ + 2

)
−mxm log (θ + 1) +

n log (ω)− q log

(
ω

1− ω

)
+

m∑
j=1

log
[
x2j + xj (θ + 4) +

(
θ2 + 3θ + 4

)]
, (15)

where m denotes the number of positive outcomes and q the number of zero ones. Indeed
m+ q = n. Moreover, xm is the sample mean obtained from the set of positive values.

From (15) it is straightforward to see that the parameters θ and ω are orthogonal and that
all terms in the log-likelihood function depending on θ take into account only the positive
values of the sample vector x. Denoting by x(m) the vector of positive values from x, the

log-likelihood function for θ based on the assumption that x
(m)
j , j = 1, . . . ,m, are generated

from a ZTPS distribution is given by

`n

(
θ, ω;x(m)

)
= 3m log (θ)−m log

(
θ4 + 4θ3 + 10θ2 + 7θ + 2

)
−mxm log (θ + 1) +

m∑
j=1

log
[
x2j + xj (θ + 4) +

(
θ2 + 3θ + 4

)]
. (16)

Indeed `n
(
θ, ω;x(m)

)
= `m (θ;x), since each xj present in the log-likelihood of θ are generated

by a zero-truncated distribution. Therefore, evaluate θ under ZMPS distribution is equivalent
to assuming that the positive values of x comes entirely from a ZTPS distribution. On the
other hand, denoting by x(q) the vector of zero outcomes from x, the log-likelihood function
for ω is given by

`n

(
θ, ω;x(q)

)
= `n (ω;x) = n log (ω)− q log

(
ω

1− ω

)
. (17)

Now, the corresponding score vector is given by

U ≡ U (θ, ω;x) = [uθ, uω]ᵀ , (18)

where

uθ =
∂ `m (θ;x)

∂θ
=

3m

θ
−m

[
4θ3 + 12θ2 + 20θ + 7

θ4 + 4θ3 + 10θ2 + 7θ + 2

]
− mxm
θ + 1

+

=
m∑
j=1

xj + 2θ + 3

x2j + xj (θ + 4) + (θ2 + 3θ + 4)
, (19)

and

uω =
∂ `n (ω;x)

∂ω
=

(n− q)
ω

− q

(1− ω)
. (20)

The observed information, i.e. the Hessian matrix is given by

K ≡ K (θ, ω;x) = −
[
kθθ kθω
kωθ kωω

]
,
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where

kθθ =
∂2`m (θ;x)

∂θ2
= −3m

θ2
+m

[
4θ6 + 24θ5 + 68θ4 + 132θ3 + 176θ2 + 92θ + 9

(θ4 + 4θ3 + 10θ2 + 7θ + 2)2

]
+

mxm

(θ + 1)2
+

m∑
j=1

x2j − 2xjθ + 2xj − 2θ2 − 6θ − 1[
x2j + xj (θ + 4) + (θ2 + 3θ + 4)

]2 , (21)

and

kωω =
∂2`n (ω;x)

∂ω2
= −(n− q)

ω2
− q

(1− ω)2
. (22)

By orthogonality of θ and ω, the crossed partial derivatives are null, then kθω = kωθ = 0.
Hence the set up of the information matrix is complete. As usual, the curvature of the
log-likelihood function can be evaluated locally at θ̂ and ω̂.

Proposition 1. Let ω̂ the MLE of parameter ω. The following statements holds.

i) ω̂ = mn−1;

ii) ω̂ is an unbiased estimator for ω;

iii) The lower bound for the variance of ω̂ is that for binary probability models.

Proof. Item (i) is straightforward. Take n − q = m and isolate ω in the equation uω = 0.
Now,

E
X

(ω̂) = E
X

(m
n

)
=

1

n
E

X


n∑
j=1

(
1− δ

Xj

)
=

1

n

n−
n∑
j=1

E
X

(
δ
Xj

)
=

1

n

n−
n∑
j=1

f
ZMPS

(0; θ, ω)


=

1

n
{n− n (1− ω)} = ω,

and (ii) holds. For (iii), firstly note that the set {x : f
ZMPS

(0; θ, ω) > 0} does not depend on θ
nor ω. Moreover, it is clear from (20) that for all x > 0, uω exists and is finite whenever ω 6= 0.
For the moment, such conditions are sufficient and allow us to make use of the Cramér-Rao
bound for the variance of an unbiased MLE, which is the case of ω̂. Then,

Var (ω̂) > J−1 (ω) ,

where J = −E
X

(K) is the expected information, i.e. the Fisher information matrix. From
(22) we have that

−E
X

(kωω) = E
X

{
m

ω2
+

(n−m)

(1− ω)2

}
=

1

ω2
E

X
(m) +

n

(1− ω)2
− 1

(1− ω)2
E

X
(m)

=
n

ω
+

n

(1− ω)2
− nω

(1− ω)2

= n

{
1

ω
+

1

(1− ω)

}
=

n

ω (1− ω)
,
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and hence,

Var (ω̂) >
ω (1− ω)

n
, (23)

which completes the proof. It is straightforward to show that the variance of ω̂ is exactly
n−1ω (1− ω) and therefore, coincides with the Cramér-Rao lower bound.

There is no closed form for the MLE of θ, see (19). However, using (17) the parameter θ
can be estimated using standard numeric optimization algorithms such the Newton-Raphson,
the Bisection and the Regula-Falsi methods. By the usual maximum likelihood theory, an
asymptotic approximation for the variance of θ̂ can be obtained from k−1θθ , which evaluated

at θ̂ provides a consistent estimator for such a measure. On the other hand, the variance of
ω̂ can be estimated by its lower bound provided by the previous Proposition which, in fact,
corresponds to the exact variance.

As aforementioned, the parameter π is a non-linear function depending on θ and ω. By the
invariance principle, the MLE of π can be obtained as

π̂ = s (θ, ω) =
ω̂

1− f
(

0; θ̂
)

=
m
(
θ̂2 + θ̂ + 2

)(
θ̂ + 1

)3
n
(
θ̂4 + 4θ̂3 + 10θ̂2 + 7θ̂ + 2

) .
Now, the variance of π̂ can be estimated using the delta-method. Since θ̂ and ω̂ are orthogonal,

Cov
(
θ̂, ω̂

)
= 0. Hence,

V̂ar (π̂) ≈ V̂ar
(
θ̂
)[ ∂

∂ θ
s (θ, ω)

]2
+ V̂ar (ω̂)

[
∂

∂ ω
s (θ, ω)

]2

≈ m2

n2
V̂ar

(
θ̂
) θ̂4 (θ̂ + 1

)4 (
θ̂4 + 6θ̂3 + 25θ̂2 + 32θ̂ + 24

)2
(
θ̂4 + 4θ̂3 + 10θ̂2 + 7θ̂ + 2

)4 +

mq

n3

(
θ̂2 + θ̂ + 2

)2 (
θ̂ + 1

)6
(
θ̂4 + 4θ̂3 + 10θ̂2 + 7θ̂ + 2

)2 ,
being the variance of θ̂ estimated numerically. The terms inside the brackets are evaluated
at the MLEs of θ and ω. Now, to obtain intervallic estimates, we can use large sample
approximations for the 100 (1− α) % two sided confidence intervals (CIs) for the parameters
θ, ω and π that are given, respectively, by

θ̂ ± zα/2 ŜE
(
θ̂
)
, ω̂ ± zα/2 ŜE (ω̂) and π̂ ± zα/2 ŜE (π̂) ,

being zα the upper αth percentile of the standard Normal distribution. The standard errors
(SEs) are estimated as the squared root of the variance of the MLE of each model parameters.

In the following two sections, we presented the results obtained in the simulation study and
the application of the proposed model to real datasets. To attain the numerical results, all
computations were performed under the R environment (R Development Core Team 2007).

6. Simulation study

In this section, we seek to evaluate the frequentist properties of the proposed methodology
by performing a simulation study. The simulation process consists in generating N = 10, 000
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pseudo-random samples of sizes n = 50, 100, 150 and 200 of a variable X having ZMPS distri-
bution in its hurdle version. Our procedure is based on the Monte Carlo simulation method
to estimate the average bias and the mean squared error of the MLEs of the parameters θ
and ω as well the coverage probability of the asymptotic CIs derived from such estimates.
The results obtained for the parameter π are also presented. Assuming φ = θ, ω or π, the
measures computed using the generated samples are given by

B
(
φ̂
)

=
1

N

N∑
j=1

(
φ̂j − φ

)
, MSE

(
φ̂
)

=
1

N

N∑
j=1

(
φ̂j − φ

)2
and CP (φ) =

1

N

N∑
j=1

δ
Aj
,

where Aj =
{
φ̂j − zα/2 ŝe

(
φ̂
)
< φ < φ̂j + zα/2 ŝe

(
φ̂
)}

and therefore, δ
Aj

assumes 1 whenever

the CI obtained from the jth simulation contains the true value φ.

The following algorithm can be used to generate a single random variable from a ZMPS
distribution. The process to generate a random sample consists to run the algorithm as often
as necessary, say n times. The sequential-search is a black-box type of algorithm and works
with any computable probability vector. The main advantage of such procedure is its ease
of implementation. More informations on this algorithm can be found at Hörmann, Leydold,
and Derflinger (2013).

Algorithm 1 Sequential-Search

1: procedure SeqSea(θ, ω)
2: Generate u ∼ U (0, 1)
3: Set x← 0
4: Set p← (1− ω)
5: while u > p do
6: Set x← x+ 1
7: Set p← p+ ω f

ZTPS
(x; θ)

8: end while
9: return x

10: end procedure

Under ZMPS distribution, the expected number of iterations (NI), i.e. the expected number
of comparisons in the while condition is given by

µ
NI

= µ
ZMPS

+ 1 = πµ+ 1

=
ω (θ + 1)3

(
θ2 + 2θ + 6

)
θ (θ4 + 4θ3 + 10θ2 + 7θ + 2)

+ 1.

To run the simulation, we have established four scenarios in which a single value of θ was
chosen for each one. The selected values were θ = 0.5, 1.0, 2.0 and 3.0. Moreover, we consider
ω = 0.1, 0.5 and 0.9 varying in each scenario. On the other hand, since parameter π depends
on the values of θ and ω, its values vary within each scenario and are closer of ω for small
θ and when ω approaches to zero. Further, in order to evaluate if the coverage probability
of the asymptotic CIs are around the nominal level of 95%, we fix α = 0.05 to compute such
measures in the simulation process.

In Table 2, the bias and the coverage probability of the MLEs are presented for each parameter
involving the ZMPS model. Figures 2 and 3 depicts the mean squared error of such estimates.
The results shows that both bias and mean squared error tends to zero when the sample size
increases. It is noteworthy that the MLE of ω is negative biased in some cases. The mean
squared error of ω̂ remains quite small even for small n, which also occurs for π̂ the smaller
the value of θ. The coverage probabilities were found between 93% and 97% in most cases,
indicating that the coverage of the 95% asymptotic CIs is relatively accurate. On the other
hand, one can note that for small n, the coverage probability of the CIs obtained for ω decre-
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Table 2: Estimated bias of the MLEs and coverage probability of the CIs.

Parameter Value
n = 50 n = 100 n = 150 n = 200

Bias CP Bias CP Bias CP Bias CP

Scenario 1

θ 0.50 0.0897 95.47 0.0371 95.29 0.0237 95.47 0.0173 95.39

ω 0.10 0.0014 89.02 0.0003 93.20 -0.0001 92.74 0.0001 92.56

π 0.11 0.0057 93.91 0.0021 95.47 0.0011 95.45 0.0008 95.48

θ 0.50 0.0104 94.97 0.0054 94.94 0.0040 94.97 0.0035 94.87

ω 0.50 -0.0008 93.29 0.0001 94.20 -0.0006 94.35 -0.0004 94.43

π 0.54 0.0020 93.64 0.0015 97.08 0.0003 97.25 0.0004 97.45

θ 0.50 0.0060 94.85 0.0032 94.87 0.0028 94.90 0.0023 94.72

ω 0.90 -0.0001 86.92 -0.0002 93.09 -0.0001 92.34 -0.0002 92.67

π 0.98 0.0027 99.75 0.0013 99.66 0.0010 99.72 0.0007 99.74

Scenario 2

θ 1.00 0.2274 94.78 0.1156 95.34 0.0701 95.62 0.0490 95.68

ω 0.10 0.0025 89.96 0.0004 93.25 0.0001 92.80 -0.0001 92.48

π 0.13 0.0207 96.62 0.0088 97.20 0.0051 97.71 0.0035 97.85

θ 1.00 0.0299 95.21 0.0146 94.92 0.0101 95.24 0.0080 95.01

ω 0.50 -0.0006 93.34 0.0001 94.23 -0.0004 94.31 -0.0003 94.35

π 0.67 0.0112 99.09 0.0059 99.53 0.0034 99.56 0.0027 99.65

θ 1.00 0.0160 95.05 0.0075 95.01 0.0060 94.92 0.0047 94.82

ω 0.90 -0.0002 86.97 -0.0001 93.10 -0.0001 92.36 -0.0002 92.68

π 1.20 0.0113 99.97 0.0053 99.97 0.0041 99.97 0.0030 99.99

Scenario 3

θ 2.00 0.4278 93.33 0.4225 94.36 0.2783 95.06 0.1806 95.21

ω 0.10 0.0053 91.71 0.0006 93.50 0.0001 92.87 0.0001 92.55

π 0.21 0.0597 96.46 0.0394 98.12 0.0252 98.98 0.0162 99.25

θ 2.00 0.1179 95.01 0.0551 95.12 0.0372 95.28 0.0289 95.26

ω 0.50 -0.0007 93.29 0.0001 94.22 -0.0004 94.33 -0.0003 94.35

π 1.04 0.0550 99.67 0.0265 99.91 0.0169 99.94 0.0132 99.95

θ 2.00 0.0621 95.68 0.0287 95.20 0.0215 94.24 0.0169 95.06

ω 0.90 -0.0002 86.98 -0.0001 93.10 -0.0001 92.36 -0.0002 92.68

π 1.87 0.0536 99.99 0.0247 99.99 0.0183 99.99 0.0140 99.99

Scenario 4

θ 3.00 0.3821 91.24 0.7463 93.52 0.6301 94.31 0.4740 94.66

ω 0.10 0.0078 92.69 0.0013 93.99 0.0003 92.97 0.0001 92.70

π 0.30 0.0832 96.70 0.0796 98.51 0.0620 99.22 0.0453 99.46

θ 3.00 0.3197 94.38 0.1425 95.06 0.0914 95.67 0.0690 95.21

ω 0.50 -0.0007 93.25 0.0001 94.22 -0.0004 94.32 -0.0003 94.38

π 1.48 0.1552 99.86 0.0707 99.97 0.0443 99.99 0.0335 99.99

θ 3.00 0.1436 95.05 0.0629 94.99 0.0451 95.14 0.0333 94.94

ω 0.90 -0.0002 86.93 -0.0002 93.07 -0.0001 92.38 -0.0002 92.69

π 2.67 0.1289 99.99 0.0567 99.99 0.0405 99.99 0.0297 99.99
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Figure 2: Estimated mean squared error of the MLEs (scenarios 1 and 2).

ases at ≈ 89% when its true value is close to boundaries of the parametric space. The last
relevant result is that the coverageprobability of the CIs obtained for π increases as the values
of θ and ω increases, attaining values greater than 99% in the last cases of the third and
fourth scenarios.

7. Application to real data

In this section, the ZMPS distribution is considered as an attempt to adequately model four
datasets from biological science field. The goodness of fit of the proposed model is compared
with those accessed by the P, the PS and the ZMP distributions. The first dataset is due to
Beall (1940). The response is the number of Pyrausta nubilalis observed in small unit areas
of a field in 1937. The second one refers to the number of chromatid aberrations observed on
chemically induced chromosome aberrations in cultures of human leukocytes (Loeschcke and
Köhler 1976). The third and fourth datasets relates to the number of mammalian cytogenetic
dosimetry lesions induced in rabbits by lymphoblast streptonigrin at the exposure of 60 mg/kg
and 90 mg/kg, respectively. A broader description of the last three datasets is provided by
Shanker and Fesshaye (2016a).

Table 3 presents some descriptive statistics. The last column shows the observed proportion
of zeros (PZ) in each dataset. One can note that more than 50% of the observations are
zero-valued in all samples. Also, the initial analysis highlights the presence of overdispersion
(see the index of dispersion), justifying the choice of the ZMPS model to describe such data.
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Figure 3: Estimated mean squared error of the MLEs (scenarios 3 and 4).

In Table 4 we present the frequency distribution of each sample. The expected frequencies
was obtained using the estimated probabilities considering the MLEs of the parameters θ and
π. Frequencies in bold relate to those one closer to the real values. The results show that the
expected frequencies provided by the ZMPS model are the closest in most cases.

Table 3: Variables and descriptive statistics for each dataset.

Label Variable n Mean Variance ID (%) PZ

Dataset 1
Number of

56 0.7500 1.3182 175.76 0.5893
Pyrausta nublilalis

Dataset 2
Number of

400 0.5475 1.1256 205.58 0.6700
Chromatid aberrations

Dataset 3
Number of mammalian

601 0.4742 0.7398 156.00 0.6872
cytogenetic lesions (E-60)

Dataset 4
Number of mammalian

300 0.8533 1.3697 160.51 0.5167
cytogenetic lesions (E-90)

The MLEs, the SEs and the 95% asymptotic CIs for the parameter θ of each fitted model
are presented in Table 5. The model selection was performed using the Akaike information
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Table 4: Observed and expected frequencies from each fitted model.

Counts
Observed Expected Frequency

Frequency P PS ZMP ZMPS

Dataset 1

0 33 26.45 31.47 33.00 33.00

1 12 19.84 14.17 10.83 12.30

2 6 7.44 6.13 7.34 5.91

3 3 1.86 2.55 3.32 2.71

4 1 0.35 1.03 1.12 1.20

5 1 0.05 0.40 0.30 0.52

Dataset 2

0 268 231.36 257.61 268.00 268.00

1 87 126.67 92.98 71.81 79.05

2 26 34.68 32.71 40.04 32.38

3 9 6.33 11.19 14.88 12.80

4 4 0.87 3.73 4.15 4.90

5 2 0.09 1.22 0.93 1.83

6 1 0.01 0.39 0.17 0.67

7 3 0.00 0.12 0.03 0.24

Dataset 3

0 413 374.05 406.13 413.00 413.00

1 124 177.38 132.99 115.99 123.26

2 42 42.06 42.67 52.14 43.02

3 15 6.65 13.37 15.62 14.61

4 5 0.79 4.10 3.51 4.83

5 0 0.07 1.23 0.63 1.56

6 2 0.01 0.36 0.09 0.50

Dataset 4

0 155 127.80 157.53 155.00 155.00

1 83 109.05 77.56 71.93 80.64

2 33 46.53 36.42 45.66 36.81

3 14 13.24 16.37 19.32 16.11

4 11 2.82 7.10 6.13 6.81

5 3 0.48 2.99 1.56 2.79

6 1 0.07 1.23 0.33 1.12

criterion with correction for finite samples (AICc) and the Bayesian information criterion
(BIC). The goodness of fit was evaluated by the χ2 statistic. It is noteworthy that the
smaller AICc’s are provided by the ZMPS model. On the other hand, in some cases the PS
distribution presents similar fit when compared with its zero-modified version, as can be seen
by that obtained from Dataset 4. In fact, there exist evidences that the proposed model
adheres better to the considered datasets and hence, can be considered as a suitable option
to model zero inflated/deflated count data in the presence of overdispersion.

The summary for the parameters ω and π can be found at Table 6. Under the ZMPS model,
the inference about the parameter π allow us to identify that may exists an evidence that
the first three datasets are zero-inflated while the last one may be classified as zero-deflated.
By the 95% CIs obtained for the parameter π, we can also conclude that the PS distribution
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Table 5: Summary for the parameter θ and comparison criteria.

Dataset Model θ̂ SE
(
θ̂
) 95% CI

AICc BIC χ2

Lower Upper

1

P 0.7500 0.1157 0.5232 0.9769 145.24 147.19 24.08

PS 2.2415 0.3167 1.6208 2.8622 136.03 137.98 1.38

ZMP 1.3551 0.4196 0.5327 2.1776 62.31 66.14 2.00

ZMPS 1.9779 0.4516 1.0929 2.8630 61.88 65.71 0.53

2

P 0.5475 0.0370 0.4750 0.6200 881.04 885.02 13473.41

PS 2.8291 0.1707 2.4945 3.1637 809.33 813.32 71.88

ZMP 1.1151 0.2388 0.6471 1.5831 322.99 330.94 338.30

ZMPS 2.3863 0.2476 1.9009 2.8717 300.23 308.18 35.41

3

P 0.4742 0.0281 0.4191 0.5292 1167.36 1171.75 726.48

PS 3.1258 0.1640 2.8043 3.4472 1115.68 1120.07 9.76

ZMP 0.8990 0.2731 0.3637 1.4344 376.34 385.12 42.19

ZMPS 2.8538 0.2722 2.3204 3.3874 369.61 378.38 6.16

4

P 0.8533 0.0533 0.7488 0.9579 802.94 806.63 65.49

PS 2.0342 0.1183 1.8023 2.2658 767.89 771.58 3.27

ZMP 1.2694 0.1853 0.9063 1.6325 362.08 369.45 13.25

ZMPS 2.1041 0.1966 1.7187 2.4894 354.15 361.51 3.35

Table 6: Summary for the parameters ω and π under ZMP and ZMPS models.

Dataset Model ω̂ SE (ω̂)
95% CI

π̂ SE (π̂)
95% CI

Lower Upper Lower Upper

1
ZMP

0.411 0.066 0.282 0.540
0.554 0.161 0.237 0.870

ZMPS 0.846 0.206 0.442 1.249

2
ZMP

0.330 0.024 0.284 0.376
0.491 0.061 0.371 0.611

ZMPS 0.795 0.092 0.616 0.975

3
ZMP

0.313 0.019 0.276 0.350
0.528 0.055 0.421 0.634

ZMPS 0.886 0.095 0.700 1.072

4
ZMP

0.483 0.029 0.427 0.540
0.672 0.076 0.523 0.821

ZMPS 1.046 0.102 0.846 1.247

may be a reasonable choice to model the last two datasets, since the provided CIs contains
the value 1. However, in the cases where exist evidence of zero modification, zero-modified
models remain preferred.

8. Concluding remarks

In this paper, the ZMPS distribution was introduced as an alternative to model overdispersed
count data having inflation or deflation of zeros. We discuss some of its mathematical proper-
ties as the expected value, the variance and the coefficients of variation, skewness and kurtosis.
Moreover, using the hurdle version of the proposed model we derive the log-likelihood func-
tion, the score function, the information matrix and present some properties concerning the
MLEs of the model parameters. Also, we performed a simulation study where the bias and
the mean squared error of the MLEs as well the coverage probability of the asymptotic CIs
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were computed and indicated the suitability of the considered methodology. The usefulness of
the proposed distribution was evaluated by fitting it to four datasets obtained from biological
science field with characteristics of overdispersion and zero modification. The model selection
was performed using the AICc and the BIC criteria. The goodness of fit was accessed by the
χ2 statistic. The provided results demonstrate the superiority of the proposed model over the
P, the PS and the ZMP distributions, confirming its applicability to model overdispersed and
zero-modified count data.
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