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Abstract

This paper presents the multiple imputation model for the imputation of the miss-
ing values of the Austrian Household Survey on Housing Wealth 2008. It is based on
Bayesian inference and on the fully conditional specification approach. Both theoreti-
cal framework and model specification are discussed in detail and, finally, some results
about the performance of our imputations are presented.
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1. Introduction

In 2008 the Oesterreichische Nationalbank carried out a survey called the Household Sur-
vey on Housing Wealth (HSHW) which covered, among other, questions concerning hous-
ing wealth, housing debt, or intergenerational transfers of Austrian households. Similar
surveys, covering the whole household wealth, have been done by the Federal Reserve
(Survey of Consumer Finances, SCF), by the Banca d’Italia (Survey on Household Income
and Wealth, SHIW), or by the Banco de España (Survey of Household Finances, EFF).

Because of the particular sensitivity and difficulty of wealth questions, a common problem
in such surveys is that more households than usual refuse to participate in the interview
(unit nonresponse), or do participate in the interview, but refuse to answer specific ques-
tions (item nonresponse). When such data is analyzed by just excluding those households
that have nonresponse for any of the variables involved in the analysis (complete-case-
analysis), then in general estimates are going to be biased, because they measure the
portion of the target population that provides responses on all relevant variables in the
analysis, rather than the entire target population.1 A further disadvantage of complete-
case-analysis is the estimates’ loss of efficiency due to the loss of information.

1Most statistical packages do complete-case-analysis by default.
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Nonresponse bias is typically a problem in wealth surveys, where nonresponse is usually
positively correlated with wealth. In the USA in the SCF which is a conceptual base for
the HSHW the unit-nonresponse rate in the general sample is much lower (70 percent)
than in the special sample with wealthy households (about 90 percent) (see e.g. Kennickell
(1998a)). This illustrates the typical problem of surveys on wealth: wealthy households
refuse more often to participate and, therefore, wealth is underestimated in voluntary
household surveys. Moreover, as net wealth is a complex variable derived from many dif-
ferent components of gross wealth and debt which have to be collected one by one, such
surveys are particularly prone to item-nonresponse issues.

Therefore, it is important to find a more appropriate technique for handling unit and item
nonresponse. Little and Rubin (2002) offer an extensive survey of current methodology.
For addressing unit nonresponse, a common technique is weighted complete-case-analysis.
The idea is to differentially weight households with complete observations to adjust for
the nonresponse bias. Although simple, this method still has the disadvantage of loosing
efficiency by excluding households with incomplete observations. We will not focus on unit
nonresponse in this paper. See Wagner and Zottel (2009) for some more information on
unit nonresponse in the HSHW.

Item nonresponse is typically handled by imputation methods. The idea is to fill in the
missing values in order that the resultant completed data can be analyzed by standard
methods. If we only impute one value for each missing value (single imputation), then
standard variance formulas underestimate the variance of estimates, because they do not
take into account the uncertainty behind the imputed values. With multiple imputation
more than one value for each missing item is imputed allowing for a differing status of
the real and the imputed values and therefore, the problem of too low variance is largely
corrected.

Of course, the technique that creates the imputed values is also relevant. For example,
mean imputation is a simple method that substitutes missing values with means from
recorded values. The problem is that it implicitly assumes like a complete-case-analysis
that missing values are independent from household characteristics. Furthermore, it bi-
ases the correlations between the variables and, therefore, the variance. Another common
imputation technique is hot deck imputation, where recorded values in the sample are
randomly chosen to substitute missing values, or regression imputation, where missing
variables for a household are estimated by predicted values from the regression on the
known variables for that household. In general, according to Little and Rubin (2002), im-
putations should generally be (1) conditional on observed variables, to reduce nonresponse
bias, improve precision, and preserve association between missing and observed variables;
(2) multivariate, to preserve association between missing variables; (3) draws from the
predictive distribution of missing values rather than means, to provide valid estimates of
a wide range of estimands.

The imputation methods mentioned in the last paragraph tend to have an ad hoc charac-
ter, often being solutions worked out by practitioners with limited research into theoretical
properties.2 During the last decades the imputation literature has developed towards sys-

2”Ad hoc”in the sense of producing univariate imputations where each variable is imputed independently
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tematizing these methods (model-based approach) to provide a basis for future advances.
Many of the ad hoc imputation methods mentioned before can be derived as examples
(or approximations) of the model-based approach. The idea is to define a model for the
observed data, then, based on the likelihood under that model, to estimate the parame-
ters by procedures such as maximum likelihood and, finally, to combine these results to
estimate the joint distribution of the observed and unobserved data.3 The advantages of
model-based procedures are (1) flexibility; (2) the avoidance of ad hoc methods, in that
model assumptions underlying the resulting methods can be displayed and evaluated; (3)
the availability of estimates of variance that take into account incompleteness in the data.

In case of small sample sizes, such as the HSHW with 2081 household observations, max-
imum likelihood estimates could yield to unsatisfactory inferences, as their large sample
properties might no longer be valid. One approach to this limitation is to adopt a Bayesian
perspective and instead of basing inferences on the likelihood, to base them on the exact
posterior distribution for a particular choice of prior.4 Most model-based methods, espe-
cially in the context of multiple imputation, were developed in a Bayesian framework.

When the data has a complex structure, it might be very difficult to explicitly specify a
joint distribution for the data that reflects the data well (joint modeling (JM) strategy).
Instead one could define it implicitly, by specifying a set of conditional distributions re-
lating each variable to a set of the other variables (fully conditional specification (FCS)
strategy). For each of the variables, a draw of parameters is made, the missing data are
imputed for that variable, and the procedure cycles through the variables, replacing vari-
ables that are being conditioned in any regression by the observed or currently imputed
values. In data like the HSHW, with a large number of variables and where many of them
have bounds, skip patterns, bracketed responses, interactions, or constraints with other
variables, separate regressions for each variable as in the FCS approach often make more
sense than postulating a joint model. However, one main drawback of FCS is that the im-
plied joint distribution of the data may not exist theoretically and therefore little is known
about the quality of the resulting imputations. Despite this, simulation studies provide
evidence that this strategy works quite well in many applications and yields estimates that
are unbiased, at least in the cases investigated.5

Recent research by Rubin (2003) or Baccini, Cook, Frangakis, Li, Mealli, Rubin, and Zell
(2010) proposes to limit this incoherence by combining the JM and the FCS strategy. The
idea is to split the data into monotone missingness blocks and use the JM strategy within
each block and the FCS strategy across the blocks.

For handling item nonresponse in the HSHW, we choose a Bayesian-based FCS multiple
imputation approach for the following main reasons: (1) it seems to be very successful in
reducing nonresponse bias according to the above mentioned literature, (2) the approach

from the other variables.
3For example, it can be shown that if the data are assumed to be multivariate normally distributed

and to have a monotone missing data pattern, maximum likelihood analysis is equivalent to regression
imputation (Rubin (1974)).

4Even in cases where prior knowledge for the parameters is limited, the Bayesian approach with dispersed
priors often yields better inferences than the frequentist approach.

5See Van Buuren, Brand, Groothuis-Oudshoorn, and Rubin (2006) for a more detailed discussion on
the fully conditional specification strategy.
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preserves the complex HSHW data structure, (3) statistical packages that include this ap-
proach are available, and (4) other similar surveys as the SCF or the EFF also successfully
employ this approach.

This paper presents the implementation of the HSHW multiple imputation model and is
structured as follows. Section 2 introduces the data and provides descriptive statistics
about nonresponse. Section 3 discusses the implementation of the HSHW imputation
model including a brief explanation of the theoretical framework. In Section 4 some
results of the imputed data are presented. Finally, Section 5 concludes.

2. Nonresponse in the HSHW

The HSHW was conducted based on computer assisted personal interviews (CAPI) in
the year 2008 and provides the only data source on household housing wealth in Austria.
Apart from the focus on housing wealth, the questionnaire also covers housing debt, inter-
generational transfers (inheritances, education of parents) and a series of socioeconomic
and sociodemographic characteristics of the household. See Fessler, Mooslechner, Schürz,
and Wagner (2009) for some general results of the survey.

As already mentioned in the Introduction, due to the sensitivity and complexity of the
HSHW questions, the nonresponse rate is relatively high. In addition, the survey has a
large number of variables (168 questions), a complex structure due to filtering, and long
interview duration (42.3 minutes on average) with a high bandwidth (from 30 minutes to
over an hour, depending on the filtering). To reduce unit nonresponse interviewers were
instructed to do until five contact attempts to each household. Also five interviewer train-
ing sessions and a pretest were organized in different regions of Austria. The resulting unit
nonresponse rate was on average 34.9 percent (in Vienna even 50.1 percent), which is in
line with other similar surveys. To correct for the typically higher unit nonresponse bias
in Vienna, households coming from this region were already oversampled when drawing
the sample. See Wagner and Zottel (2009) for more details on the HSHW unit nonresponse.

Concerning item nonresponse, the mean number of missing values per household in the
HSHW is only 3. The median is 2 and the 90th percentile is 8. In other words, 50 percent
of the households deny the answer to not more than two questions and 90 percent of the
households deny to not more than eight questions. The total number of missing values
over all households is 6, 322 which is equivalent to 2.6 percent of all the questions asked
over all households. Although these statistics are surprisingly low, they are not neces-
sarily a good measure of the degree of information missing due to nonresponse, as noted
by Kennickell (1991). This is because all missing values are added up equally, but not
all variables with missing values are of equal importance for the objectives of the survey.
For example, the estimated total value of real estate is more important than the current
value of the second additional house or condominium. The more concentrated missing
values are on the important questions of the survey the higher the degree of informa-
tion missing should be. In general, it is difficult to find a good measure of the information
missing due to nonresponse and it will become easier once we have imputed (see Section 4).

An alternative illustration of item nonresponse is presented in Table 1, where response
rates are shown per item instead of per household. For example, for the question of the
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outstanding loan amount for acquiring the primary residence, we see that 17.3 percent of
the households arrive to this item (column 1) and 39.2 percent of those who arrive give
a number (column 2). Thus, the nonresponse rate here is 60.8 percent. For the annual
total of rental or leasing income the nonresponse rate is 11.5 percent. Most of the other
nonresponse rates lie between these two numbers. The estimated total value of real estate,
for example, has a nonresponse rate of 35.4 percent. These nonresponse rates will play an
important role for imputations because they determine the order of imputations during
the whole imputation process (see Section 3.1).

Table 1: Unweighted Item-nonresponse in selected items of the HSHW
Value reported by respondent, for
those who responded having the
item

Item Have item Number Range* DK NA**

HOUSING WEALTH
Current value of the primary residence 52.1 73.5 14.8 7.3 4.4
Current value of the first additional
house/condominium

11.0 64.6 x 3.9 31.4

Current value of the second additional
house/condominium

1.8 64.9 x 5.4 29.7

Current value of plots of land/building lot 7.1 72.1 x 5.4 22.4
Current value of agricultural or forestry real estate,
fields, forest etc.

5.7 78.0 x 6.8 15.3

Current value of office, business premises, company
site

0.7 60.0 x 6.7 33.3

Current value of other real estate 0.9 77.8 x 0.0 22.2
Estimated total value of real estate 22.2 64.6 20.0 8.2 7.2

HOUSING DEBT
Outstanding amount of loans for acquiring the primary
residence

17.3 39.2 34.4 17.8 8.6

Outstanding amount of loans for acquiring additional
houses

3.0 30.2 x 14.3 55.6

Outstanding amount of loans for acquiring plots of
land/building lots

1.3 14.3 x 0.0 85.7

Annual repayment for acquiring the primary residence 17.3 49.4 33.3 8.6 8.6

INTERGENERATIONAL TRANSFERS
Value of the properties given away as a gift 3.6 68.0 x 12.0 20.0
Value of the properties inherited 20.1 69.6 x 6.0 24.4

OTHER CHARACTERISTICS OF THE HOUSEHOLD
Total monthly net household income 100.0 67.3 22.6 0.4 9.7
Household head’s monthly net income from paid em-
ployment

100.0 72.8 14.1 0.0 13.2

Homeowners’ imputed rent 52.1 75.0 11.6 8.4 5.0
Tenants’ monthly rent paid 43.6 77.3 13.9 5.8 3.0
Tenants’ deposit to the housing association (Genossen-
schaftsbeitrag)

15.7 67.9 27.8 1.8 2.4

Annual total of rental or leasing income 5.4 88.5 x 8.8 2.7
Time since the household head’s father passed away 51.4 88.0 x 0.0 12.0
Time since the household head’s mother passed away 37.7 88.8 x 0.0 11.2

* x means that the item has no range question

** Includes some editing cases

Although some of these nonresponse rates are rather high, column 3 of the table6 shows
that the use of range questions after euro variables is extremely helpful in significantly
reducing pure non-response rates of these variables: many households who do not give an
amount for a certain item are at least willing to select a range from a given list in which

6The x values in this column mean that, unfortunately, no range question was posed for these items.
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this missing amount is lying. For example, in the question of the outstanding loan amount
for acquiring the primary residence, 34.4 percent of households who arrive to this item do
not provide an amount but do at least provide a range for this amount. Thus, after range
responses just 17.8 percent still completely ”don’t know” the answer (column 4), and 8.6
percent are households that intentionally do not want to provide any response (column
5). In case of the current value of the primary residence, 73.5 percent of homeowners
report a number and 14.8 percent a range, such that just 11.7 percent do not provide any
information.

Another interesting aspect of nonresponse is what determines it. Table C.1 in the Ap-
pendix presents the results of a logit regression of a nonresponse dummy for the value of
primary residence on some household and interviewer variables.7

The estimation shows that the probability of not responding to the question about the
value of the primary residence increases significantly when the respondent8 is female, when
she is a farmer, when the household’s municipality size is large, or when the interviewer
is female. For example, a particularly high item nonresponse for farmers on the value of
the primary residence is not very surprising because for farmers it is particularly difficult
to sepparate farming wealth (business wealth) from the value of the main residence. On
the other hand, the probability of nonresponse decreases significantly, when the education
level of the respondent is high, when the standard of living of the household is rather basic
or poor, or when the number of persons who provided information during the interview
is high. Age has a U-shaped effect on nonresponse: for younger age groups nonresponse
is decreasing with age, but for higher age groups it is increasing. The low item nonre-
sponse for households with a rather poor standard of living supports the general problem
of wealth surveys that nonresponse is positively correlated with wealth (see Introduction).

The results of Table C.1 also tell us something else. They support our presumption stated
in the Introduction that nonresponse in the HSHW does not happen completely at random.
The fact that many coefficients in the above regression are significant implies that if we
would do complete-case-analysis of this variable our inferences would have a nonresponse
bias. Thus, imputations are necessary.

3. Imputation Method of the HSHW

3.1. Theoretical Framework 9

Let Y = (yij) denote an (n×K) rectangular data set that would occur in the absence of
missing values, with ith row yi = (yi1, . . . , yiK) where yij is the value of variable Yj for
household i, for i = 1, . . . , n and j = 1, . . . ,K. With missing data, define the missing-data
indicator matrix M = (mij), such that mij = 1 if yij is missing and mij = 0 if yij is ob-
served. The matrix M then defines the pattern of missing data. We write Y = (Yobs, Ymis),
where Yobs denote the observed components or entries of Y , and Ymis the missing compo-

7Household income is not included as a regressor because it has several missing values. By excluding
those households with missing values from the regression sample we would introduce a selection bias in the
estimation, as nonresponse of income is probably not random.

8The respondent of all survey questions is always the owner of the household’s main residence.
9See Little and Rubin (2002) for more details.
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nents.10

Furthermore, the probability or density of the joint distribution of Yobs, Ymis and M is
denoted by f (Yobs, Ymis,M | θ, ψ) which is indexed by the unknown parameters θ (for Y )
and ψ (for M). The likelihood and the prior distribution of these parameters are denoted
by L (θ, ψ | Yobs,M) and p (θ, ψ), respectively, and Bayes inference is obtained by their
joint posterior distribution: p (θ, ψ | Yobs,M) ∝ p (θ, ψ) × L (θ, ψ | Yobs,M). Under the
assumption that the missing-data mechanism is ignorable (see next paragraph) it can be
shown that Bayes inference about θ simplifies by just dropping M and ψ from the last
expression: p (θ | Yobs) ∝ p (θ)× L (θ | Yobs).

Intuitively, the ignorability assumption of the missing-data mechanism means that non-
response probabilities do not depend on any unobserved information. In the case of the
wealth variable, this means that we assume that nonresponse of the amount of wealth
does only depend on observed values and not on unobserved ones like the missing amount
of wealth itself. Even if we suspect, as we do, that wealthy households may be less likely
to report their wealth, this is still compatible with the ignorability assumption as long as
we condition on many other observed variables, especially those that are highly correlated
with wealth. In this way, we may be able to reduce or eliminate the dependence of miss-
ingness on wealth and make the ignorability assumption much more reasonable. See the
Appendix for the technical definition of ignorability.

Our aim is to impute by drawing the missing values as Ymis ∼ p (Ymis | Yobs), that is, from
their joint posterior predictive distribution. As already mentioned in the Introduction,
there are two approaches to draw from this distribution: the JM approach and the FCS
approach. The JM approach explicitly assumes a density function f (Y | θ) for the joint
distribution of Y = (Yobs, Ymis) and uses Markov Chain Monte Carlo methods such as data
augmentation or the Gibbs’ sampler to obtain draws from the joint posterior predictive
distribution of Ymis consistent with the assumed density function.

For example, according to Raghunathan, Lepkowski, Hoewyk, and Solenberger (2001), one
can develop a Gibbs sampling algorithm, that partitions the missing data Ymis and the
parameters θ into a sequence of p conditional distributions of the form

p (θj | θ1, . . . , θj−1, θj+1, . . . , θp, Ymis,1, . . . , Ymis,p) ,

p (Ymis,j | Ymis,1, . . . , Ymis,j−1, Ymis,j+1, . . . , Ymis,p, θ1, . . . , θp) , (1)

for j = 1, . . . , p, where p is the number of variables with missing values and θj is a vector
of parameters in the joint distribution f (Y | θ1, θ2, . . . , θp, ) (e.g. regression coefficients
and dispersion parameters). Each conditional distribution is computed based on this joint
distribution and values from the conditional distributions are drawn sequentially and itera-
tively. It can be shown that the sequence converges to a draw from the posterior predictive

10For example, if there are two households and three variables:

Y = (Yobs, Ymis) =

((
2 1 ·
4 · 3

)
,

(
· · 2
· 3 ·

))
with M =

(
0 0 1
0 1 0

)
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distribution of Ymis and a draw from the posterior distribution of θ.11

Although this approach is theoretically preferable when the underlying model, f (Y | θ), is
well justified, in situations with multivariate data like the HSHW involving nonlinear rela-
tionships such as bounds, skip patterns, bracketed responses, interactions, or constraints
with other variables, it might be difficult and time-consuming to find a coherent model,
program the draws of the conditional distributions, and assess convergence.

The FCS approach is a simpler method that approximates draws from the posterior pre-
dictive distribution of Ymis. FCS is also known under several other names like stochastic
relaxation (Kennickell (1991)), regression switching (van Buuren, Boshuizen, and Knook
(1999)), chained equations (van Buuren and Oudshoorn (2000)), or incompatible MCMC
(Rubin (2003)).12 Although it is less formally rigorous than JM, it is easier to implement
and yields approximately valid inferences. It may be even more effective, if the assumed
model (in JM) is not a good reflection of the data.

Instead of assuming explicitly a density function f (Y | θ) for Y , the FCS approach assumes
it implicitly by explicitly assuming a model (e.g. linear regression or logit regression) for
each one of the P conditional distributions of variables with missing values, that relates
each variable to a set of other variables. These models are reasonable when taken one at
a time, but incoherent in the sense that they might not be derivable from a single joint
distribution f (Y | θ) for Y (although implicitly assumed). For each one of the modelled
variables Ymis,j , a draw of parameters (regression coefficients and residual variance) and
subsequently of missing data (predictions) is made, the missing data are imputed for that
variable, and the procedure cycles through the variables, replacing variables that are being
conditioned in any regression by the observed or currently imputed values.

The algorithm is as follows (see also van Buuren and Groothuis-Oudshoorn (2010)). Start

with an initial draw Y
(d,0)
mis . These starting values are obtained by randomly drawing from

the marginal distribution of Yobs; that is, by filling the incomplete entries of each variable

with random draws from its observed values. Given a value Y
(d,t)
mis of Ymis drawn at iteration

t:

1.



θ
(d,t+1)
1 ∼ p

(
θ1 | Yobs, Y

(d,t)
mis,2, · · · , Y

(d,t)
mis,p

)
θ

(d,t+1)
2 ∼ p

(
θ2 | Yobs, Y

(d,t+1)
mis,1 , Y

(d,t)
mis,3, · · · , Y

(d,t)
mis,p

)
...

θ
(d,t+1)
p ∼ p

(
θp | Yobs, Y

(d,t+1)
mis,1 , Y

(d,t+1)
mis,2 , · · · , Y (d,t+1)

mis,p−1

)

2.



Y
(d,t+1)
mis,1 ∼ p

(
Ymis,1 | Yobs, Y

(d,t)
mis,2, · · · , Y

(d,t)
mis,p, θ

(d,t+1)
1

)
Y

(d,t+1)
mis,2 ∼ p

(
Ymis,2 | Yobs, Y

(d,t+1)
mis,1 , Y

(d,t)
mis,3, · · · , Y

(d,t)
mis,p, θ

(d,t+1)
2

)
...

Y
(d,t+1)
mis,p ∼ p

(
Ymis,p | Yobs, Y

(d,t+1)
mis,1 , Y

(d,t+1)
mis,2 , · · · , Y (d,t+1)

mis,p−1, θ
(d,t+1)
p

)
11See Schafer (1997) for more details on JM.
12See van Buuren and Groothuis-Oudshoorn (2010) for even more names used in the literature.
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3. Repeat steps 1 and 2 t times. As t tends to infinity, this sequence is expected to
converge to an approximation of a draw from the posterior predictive distribution of
Ymis and an approximation of a draw from the posterior distribution of θ;

4. Repeat steps 1-3 D times to obtain D multiple imputations.

Note that for all j = 1, . . . , p no information about θ or about Ymis,j is used to draw θj , and
that for all −j = 1, . . . , j−1, j+1, . . . , p, the θ−j are omitted from the conditional density
of Ymis,j , which differs from the Gibbs’ sampler in JM (see expressions 1). Thus, the FCS
approach can be seen as an approximation of the Gibbs sampler. The advantage is that
the conditional density of each Ymis,j can now be easily specified by a regression model
that depends upon the variable type for Ymis,j (continuous, binary, ordinal or nominal).

As already mentioned, a disadvantage of the FCS approach is that it is less formally rig-
orous and, therefore, it is theoretically possible that a sequence of draws based on the
above conditional densities may not converge to a (implicitly assumed) stationary distri-
bution, because these conditional densities may not be compatible with p (Ymis | Yobs) or
p (θ | Yobs) (see Arnold and Press (1989)).13 However, simulation studies provide evidence
that the approach works quite well in many applications and yields estimates that are
unbiased (see Van Buuren et al. (2006)).

There are different practical implementations of the FCS approach. The software im-
plementation we use is ice (Royston (2004), Royston (2005a), Royston (2005b), Royston
(2007), Royston (2009)) in STATA, which is itself an implementation of MICE (van Bu-
uren et al. (1999)) in R. A slightly different implementation, but following the same idea, is
successfully being used in other wealth surveys, such as the Federal Reserve’s SCF, or the
Banco de España’s EFF. See the Appendix for a comparison of the SCF/EFF imputation
algorithm with the HSHW algorithm.

3.2. Specification of the imputation model

Choice of variables to be imputed

A necessary step before starting to build up the imputation model, is the choice of
Ymis,1, · · · , Ymis,p, the set of p variables with missing values that are going to be imputed.
Depending on ones imputation strategy, this set need not always be equivalent with the
set of all variables with missing values in the data set. For example, if the strategy is to
only impute a small set of key variables which are most necessary for the future analyses
of the data set, Ymis will be a very small subset of all the variables with nonresponse
in the data set. Such a strategy might be tempting, because it reduces considerably the
size of the imputation model (i.e. the number of regression equations), but it has some
important drawbacks, too. First, it might not always be clear which analyses are going to
be done in the future. Second, although this strategy reduces the size of the imputation
model, it does not necessarily mean that imputation becomes easier. Especially in data
sets with high and frequent nonresponse as in the HSHW, the smaller the set of Ymis,
the smaller the set of predictors that can be used for imputations, as all those predictors
that are not going to be imputed and have missing values on the same observations as the
variable we want to impute cannot be used as predictors and must be discarded. Thus,

13Rubin (2003) gives an example of incoherent models for which no joint distribution exists.
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contrary to the hope of simplicity behind such a strategy, it might even become harder to
impute because of the difficulty of finding good predictors. Finally, a further drawback of
an imputation strategy aiming at a reduction of the size of the imputation model is that it
contradicts points (1) and (2) of the three general imputation requirements by Little and
Rubin (2002)) mentioned in the Introduction. These points say that imputations should
generally preserve association between (1) missing and observed variables, and (2) miss-
ing variables. But by restricting imputations to a small subset of all the variables with
nonresponse in the data set, we would violate these requirements because we are exclud-
ing missing variables from the regressions and, hence, ignoring their correlations with the
included (observed and missing) variables.

For the above reasons our imputation strategy in the HSHW is to impute the biggest
possible set of variables Ymis, which in our case consists of p = 165 variables out of all the
183 variables with missing values in the data set. We excluded 18 variables from imputation
because of their lack of observations which makes it impossible to run a regression due to
insufficient degrees of freedom. These variables correspond to items asked only to a very
small number of households who had them (e.g. the amounts of the 4th to 9th inherited
house, details about the 4th mortgage of the main residence, the purchase price of the
hotel or restaurant owned by a household).

Types of models

The next step is to define a regression model for each variable Ymis,j we want to impute.
The choice of such a model determines the functional form of the conditional posterior
distribution of the regression coefficients and residual variance θj (Step 1 in Section 3.1),
and the conditional posterior predictive distribution of Ymis,j from which we are going to
draw the values used to impute the missing observations (Step 2). For example, if we
chose a linear regression model for Ymis,j , then Ymis,j would follow a Normal distribution
by assumption, and it can be shown that both its posterior predictive distribution and the
distribution of θj would be Normal.14

We choose each regression model depending upon the variable type for Ymis,j . There are
four basic variable types in our data set: continuous (e.g. income), binary (e.g. gender),
ordinal (e.g. education) and nominal (e.g. occupation) variables. The choice of the regres-
sion models goes as follows: we use a logit model for the binary variables, an ordered logit
model for the ordinal variables and a multinomial logit model for the nominal variables.
The fact of using logit and multinomial models to impute ordinal and nominal variables
allows us to condition on a wider set of covariates than when using hotdeck, as is done
in other wealth surveys, such as the Federal Reserve’s SCF, or the Banco de España’s EFF.

For the continuous variables we use an interval regression model15 because all our con-
tinuous variables are bounded either from above, or from below, or from both above and
below. See Section 3.2.4 for more details on bounds.

In case of continuous variables we usually assume that the regression coefficients distri-
bution is Normal. However, in some of these cases we relax this assumption by doing

14Given that the priors are non-informative, as we assume in our imputation model.
15The interval regression model is a generalization of the Tobit model to account for censoring from

below and/or above. See Cameron and Trivedi (2005).
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bootstrapping16 because otherwise we have convergence problems with the imputations of
these variables. Furthermore, this also has the advantage of robustness since the distri-
bution of the regression coefficients is no longer assumed to be multivariate normal. The
disadvantage is the cost of a longer computation time. The cases where bootstrapping is
used are typically variables with very few observations like, for example, the purchase year
and value of the fourth residence owned by a household, or the interest rate of the second
outstanding mortgage.

Predictor selection

As mentioned in the Introduction and in the section about the choice of the variables to
be imputed, one of the main goals of imputation is to preserve association between miss-
ing and observed variables, and also between missing variables. Therefore, when choosing
predictors for the imputation model, it is not enough to select the most accurate predic-
tors for each outcome variable. Such an approach could bias the correlation structure
between the outcome variable and the excluded variables. Furthermore, ignoring variables
that are determinants of non-response of the outcome variable makes the ignorability as-
sumption on which our imputation model relies (see Theoretical Framework) less plausible.

Thus, we choose the number of predictors as large as possible (broad conditioning ap-
proach): the more predictors, the lower the bias and the higher the certainty of our
imputations. However, there is a limit, of course. In such a large data set as in the HSHW
with several hundreds of variables, it is not feasible to include all of them. On the one
hand, multicollinearity problems can arise, on the other hand, computational problems.
Similarly to van Buuren et al. (1999) or Barceló (2006), we adopt the following strategy
for selecting predictor variables:

1. Include the variables that are determinants of non-response. These are necessary to
satisfy the ignorability assumption, on which our imputation model relies. Accord-
ing to the ignorability assumption, the distribution of the complete data (including
the unobserved values) only depends on the observed data, conditional on the de-
terminants of item-nonresponse and other covariates. Determinants of nonresponse
are found by inspecting their correlations with the response indicator of the variable
to be imputed (see e.g. the logit regression in Section 2). For example, variables
included as determinants of nonresponse in the HSHW imputation model are the
following: variables describing the household (household income, household size,
number of children), variables describing the household members (age, education,
sex and occupational status of the household head and partner, whether the person
who answered the questions was the household head or not), stratification variables
(province, city size), information provided by the interviewers (standard of living,
type of neighborhood, type of building, interview atmosphere, number of people par-
ticipating in the interview, whether documents were used or not as a help to answer
some questions, sex of interviewer).

2. In addition, include variables that are very good at predicting and explaining the

16Bootstrapping in this context consists in taking bootstrap samples of the non-missing observations
and then obtaining the posterior predictive distribution of Ymis by running regressions on these bootstrap
samples.
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variable of interest we want to impute. This is the classical criterion for predictors
and helps to reduce uncertainty of the imputations. These predictors are identified
by their correlation with the target variable. Concerning the HSHW data, when the
target variables are the outstanding amount of different types of loans, we usually use
as predictors the initial loan amount and the years elapsed since the loan was taken,
since they turn out to explain a considerable amount of variance in most regressions.
Or when we impute the market value of different types of real assets, we usually
include their purchase value, the years of ownership of the corresponding asset, and
the total value of real estate properties owned by the household (estimated by the
household itself).

3. In addition, remove the predictor variables from above that have too many missing
values within the subsample of missing observations of the variable to be imputed
and substitute them with more complete predictors of these predictors. As a rule
of thumb, predictors with percentages of observed cases within this subsample lower
than 50 per cent are removed and substituted by more complete predictors. This
criterion contributes to make imputations more robust. Typical such predictors
of predictors are essential household characteristics like household size, number of
children, region, age, employment and marital status of household head)

4. In addition, include all variables that appear in the models that will be applied to
the data after imputation. In other words, think about different economic theories
that might be tested with the data and include the variables as predictors that are
expected to affect or explain according to these theories the variable to be imputed.
Failure to do so will tend to bias results of potential users of the data when testing
the hypothesis of one particular model. For example, the HSHW data offers infor-
mation on the parents of the household head, like whether they still live, whether
they are/were homeowners, and which education they have/had. This information
is used when doing intergenerational transfer analysis17. Therefore, we include these
variables when imputing the education level of the household head or the value of
real estate inheritances of the household, so that we do not bias empirical evidence
on intergenerational transfers.

Please note, that many variables in the survey fulfill more than one criterion at the same
time, like e.g. income, age, or education.

In all regression models we also include an interaction term and a main effect dummy for
each one of the above predictor variables that was not asked to every household to which
the variable to be imputed was asked. In these cases, we substitute each such predictor
variable with both a dummy indicating whether the question was asked to the household
or not (first-order head variable) and an interaction term multiplying the predictor with
this dummy. Thus, the interaction term equals the predictor if the household arrived to
this question or zero otherwise. In case that a predictor has higher (than first) order head
variables, we also include a dummy for each higher order head variable indicating whether
the higher order head question was asked to the household or not. Ignoring this type of
predictors leads to biased estimates because information concerning certain characteris-
tics of the households would be omitted that determine whether a question is posed to a

17See Fessler, Mooslechner, and Schürz (2010) for an analysis of intergenerational transfers in Austria.
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household or not. For example, suppose that we want to impute household income using
mortgage amount as one of our predictors. While household income was asked to every
household in the sample, mortgage amount was not. If for those households who do not
have any mortgage we just set mortgage amount to zero, the estimates would be biased
because of omitting the information of whether the household has a mortgage or not. This
information is the first order head variable of mortgage amount and should be included as
a dummy in the regression. But again, having a mortgage or not was not asked to every
household, just to homeowners. Thus, we also should include a homeowner dummy in the
regression, which is the second order head variable of mortgage amount.

Finally, of course, the number of predictors is restricted by the size of the subsample
over which the regression is estimated. In cases where the subsample size is smaller than
the number of predictors selected according to the above strategy, we use the Akaike
information criterion to choose the subset of predictors which best fits the data, given
that each one of the above four predictor categories is still represented in each regression
equation. In the rare cases where the sample size is still smaller than the number of
predictors, we just choose the predictors with the best fit, without taking into account
that each one of the above predictor categories is represented in the equation. Typically,
the number of predictors used for each regression model is around 20 percent of the number
of observed cases of the variable to be imputed for small subsamples. For large subsamples,
the number of predictors usually lies between 5 and 10 percent. For more details on the
specification of subsamples, see the corresponding section below.

Bounds

In order to avoid the imputation of values that are either not defined, very unrealistic, or
inconsistent with other variables in the survey we impose lower and/or upper bounds on
the imputed values of each continuous variable. A useful aid for finding such bounds was
provided by the consistency checks done both during the interview and also afterwards
during the editing procedure previous to imputation of the HSHW. We use two types of
bounds: general bounds that are the same for all households and individual bounds that
take different values depending on each household. General bounds are usually employed
to avoid imputing values that are not defined or that are very unrealistic. Examples for
this type of bounds are non-negativity constraints on quantitative or count variables (in-
come, age). The lower bound for these variables is zero for all households. Furthermore,
for each quantitative variable we use the following rule: for every household set the half
of the smallest observed value of the variable as the lower bound and the double of the
largest observed value as the upper bound. Our aim with this rule is to carefully avoid
the imputation of very unrealistic values without manipulating results. More examples
for general bounds are share variables (e.g. share of homeownership), where we set the
lower bound to zero and the upper bound to 100, or some year variables (e.g. purchase or
inheritance year of the real asset owned by the household, year of parents’ death), where
the upper bound equals 2008, the year when the last interviews of the survey were done.

The second type of bounds, the ones that vary across households, usually ensures consis-
tency with other variables of the same household. Most of the HSHW bounds are of this
type. For example, when imputing total household income we set as a lower bound the
sum of the different income sources of the household head (personal income of the other
household members is not asked in the HSHW). On the other way round when imput-
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ing the individual income of the household head, we set as upper bound total household
income.18 Another very useful implementation of individual bounds is done when the
household provided information about the range of the value that is missing. In most of
the quantitative questions of the HSHW, such ranges where asked when households denied
the answer to a question. More examples for individual bounds in the HSHW are when
imputing rents (with gross rent as an upper bound for net rent and vice versa), aggregate
amounts (e.g. with total housing wealth as an upper bound for house value and vice versa,
total inheritances as an upper bound for each individual inheritance and vice versa, initial
amount of loan as an upper bound for outstanding amount of loan and vice versa), or
when imputing several count variables (e.g. birth year of the oldest household member as
a lower bound for year of acquisition of the real asset, age of the household head minus
1 as a lower bound for the age at which his father died, age of the household head as a
lower bound for the age at which his mother died). In case that an observation has more
than one lower or more than one upper bound (e.g. general and individual bounds) we
take the lower and/or upper bound that is most restrictive among all.

Subsamples specification

The subsample over which each regression of the variable we want to impute is estimated
simply consists of all the households to which the corresponding question was posed. In
particular, when questions were asked separately about each particular asset within an
asset type, or each particular loan within a loan type, we estimate each item within a
type separately over the subsample of households that have this item. For example, if
a household has two mortgages and we want to impute the outstanding amount of the
second mortgage, then we impute this missing value by regressing over the subsample of
households that have at least two mortgages. If we also included the households that only
have one mortgage to impute the second mortgage amounts we would ignore systematic
differences between the first and the second mortgages. Especially, we would ignore the fact
that the first mortgage is higher than the second one because households order mortgages
after their importance, which will introduce a bias in our estimates. Of course, in such a
case, we could introduce a lot of interaction terms in our model to reduce the bias, but
there still might be unobserved differences between both groups. When imputing question
by question, as we do, the bias will be very small, although at the cost of precision, because
the sample size will also be very small to condition on a wide set of covariates.

Variable Transformations

Certain transformations of variables in our imputation model turned out to be extremely
helpful in terms of improving the plausibility of their imputed values and, hence, of the
imputed values in general. This was the case with the logarithmic transformation. We
check the distribution of each continuous variable in our model that we want to impute
and take the logarithm when the distribution is highly skewed. not range variables! Dur-
ing the imputation procedure we maintain this transformation, even when the variable is
used as a predictor for another variable. Only after imputations are finished we transform
back the variables into their original measure.

Another very helpful transformation consists in imputing durations instead of years. For

18Our imputation model is not able to use imputed values as bounds for imputing other variables. Thus,
we cannot set as bounds observations which are missing. In these cases we have to use general bounds as
nonnegativity constraints or smallest/largest-observed-value type of bounds instead of individual bounds.
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example, instead of imputing the purchase year of the house we impute the time elapsed
since the house was purchased. In these cases the above mentioned logarithmic transfor-
mation was done on the durations and not on the years and again it is kept even when
the variable changes to a predictor during the imputation process.

Last but not least, another transformation that we employ for improving the plausibility of
the imputed values is splitting some quantitative variables into head and branch variables if
they are not already splitted. For example, suppose that we want to impute income of the
household head. The distribution of this variable shows a small peak around zero, because
there are some cases where the household head is not working. Therefore, instead of
imputing this heterogeneous variable and probably bias the results, it is better to split the
variable into a dummy head variable indicating whether the household head has income or
not, and a continuous branch variable without zeroes with all the positive income quantities
of all the household heads that have income. Subsequently, we first impute the dummy
based on a logit regression model and, afterwards, if the household head has been imputed
as having income, we impute the continuous income variable based on an interval regression
model. Another example where splitting is useful are multiple-response variables: we split
each multiple-response category into a dummy variable indicating whether the category
applies or not. Then each dummy is imputed separately. However, in most of the cases
splitting in the HSHW is not necessary because the survey structure already consists of
head and branch variables.

Imputation order

As we mentioned in the Introduction and in the Theoretical Framework, a weakness of
the FCS approach is that the conditional densities in step 1 and 2 may not converge
to a stationary distribution. In practice, however, choosing a particular ordering of the
variables often aid convergence. In the HSHW we start imputation by the variables with
the least missing values, and so on. Variables with the same amount of missingness are
processed in an arbitrary order, but always in the same order. The imputation order
of head variables is not arbitrary and is done always before their corresponding branch
variables. For example, whether the household has a mortgage or not is always imputed
before imputing the mortgage amount, even if missingness is the same for both variables.

Number of iterations

The number of iterations t determines how often the imputation procedure cycles through
the variables to be imputed, replacing variables that are being conditioned in any regres-
sion by the observed or currently imputed values. As t tends to infinity, the sequence of
parameters and predicted values should converge to a draw from the posterior distribution
of θ and a draw from the posterior predictive distribution of Ymis. However, according
to van Buuren et al. (1999) in practice convergence in these models usually occurs very
fast during the first few iterations. This is because the posterior distributions of the re-
gression coefficients already absorb a lot of uncertainty in the predictors and because the
procedure creates imputations that are already statistically independent. Given the large
computational effort required for the HSHW imputation model and following the number
of iterations used in other similar surveys (like SCF (Kennickell (1991) or EFF (Barceló
(2006))), we set the iteration number for the HSHW imputation model to t = 6.

Typically, we graphically check convergence by plotting the mean of the imputed values
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Figure 1: Monitoring the convergence of imputations of household income in the HSHW

against the iteration number t. As an example, Figure 1 shows this plot for the income
variable. Convergence is judged to have occurred as soon as the pattern of the imputed
means turns to be random. In Figure 1 this seems to be the case very soon: at the latest
from the fifth iteration forward no trend in the smoothed curve of the imputed means of
income can be recognized any more. Furthermore, Figure 1 shows that the fluctuation
range of the imputed means is around 20 euros and, thus, very small, which is a further
indicator of convergence. Of course, these kind of checks can never confirm convergence
(like any other check in the FCS approach), but they can highlight weaknesses in the
imputation model or other unusual outcomes that could be indicators of non-convergence.

Number of imputations

Finally, we choose the number of realizations D that we want to have from the posterior
predictive distribution p (Ymis | Yobs) or, in other words, the number of multiply imputed
data sets. Setting D too low leads to standard errors of the estimates that are too low and
to p-values that are too low. Schafer and Olsen (1998) show that the gains of efficiency
of an estimate rapidly diminish after the first few D imputations. They claim that good
inferences can already be made with D = 3 to 5. However, Graham, Olchowski, and
Gilreath (2007) show that another important quantity such as statistical power can vary
more dramatically with D than is implied by efficiency. They claim that good inferences
can be made with D = 20 to 40. It seems unlikely that a single correct value for D will
be established in the literature because, like sample size, the number of imputation that
are necessary depends on features of the individual data set and analysis model. In the
HSHW imputation model, given the substantial increase in computational effort for every
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further imputation and following other similar surveys like the SCF or EFF we set the
number of imputations to D = 5.

4. Some results

Estimating the HSHW imputation model with the above presented specifications is com-
putationally very intensive and takes around 8 days.19 Table 2 summarizes the resulting
imputations for some variables, similarly as Kennickell (1991) and Kennickell (1998b) does.

The first two columns show the weighted sum of all imputed values of a given item in
percent of the weighted sum of all values of this item, distinguishing between imputations
that used range information and imputations that did not. For example, 64.8 percent of
the total amount of real estate in the sample is imputed, with 29.1 percentage points of
that amount imputed using range information provided by households. In case of total
income, 36.5 percent of euros are imputed with 23.5 percentage points based on ranges. In
most of the other cases reported, the proportion of the total value imputed based on ranges
is higher than for completely missing variables which clearly shows that ranges provide
very valuable information that greatly helps in improving the precision of imputations.
The most extreme case is the tenants’ deposit to the household association, where 54.8
percent of total euros are imputed with an amazing 50.9 percentage points constrained
by range estimates.20 The reported variable with most missing information due to nonre-
sponse is the outstanding mortgage amount for the primary residence with 72.9 percent
euros imputed.

The rest of the columns in Table 2 display the coefficients of variation (CV) for the mean
and median values of the imputations.21 These help us to measure the performance of
our imputation model. The CV describes the precision of the estimated mean and median
values due to imputation in a way that does not depend on the variable’s measurement unit.
The higher the CV, the lower the precision of the estimate. For comparison, coefficients
of variation of the observed sample and of the complete sample are also provided. Table
2 shows that the model performs better in predicting higher order aggregated variables
than individual assets. For example, while the variation for current value of other real
estate is 145 percent, the variation in total household income is only 3.3 percent. Of
course, the reason is the smaller sample size in case of individual assets. In most cases, the
CV of the imputations is higher than the CV in the observed sample, what makes sense
since, in general, imputations are probably less accurate than observed values. Finally,
the median based CV are almost always higher than the mean based CV which reflects
the fact that the distributions of the variables are very skewed and that the euro amounts
are concentrated in small groups of households.

5. Conclusions

19We use a computer with 3.4 GHz CPU and 1 GB RAM.
20Another reason why the proportion of the total value imputed based on ranges is higher than that for

completely missing observations is that the fraction of nonrespondent households giving a range is higher
than the fraction of completely nonrespondent households. This is particularly important in the case of
tenants’ deposit to the housing association (27.8 percent vs 4.2 percent in Table 1).

21CVSx (%) = Sx
x
·100, where Sx is the standard error of the mean x, and CVSx̃ (%) = Sx̃

x̃
·100, where Sx̃

is the standard error of the median x̃. The standard error of the median is approximated as Sx̃ = 1.253 ·Sx.
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This paper presents the HSHW multiple imputation model and its implementation. After
justifying the choice of the fully conditional specification approach in the context of several
other missing data methods, we show that nonresponse in the HSHW is not random and
that it fluctuates a lot depending on the question posed.

We then present the theoretical framework of the model and subsequently its specifica-
tions. In comparison with other imputation models of similar surveys like the SCF or the
EFF, our implementation allows to impute ordinal variables using an ordered logit model
and nominal variables using a multinomial logit model and, thus, to condition on many
more variables than when using hot deck for the imputation of such variables.

Finally, we summarize the resulting imputations for various items by using two statistics:
the proportions of euros imputed and the relative standard errors of imputations which
both try to measure the performance of the imputations in terms of their precision. We
see that higher order aggregate variables and ranges improve a lot the precision of our
imputations, but there are still some cases, especially some individual asset categories,
where the reliability of imputations is rather low. However, in such cases we prefer to
have the cost of a small increase in variance for less bias in order to avoid distorted results
being wrongly considered significant too often.

Nevertheless, to improve the reliability of imputations of such variables, we could increase
the number of imputations, but, of course, at the cost of a higher computational effort. We
hope to be able to reduce this cost for the imputation of the upcoming Austrian House-
hold Finance and Consumption Survey by having improved our technological resources by
then. Another way to improve imputations of such variables is, of course, to introduce
possibilites to reduce their item nonresponse. For example, by incentivating range answers
when no exact amount is provided in a euro question. This could be done by addition-
ally allowing the household to indicate individual ranges, additionally to the possibility of
choosing a predefined range.

One interesting analysis that goes beyond the purpose of this paper, but is left for future
research, is to evaluate our imputations in more depth by developing additional evaluation
criteria like, for example, distributional or bias criteria and then comparing them with
other imputation methods with the help of simulations.

Appendices

A. Ignorable nonresponse

The missing-data mechanism is ignorable for Bayesian inference if:

1. the missing data are missing at random (MAR): f (M | Yobs, Ymis, ψ) = p (M | Yobs, ψ)
for all Ymis; and

2. the parameters θ and ψ are a priori independent, that is, the prior distribution has
the form p (θ, ψ) = p (θ) p (ψ).



24

B. Comparison of imputation algorithms

The imputation of the Federal Reserve’s SCF or Banco de España’s EFF and the one
of the Oesterreichische Nationalbank’s HSHW are based on the same approach. Neither
SCF/EFF nor HSHW specify explicitly a joint distribution of the data, but they do it
implicitly by specifying separately the conditional distribution of each variable having
missing values. Both implementations are less formally rigorous than the joint modelling
approach, but they are easier to implement and much more flexible, being able to account
for the numerous nonlinear relationships in the data.

However, there are still some differences between the algorithm of the implementation of
this imputation approach in the SCF/EFF and the one in the HSHW:

Starting values. The starting values for the first iteration are different. In the HSHW,

a draw of Y
(0)
mis is needed and is obtained by filling the incomplete entries of each variable

with random draws from its observed values. In the SCF/EFF, a draw of θ(0) is needed
and is obtained by sequentially estimating the imputation model of each variable, using
the subsample of both observed data and the values of the missing data previously im-
puted within the first iteration.

Order of steps. As a consequence of the different starting values in the two implemen-
tations, a different order of the imputation step and the posterior step is needed, too. In
the HSHW implementation, within each iteration, first the parameters θj are drawn and
then, conditional on them, the missing values Ymis,j are drawn. In the SCF/EFF it is the
other way round: first the missing values Ymis,j are drawn and then given these values the
corresponding parameters θj are drawn. Both algorithms should be equivalent, because in
the limit, the order of the sequences should not matter.

Posterior step. While the HSHW implementation does not take into account missing
information of the outcome variable Ymis,j to estimate the parameters θj of their own
imputation models, the SCF/EFF implementation does.

Imputation step. Unlike the HSHW implementation, the SCF/EFF implementation do

not use values Y
(t−1)
mis,1 , . . . , Y

(t−1)
mis,j−1, Y

(t−1)
mis,j+1, . . . , Y

(t−1)
mis,p imputed in the previous iteration

of the imputation process to reimpute missing values Y
(t)
mis,j in the current iteration of the

imputation step, but just use observed values and values Y
(t)
mis,1, . . . , Y

(t)
mis,j−1 imputed so

far in the current iteration.
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C. Probit regression
Table C.1: Determinants of nonresponse on value of primary residence

Coeff.
Variables (SE)

OWNER’S CHARACTERISTICS
Female 0.381**

(0.193)
Age -0.0894**

(0.0363)
Age squared 0.000772**

(0.000326)
Highest educational level completed

Apprenticeship, vocational school/Intermediate or higher
technical/vocational school

-0.311

(0.240)
High school (Matura) -0.750**

(0.343)
College, university, university of applied sciences, academy -0.897**

(0.382)
Occupational status

White-collar worker 0.240
(0.358)

Civil servant -0.142
(0.499)

Farmer 1.292**
(0.512)

Blue-collar worker 0.336
(0.402)

Other occupation 0.394
(0.530)

Retired 0.294
(0.394)

Out of labor force 0.547
(0.433)

HOUSEHOLD’S CHARACTERISTICS
Number of children in household -0.148

(0.117)
Number of adults in household -0.0927

(0.111)
Household has to debt service some housing loan -0.477*

(0.261)
Spouse/partner in household -0.0647

(0.396)
INTERVIEWER’S ASSESSMENT

Size of municipality
Up to 5,000 inhabitants 0.131

(0.213)
Up to 20,000 inhabitants -0.382

(0.267)
Up to 50,000 inhabitants 0.171

(0.457)
More than 50,000 inhabitants 0.922**

(0.425)
Impression of apartment/house

Good, medium standard of living -0.681***
(0.189)

Rather basic standard of living/Poor standard of living -0.557**
(0.275)

Unpleasant atmosphere during the interview 1.398***
(0.322)

Number of persons who provided information during the interview -0.0617
(0.186)

No documents consulted during interview 0.703***
(0.216)

Questions were not answered honestly and seriously 0.586
(0.544)

Female interviewer 0.832***
(0.174)

Constant 0.402
(1.296)

Observations 1,085

*** p < 0.01, ** p < 0.05, * p < 0.1
Note: Other variables included in the regression are dummies for the marital status of
the owner, being the household head, province, neighborhood and type of building.
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