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Abstract

National statistical offices (NSIs) routinely publish aggregated data in the form of
statistical tables. However, ensuring data privacy is a critical aspect of this process.
Anonymization techniques must be applied to these tables to safeguard the privacy of
individual data contributors and prevent unauthorized inference about specific units from
the published outputs as often required by law. The R package cellKey offers a pos-
sible solution to this challenge by implementing a post-tabular perturbation method for
statistical tables. This method modifies table cell values after aggregation, ensuring that
sensitive information is adequately masked. It is versatile, suitable for both frequency ta-
bles and magnitude tables. A key feature of the cellKey package is its ability to maintain
consistency across multiple tables that share identical cells. This ensures that anonymized
outputs across different tables remains coherent while still protecting privacy. This ap-
proach makes the method especially useful for scenarios involving complex datasets with
interrelated tables.

This paper describes the methodological background of the perturbation method for
tabular data focusing on differences between frequency and magnitude tables. It also
provides a step-by-step guide on applying it using the presented R package in a practical
example. Additionally, we evaluate the impact of the perturbation on data utility and
privacy protection, offering insights into its effectiveness. The cellKey package is user-
friendly and can empower NSIs and other data holders to publish statistical outputs
that uphold both data utility and privacy, meeting the growing demands for secure and
accessible data dissemination.

Keywords: statistical tables, data privacy, anonymization, post-tabular perturbation, data
consistency, R.

1. Introduction
Statistical Disclosure Control (SDC) is essential for NSIs to protect the confidentiality of
respondents while ensuring that published output remains useful. NSIs collect large amounts
of information from individuals and businesses, from which aggregated statistics are computed
and subsequently published. However, such aggregated results as statistical tables can create
disclosure risks if individual contributors can be identified or if specific information about
them can be inferred.
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This is a critical issue for NSIs, which must ensure that published data remain both useful and
confidential. Without proper protection, sensitive information about individuals or businesses
could be exposed, violating privacy regulations and potentially leading to a loss of trust in
official statistics.
Statistical tables can generally be divided into two types:
Frequency tables show the number of individuals or entities that fall into specific categories of
one or more variables in a data set. However, frequency tables can pose privacy risks if some
categories contain very few contributors, as this can make it easier to identify individuals.
Magnitude tables summarize numerical values such as income or turnover for different groups.
These tables also require protection because a small number of dominant contributors in a
category could make it possible to infer sensitive information about specific units contributing
to the table.
By applying SDC techniques such as cell suppression (Fischetti and Salazar-González 2001)
or perturbation, NSIs reduce the chances of identifying individual respondents while preserv-
ing the quality of statistical outputs. For an overview of disclosure risks for frequency and
magnitude tables, see, e.g., Minami and Abe (2019).
This contribution introduces the R (R Core Team 2011) package cellKey (Meindl 2023a)
which can be used to apply the Cell Key Method (CKM) (Leaver and Marley 2011; Thompson,
Broadfoot, and Elazar 2013; Meindl and Enderle 2019) to statistical tables. The main idea
of this post-tabular Statistical Disclosure Control (SDC) technique is to perturb table cells
with random noise in a consistent and reproducible way. This ensures that any given table
cell to which the same units contribute is always perturbed consistently.
The R package ptable (Enderle 2023) is used to define probabilities of random noise through
perturbation tables (ptables). Such ptables specify the likelihood of transitioning from an
initial value, often the original cell counts, to corresponding target values. While primarily
designed for integration with the cellKey package, ptables generated by package ptable can
also be utilized in other software tools, such as τ -Argus (Statistics Netherlands (CBS) 2006),
which also features an implementation of the Cell Key Method.
The package was initially developed within the framework of the Eurostat-funded project
"Open Source tools for perturbative confidentiality methods" (Eurostat 2019). This project
involved the practical implementation of the method into an open-source SDC tool that can
easily be used in real-world applications.
To simplify testing and development, separate packages were provided that implement the
method (cellKey) and the generation of the required perturbation tables (ptable) in R. As
suggested in Leaver and Marley (2011) and further enhanced in Giessing (2016), the ptable
package implements a maximum entropy approach to compute the transition probabilities
taking into account certain thresholds of the desired noise distribution. cellKey makes
use of these perturbation tables and allows to compute perturbed (weighted) frequency and
magnitude tables. It also allows for an easy way to specify complex hierarchies using the R
package sdcHierarchies (Meindl 2024) and proves to be quite fast.
The article is structured as follows. In section 2, the key ideas of the perturbation procedure
for both count (2.1) and magnitude tables (2.2) are introduced. In chapter 3, a practical
example is given on how the cellKey package can be used to consistently perturb a statistical
table. The article is finally concluded with a summary and discussion of the results in section
4 which also outlines possible areas of future work.

2. Methodological background
This section summarizes key differences between the approach used in the R package cellKey
facilitated perturbation parameters provided by the ptable package and original proposition
of the CKM (Leaver and Marley 2011; Thompson et al. 2013). The basic idea of the Cell Key
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Method is to provide "on-the-fly" protection of tables that can be dynamically generated, e.g.,
through web interfaces. This makes it for example difficult to protect such data using other
protection limitation techniques such as cell suppression, for which all possible tables need to
be known in advance.
The main advantage of this post-tabular anonymization technique is its ability to ensure
consistent perturbation across all table cells. The method operates on microdata, where
each record is assigned a unique, random record key (rkey) once. Whenever a table cell is
computed, the rkeys of the contributing units are aggregated to a cell key (ckey). This cell
key is then used to retrieve a perturbation value from a perturbation table (ptable), which is
subsequently added to the original (weighted) cell value. The result, the perturbed cell value,
is then returned as the result of the query. As identical cells, formed by the same contributing
records, always lead to the same cell keys, the method ensures that the same perturbation
value is consistently applied to those cells across dynamically generated tables.
A significant limitation of the CKM, and a key reason why NSIs are hesitant to adopt the
method in practice, is its non-additivity. Because cells are perturbed independently, linear
constraints, such as those ensuring consistency between marginal totals and the sums of their
contributing inner cells, are typically not preserved. As a result, the perturbed marginal
totals often differ from the sum of the perturbed values of the contributing inner cells.

2.1. Frequency table perturbation

One of the main differences between the original method and implementation the the cellKey
package refers to the generation of record keys. In this implementation, the record keys are
assumed to be derived from the standard uniform distribution with minimum 0 and maximum
1. The cell keys are then derived using the following formula:

ckeyi =
(

n∑
i=1

rkeyi

)
%% 1 (1)

The computation of a cell key for a specific cell i is performed by adding up the record keys of
the n contributing units to this cell and using the remainder (modulo operation) of a division
by 1 as the cell key. The modulo operation (%%) extracts the fractional part of the sum over
all randomly generated record keys.
Another simplification pertains to the format of the perturbation tables that are used from
package ptable. The tables feature a quite generic format. Table 1 shows the first few rows
of a possible perturbation table for frequency tables.

Table 1: Example of a possible perturbation table for a frequency table

i p v p_int_lb p_int_ub
0 1.0000000 0 0.0000000 1.0000000
1 0.5165283 -1 0.0000000 0.5165283
1 0.4508303 1 0.5165283 0.9673586
1 0.0322262 2 0.9673586 0.9995848
1 0.0004152 3 0.9995848 1.0000000
2 0.1666578 -2 0.0000000 0.1666578

Table 1 features the following information:

• "i": Identifies a block within which a specific perturbation value is located.

• "p": Represents the probability of selecting a particular perturbation value for the given
block "i".
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• "v": Specifies the perturbation value (noise) to be added to the original (weighted) cell
value.

• "p_int_lb": Indicates the lower bound of the cumulative probability interval, deter-
mined by the value of "p".

• "p_int_ub": Indicates the upper bound of the cumulative probability interval, deter-
mined by the value of "p".

The probability intervals defined by "p_int_lb" and "p_int_ub" are arranged in increasing
order based on the values in column "p". Since the probabilities in column "p" for each block
"i" must sum to 1, these intervals collectively span the entire probability range [0, 1] for each
block.
The look-up procedure for a specific unperturbed cell frequency f is then as follows:
The first step is to determine the perturbation block where min(f, max(i)) == i from Table 1
holds. Once the appropriate block is identified, the cell key calculated using Equation 1 is used
to locate the corresponding row within the block. This is done by finding the perturbation
interval, defined by "p_int_lb" and "p_int_ub", into which the cell key falls. Since all cell
keys, as derived from Equation 1, are constrained within the range [0, 1], they will always fall
within one of these intervals. Once a specific row has been identified, the value from column
"v" is added to the unperturbed count. The resulting perturbed value then can be published.
Examining the first few rows of the perturbation table in Table 1, we can observe that an
original cell value of 0 will never be perturbed. This is because there is only one row where
i = 0, and the corresponding probability interval [0, 1] covers the entire range. As a result, any
cell with an unperturbed frequency of 0 will always have a perturbation value of 0 (column
"v") and remain unchanged. This behavior is often desirable for NSIs, as cells with counts of
0 can represent structural zeros, values that must remain 0 and should not be perturbed to
values ̸= 0.
For a cell with an original value of 1, the following possible perturbation outcomes exist:

• Case 1: v = −1 with a probability p ∼ 51.65%

• Case 2: v = 1 with a probability p ∼ 45.08%

• Case 3: v = 2 with a probability p ∼ 3.22%

• Case 4: v = 3 with a probability p ∼ 0.04%

These cases result in perturbed cell values of 0, 2, 3 and 4 for Cases 1, 2, 3 and 4, respectively.

2.2. Magnitude table perturbation
The cellKey package also allows for the perturbation of magnitude tables. Cells in such tables
represent quantities or totals rather than counts. The general idea for the CKM (Leaver and
Marley 2011) was to derive perturbed (weighted) cell value pY based on the following formula

pY = Y +
topk∑
i=1

f(yi) · mi · di · v (2)

where Y = ∑n
i=1 yi · wi is the weighted, unperturbed cell value consisting of values yi of

observation i with corresponding weights wi. The second term in Equation 2 is the total
amount of perturbation that should be added to cell i based on the topk largest contributors
to the cell. In the implementation it is assumed that the contributions yi can be ordered
by absolute descending values. According to Equation 2, the noise term is computed by
adding topk separate noise components where each of these components consists of three
multiplicative components:
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• f(yi): A component that is dependent on the data.

• mi: Fixed factors defined by the user.

• di · v: Random components, where di specifies the direction, and vi determines the
magnitude of the intended perturbation.

It is important to note that suggesting specific values for parameters mi is not practical,
as these values must be considered together with the corresponding perturbation values (vi)
derived from a specific perturbation table. As seen in Equation 2, mi acts as a multiplication
factor, meaning that higher values result in greater noise being added to the original cell
value.
Instead of only using the topk largest contributors when computing the noise term for cell i,
the idea was expanded upon and generalized (Eurostat 2019). In cellKey it is therefore also
possible to use the following alternatives to the contributions of the largest topk contributors
in deriving the noise term:
The desired variant can be set with argument type in function ck_params_nums() which is
shown in 3.2.2 in more detail. The following choices are possible.

• "top_contr": The default variant where the contributions of the topk largest units values
the cell are used.

• "mean": The arithmetic (weighted) mean over all cell values is used.

• "range": The range of values is used.

• "sum": The original, weighted cell value itself is used.

If any option other than "top_contr" is selected, topk is automatically set to 1.
Furthermore, the fixed factors mi can also be made dependent on actual cell values xi = f(yi),
leading to the development of the so-called flex approach, which is also available in the cellKey
package. In this approach, users specify a flexpoint (fp) and two percentage values (σ0 and
σ1) representing the desired magnitudes for large and small cell values, respectively. The flex
function shown in Equation 3 is constructed so that for large values of xi => fp exceeding the
flexpoint fp, the output approaches σ0. For xi that are smaller or equal the chosen flexpoint,
σ1 is used as perturbation magnitude.

mi(xi) =

σ0 ·
(
1 + σ1·xi−σ0·fp

σ0·fp ·
(

2·fp
fp+xi

)q)
∀xi > fp

σ1 ∀xi ≤ fp
(3)

There are also adjustments to the third noise-component from Equation 2 in a way that the
implementation allows to add a random component di · µc + |vi| that depends on cell keys.
µc > 0 can be considered as fixed, additional noise that is added to specific cells.
In typical applications it can be useful to specify this parameter to allow extra protection to
be applied to sensitive cells that could be identified according to some rules. The idea would
be to define µc > 0 for all identified sensitive cells. In the current application, the amount is
added to the largest cell-contributor for each sensitive cell with a direction di derived from
sign(vi) from the perturbation value vi. This value vi is obtained through a lookup operation
on a predefined perturbation table.
The ck_params_nums() function includes additional parameters that enhance flexibility in
the computation of cell keys. The argument use_zero_rkeys allows users to specify whether
record keys of units that do not contribute to a cell in a specific magnitude table should
be included or ignored when calculating cell keys. Additionally, the argument ptab enables
users to define multiple perturbation parameters. These parameters can be configured to
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apply different perturbation rules based on the characteristics of the cells, such as whether
the number of contributing units is even or odd, or if the cell only contains a small number
of contributing units.
When defining perturbation tables for magnitude tables, using the same format as for fre-
quency tables is difficult. This is because it is virtually impossible to create blocks for every
possible cell value, given the continuous nature of the data in magnitude tables. To address
this challenge, a more feasible approach involves computing convex combinations of two dif-
ferent look-up results. This method which is implemented in cellKey* allows for greater
flexibility and avoids the need for an exhaustive set of blocks in the ptables for continuous
variables.

Table 2: Example of a possible perturbation table for a magnitude table

i j p v p_int_lb p_int_ub
0 0 1.0000000 0 0.0000000 1.0000000
1 0 0.3725250 -1 0.0000000 0.3725250
1 1 0.3725250 0 0.3725250 0.7450499
1 2 0.1662882 1 0.7450499 0.9113381
1 3 0.0650915 2 0.9113381 0.9764296
1 4 0.0188726 3 0.9764296 0.9953022
1 5 0.0040531 4 0.9953022 0.9993553
1 6 0.0006447 5 0.9993553 1.0000000
5 0 0.0000026 -5 0.0000000 0.0000026
5 1 0.0001912 -4 0.0000026 0.0001938
5 2 0.0053586 -3 0.0001938 0.0055524
5 3 0.0579547 -2 0.0055524 0.0635071
5 4 0.2418291 -1 0.0635071 0.3053362
5 5 0.3893276 0 0.3053362 0.6946638
5 6 0.2418291 1 0.6946638 0.9364929
5 7 0.0579547 2 0.9364929 0.9944476
5 8 0.0053586 3 0.9944476 0.9998062
5 9 0.0001912 4 0.9998062 0.9999974
5 10 0.0000026 5 0.9999974 1.0000000

An example perturbation table for continuous data is shown in Table 2. One can see that
this very simple perturbation table features three distinct blocks i with its values being 0, 1,
and 5. The lookup-procedure given for an unperturbed, (weighted) cell value x with cell key
ck and its largest contribution defined as yi is now as described.
Let a = y1

x be a function of the largest contribution and the total cell value. a is then used
to derive a perturbation parameter from Table 2. The following cases are possible:

• a == i: There is an exact match with a block number which can be used to look for a
perturbation value

• a > max(i): A perturbation value needs to be found in the block where i == max(i)
holds.

• 0 < a < max(i): In this case, a linear combination of two perturbation values is used
to derive a perturbation value.

The first two cases can easily be resolved and the look-up procedure works just as in the cast
for count variables. The cell key (ck) is used to find the matching cumulative perturbation
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interval defined by variable "p_int_lb" and "p_int_ub" for block a == i (first case) or
a == max(i) in the second case. The third case is a bit more difficult. The main idea is
to compute a weighted combination of two different perturbation values as it will now be
discussed in an example. We assume that for a specific cell a equals 3.2 and the cell key
equals 0.35. We can compute a perturbation value v using the following steps:

• Let a0 represent the largest value of i less than a, resulting a0 = 1.

• Let a1 represent the smallest value of i larger than a, resulting a1 = 5.

• Using the values a0 and a1 along with the known cell key (ck = 0.35) from Table 2,
determine two different perturbation values, v0 and v1. These are given by v0 = −1 and
v1 = 0.

• Calculate a weighted average for the final perturbation value using the formula

v = (1 − λ) · v0 + λ · v1

where λ = a−a0
a1−a0

. In this example, λ = 0.55 resulting in a final perturbation value of v
= −0.45.

Unlike the perturbation table for frequency variables, the column i in a perturbation table
for continuous variables is not restricted to integers and can also include real numbers which
makes customization even more granular. The implementation in the cellKey package also
leverages this structure to allow further generalizations, such as supporting different pertur-
bation tables for even and odd numbers.

3. A practical guide to using cellKey
This chapter will demonstrate the usage of the cellKey package. It will provide a step-by-step
guide for producing perturbed frequency and magnitude tables.

3.1. Setting up a problem instance
To install the cellKey package from the Comprehensive R Archive Network (CRAN), one
can use the command from Listing 1 in your R console:

1 install . packages (" cellKey ")

Listing 1: Install the latest version of the cellKey package

This command downloads and installs the latest version of the package. Once the installation
is complete, you can load the package into your R session and check the version as shown in
Listing 2:

1 library ( cellKey )
2 packageVersion (" cellKey ")

Listing 2: Load package and verify package version

## [1] '1.0.2'

The initial step in this approach involves generating a statistical table using the ck_setup()
function. This function creates an object that encompasses all necessary information for
perturbing count (and optionally continuously scaled) variables.
Prior to using ck_setup(), several inputs must be prepared. These inputs include:
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• x: A data.frame or data.table containing the micro-data.

• rkey: Specifies how to define record keys.

– If a number is provided, unique record keys are generated internally by sampling
from a uniform distribution and rounding the results to the specified number of
digits.

– If a character string is provided, it is interpreted as the name of a variable within
x that already contains record keys.

• dims: A named list where each element represents a hierarchical structure created using
functions from the sdcHierarchies package. Each name in the list corresponds to a
variable in the x dataset.

• w: Specifies the name of a variable in x that contains weights, or NULL if no weights are
present.

• countvars: An optional character vector specifying the names of variables in x that hold
count values. A special count variable, named "total" is generated internally, assigning
a value of 1 for each row in x.

• numvars: An optional character vector specifying the names of variables in x that hold
numerical values and can be subsequently perturbed.

The subsequent steps will demonstrate how to generate these required inputs. The first step
involves preparing the input data.

Preparing input data

The test data used in this example contains individual-level information, including sampling
weights, categorical variables, and continuously scaled variables. Listing 3 shows the relevant
code where also a binary variable ("cnt_highincome") is computed for which a perturbed
table will also be computed in section 3.

1 dat <- ck_ create _ testdata ()
2 dat <- dat[, c("sex", "age", " savings ", " income ", " sampling _ weight ")]
3 dat[, cnt_ highincome := ifelse ( income >= 9000 , 1, 0)]

Listing 3: Load test data

Setting up record keys and dimensions

If no suitable record keys exist, they can be added to the dataset using function ck_generate_rkeys(),
with each record key having 7 digits. These record keys will later be referenced in the
ck_setup() function. The process is demonstrated in Listing 4.

1 # Generate record keys with 7 digits and add them to the dataset
2 dat$ rkeys <- ck_ generate _ rkeys (
3 dat = dat ,
4 nr_ digits = 7
5 )
6 print (head(dat))

Listing 4: Sample record keys
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To guarantee that the same record keys are generated consistently for the same input, the
ck_generate_rkeys() function computes a seed by default based on the SHA-1 hash (Eastlake
and Jones 2001) of the input dataset. This seed is computed prior to sampling the record
keys, ensuring reproducibility of the generated keys across runs. By default, this feature
is enabled and ensures deterministic behavior, while the optional seed argument allows for
greater flexibility when required. The first rows of the resulting table data input is shown in
Table 3. We note that each record key is bounded in [0, 1].

Table 3: Example micro-data including record keys

sex age savings income sampling_weight cnt_highincome rkeys
male age_group3 12 5780 87 0 0.8232870
female age_group3 28 2530 58 0 0.4815691
male age_group1 550 6920 20 0 0.5541220
male age_group1 870 7960 53 0 0.3970927
male age_group4 20 9030 62 1 0.0457354
female age_group3 102 3290 33 0 0.0822132

The goal of the following example is to create perturbed tables for a) the counts of "sex" by
"age" for all observations and for subgroups where "cnt_highincome" is non-zero, and b) for
the continuously scaled variables "savings" and "income", both by the hierarchical structure
defined by variables "sex" and "age".
Hierarchies must be defined for each classifying variable in the desired statistical table. Two
methods are available for specifying the hierarchical structure of these variables (including
subtotals).
The first method uses the @ value format, similar to the approach used in the sdcTable
package (Meindl 2023b). However, the recommended method takes advantage of the sd-
cHierarchies (Meindl 2024) package, which enables the dynamic creation and modification
of hierarchy objects. In this example, this method is used to define the hierarchies for the
variables "age" and "sex" which is shown in Listings 5.

1 dim_sex <- sdcHierarchies :: hier_ create (
2 root = " Total ",
3 nodes = c("male", " female ")
4 )
5

6 dim_age <- sdcHierarchies :: hier_ create (
7 root = " Total ",
8 nodes = paste0 ("age_ group ", 1:6)
9 )

Listing 5: Define hierarchies for variables "sex" and "age"

Both hierarchies are "hierarchical" because they include a total value that can be derived from
other values within the hierarchy. For the variable "sex", the total code "Total" is calculated
by summing the contributions of the nodes "male" and "female".
The sdcHierarchies package provides a framework for creating and managing complex hi-
erarchical structures. The hier_create() function is used to create a tree object repre-
senting the desired hierarchy. This tree object can then be modified using functions such
as hier_add() to add elements, hier_delete() to remove elements, and hier_rename() to
rename elements within the hierarchy.
The package includes a vignette, accessible through sdcHierarchies::hier_vignette(),
which provides examples and demonstrates the usage of these functions. Additionally, the
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interactive hier_app() allows users to modify and visualize hierarchies and convert between
different data formats.
Once all dimensions have been defined, these inputs must be combined into a named list. In
this list, the names correspond to the variable names in the input dataset, and the elements
contain the respective hierarchy specifications created in Listing 5 from above. Therefore, in
this example, the list elements of dims must be named "sex" and "age" since the specifications
refer to the "age" and "sex" variables within the input dataset. The relevant code is shown
in Listing 6.

1 dims <- list(sex = dim_sex , age = dim_age)

Listing 6: Create a named input-list with all relevant dimensional variables

Setup a table

Having prepared the necessary inputs, we can now define a generic statistical table using the
ck_setup() function as shown in Listing 7:

1 tab <- ck_ setup (
2 x = dat ,
3 rkey = " rkeys ",
4 dims = dims ,
5 w = " sampling _ weight ",
6 countvars = "cnt_ highincome ",
7 numvars = c(" income ", " savings ")
8 )

Listing 7: Setting up a table object

The ck_setup() function returns an R6 (Chang et al. 2024) class object. This object encap-
sulates both the relevant data and all available methods, enabling a streamlined workflow.
Method calls directly modify the object itself, eliminating the need for explicit reassignment.
Furthermore, these objects incorporate different methods to obtain current information about
the object. For example, it is possible using $hierarchy_info() to get information about
the dimensional variables spanning the table as demonstrated in Listing 8

1 tab$ hierarchy _info ()

Listing 8: Display information about dimensional variables

## $sex
## code level is_leaf parent
## <char> <int> <lgcl> <char>
## 1: Total 1 FALSE Total
## 2: male 2 TRUE Total
## 3: female 2 TRUE Total
##
## $age
## code level is_leaf parent
## <char> <int> <lgcl> <char>
## 1: Total 1 FALSE Total
## 2: age_group1 2 TRUE Total
## 3: age_group2 2 TRUE Total
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## 4: age_group3 2 TRUE Total
## 5: age_group4 2 TRUE Total
## 6: age_group5 2 TRUE Total
## 7: age_group6 2 TRUE Total

or by utilizing methods $cntvars() or $numvars() to show, which variables are available
and can be tabulated and/or perturbed. Method $allvars() shows both count- and numeric
variables as shown in Listing 9:

1 tab$ hierarchy _info ()

Listing 9: Extracting available count- and numeric variables from a table instance

## $cntvars
## [1] "total" "cnt_highincome"
##
## $numvars
## [1] "income" "savings"

As shown in the output, a count variable named "total" covering the complete table is auto-
matically generated and does not need to be explicitly specified. A custom print method for
displaying general object information is also implemented as shown in Listing 10. The output
also indicates variables that already have been perturbed which in this case has not yet been
done.

1 tab$ hierarchy _info ()

Listing 10: Display information about the table instance using a custom print method

## -- Table Information ------------------------------------------
## 21 cells in 2 dimensions ('sex', 'age')
## weights: yes
## -- Tabulated / Perturbed countvars ----------------------------
## [ ] 'total'
## [ ] 'cnt_highincome'
## -- Tabulated / Perturbed numvars ------------------------------
## [ ] 'income'
## [ ] 'savings'

3.2. Configuring perturbation parameters
After generating a table instance, the next step is to create perturbation parameters and map
those to existing variables in the table object.

Perturbation parameters for count variables
The next step involves defining the parameters used to perturb count variables. This is
achieved using the ck_params_cnts() function. This function requires as input the result of
create_cnt_ptable() from the ptable package. For detailed information on the required
parameters, please refer to the ptable package documentation.
The next example will feature two different ptables. One will use an exemplary ptable directly
provided by the ptable package using pt_ex_cnts(), while the other will be created by
explicitly specifying parameters in function create_cnt_ptable(). The required code is
shown in Listing 11.
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1 # Create perturbation parameters suitable for count variables
2 # using an example table from the ptables package
3 p_ cnts1 <- ptable :: pt_ex_cnts () |>
4 ck_ params _cnts ()
5

6 # and with customized parameters
7 p_ cnts2 <- ptable :: create _cnt_ ptable (
8 D = 8, V = 3, js = 2, pstay = 0.5
9 ) |> ck_ params _cnts ()

Listing 11: Creating two different perturbation objects suitable for count data

In the above code, we computed two different ptables and also modified the structure using
ck_params_cnts(). This modification allows the code to use the resulting objects, p_cnts1
and p_cnts2, in subsequent steps. Using params_cnts_set(), we have the possibility to map
a set of perturbation parameters (like p_cnts1 or p_cnts2) to specific count variables defined
with the v argument. If v is not specified, the perturbation parameter set applies to all count
variables.
The following code snippets shows how perturbation parameters p_cnts1 can be mapped to
variable "total" (Listing 12) which always exists

1 tab$ params _cnts_set(
2 val = p_cnts1 ,
3 v = " total "
4 )

Listing 12: Map perturbation object to count variable "total"

and to p_cnts2 for variable "cnt_highincome" (Listing 13).

1 tab$ params _cnts_set(
2 val = p_cnts2 ,
3 v = "cnt_ highincome "
4 )

Listing 13: Map perturbation object to count variable "cnt_highincome"

It should be noted that the output of both methods will indicate if the mapping process was
successful. This output was omitted from this article to improve readability.
This implementation allows for the flexibility to use different parameter sets for different count
variables. Modifying perturbation parameters for specific variables is also straightforward.
Simply re-apply the params_cnts_set() method, and it will overwrite any previously defined
parameters for specified variables in the table.

Perturbation parameters for continuous variables

The ck_params_num() function is used to create input objects for defining perturbation pa-
rameters for continuous variables. These input objects are then mapped to continuous vari-
ables in a specific table object using the params_nums_set() method. As already discussed
in 2.2, the package implements a quite broad range of possibilities on how to define the un-
derlying perturbation parameters for continuously scaled variables which can be specified in
ck_params_nums() using argument type. Detailed information about these options is avail-
able on the corresponding manual page, which can be accessed by entering ?ck_params_nums
in the R console.
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It should be noted that both ck_params_nums() and ck_params_cnts() functions provide
a path argument. This allows users to save the defined parameters as a YAML file which can
be imported again using the ck_read_yaml() function. This feature of saving and reusing
parameter settings enhances efficiency and reproducibility in the analysis.
To utilize the dynamic multiplier generalization (refer to Equation 3 for details), the out-
put of utility functions ck_flexparams() or ck_simpleparams() must be passed to the
mult_params argument in the ck_params_nums() function. The argument mu_c is used to
specify an additional fixed amount of perturbation to be applied to sensitive cells. Meanwhile,
the arguments top_k and type together define the data-dependent components on which the
perturbation values should be calculated. Finally, the ptab argument allows the specification
of one or more perturbation tables. These tables can be applied selectively to all cells, even
or odd cells, or small cells. This functionality integrates with the ptable package, which pro-
vides the ptable::create_num_ptable() function for generating appropriate perturbation
tables as inputs. For further information of parameters of this function, please refer to the
corresponding manual.
In this example, the objective is to create a single perturbation object that can be used for
both numerical variables requiring perturbation. However, this object should incorporate
different perturbation tables to handle cells with an odd and even number of contributors.
Additionally, the flex-approach will be utilized, allowing different magnitudes of noise to be
applied to large and small cells.
The first step is to define two distinct perturbation tables, one for odd and one for even num-
bers of contributors. This can be accomplished using the ptable::create_nums_ptable()
function, which generates appropriate perturbation tables that can then be used as an input
in ck_params_nums(). The required code is shown in Listing 14 below.

1 ptable _even <- ptable :: create _nums_ ptable (
2 D = 5,
3 V = 1.1 ,
4 icat = c(1, 3, 5)
5 )
6

7 ptable _odd <- ptable :: create _nums_ ptable (
8 D = 10,
9 V = 2,

10 icat = c(1, 5, 10)
11 )

Listing 14: Define different perturbation tables suitable for numerical variables

The next step is to define the parameters for the flex function. In this example, the flexpoint
fp is set to 1000, which determines the point where the noise coefficient function reaches its
maximum value. The parameter p is a numeric vector of length 2, with the condition that
p[1] is greater than p[2]. Both elements represent percentages: the first value specifies the
desired maximum perturbation percentage for small cells, based on the flexpoint, while the
second value specifies the maximum perturbation percentage for large cells. The parameter
epsilon is a numeric vector with values between 0 and 1 in descending order, with the first
element fixed at 1. Its length must match the number of contributors specified in the top_k
argument of ck_params_nums(), which will be explained later. This configuration enables
the use of different flex functions for the largest top_k contributors. Finally, the parameter
q corresponds to a value used in Equation 3. The relevant code is displayed in Listing 15.

1 # Setup parameters for the flex function to be used
2 p_flex <- ck_ flexparams (
3 fp = 1000 ,
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4 p = c(0.3 , 0.03) ,
5 epsilon = c(1, 0.5 , 0.2) ,
6 q = 2
7 )

Listing 15: Setup parameters for the "flex-approach"

Note that instead of using ck_flexparams(), a more basic approach is implemented in
ck_simpleparams() which simplifies parameter specification by requiring only a single per-
centage value (p) and a vector of epsilons (when top_k is greater than 1 and applies a
constant perturbation magnitude to all cells, independent on their (weighted) values.
Once these prerequisites have been done, it is possible to finally use ck_params_nums() to
create a suitable perturbation object as it is shown in Listing 16:

1 p_nums <- ck_ params _nums(
2 type = "top_ contr ",
3 top_k = 3,
4 ptab = list("even" = ptable _even , "odd" = ptable _odd),
5 mult_ params = p_flex ,
6 mu_c = 2
7 )

Listing 16: Creating a perturbation object suitable for numeric variables

In the application of ck_params_nums(), the argument mu_c was set to 2, indicating that an
additional amount of perturbation is applied to sensitive cells, which will be identified later
in the example. Additionally, by specifying the ptab argument as a named list with names
corresponding to "even" and "odd", it is possible to use different perturbation tables for cells
with an even or odd number of contributors, achieving the desired level of customization.
Once the perturbation object has been created, it can be applied to the appropriate variables
by mapping it accordingly using method $params_nums_set() as demonstrated in Listing 17.

1 tab$ params _nums_set(
2 v = c(" income ", " savings "),
3 val = p_nums
4 )

Listing 17: Map perturbation object to numeric variables "income" and "savings"

In this example, the same parameters are used for both numerical variables. However, it is
also possible, just as with count variables, to assign different parameters to different variables.
This is particularly useful when distinguishing between strictly positive variables (such as
"savings" and "income" in this example) and variables that may include negative values.
It is also possible to change perturbation parameter for specific numeric variables just as
demonstrated for count variables before by calling the $params_nums_set() method again
and providing a different parameter object.
In order to make use of parameter mu_c that allows ab add extra amount of protection to
sensitive cells, one may identify sensitive cells according to some rules. The following methods
to identify sensitive cells are implemented in package cellKey:

• $supp_p(): Identifies sensitive cells based on the p%-rule, where a cell is considered
sensitive if the cell total minus the two largest contributions is smaller than p % of the
largest contribution. Typical values of pp that achieve a balance between data utility
and confidentiality generally fall within the 15% to 30% range.
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• $supp_nk(): Identifies sensitive cells based on nk-dominance, where a cell is sensitive
if the sum of the n largest values is greater than k% of the cell total. Commonly used
values for k in this rule generally range between 60% and 85%.

• $supp_freq(): Identifies sensitive cells by checking whether the (weighted) number of
contributors in the cell is below a specified minimum frequency.

• $supp_val(): Identifies sensitive cells where the (weighted) cell value exceeds or falls
below a specified threshold.

• $supp_cells(): Identifies sensitive cells based on their specific names, allowing targeted
suppression of predefined cells.

These methods provide flexible options for detecting sensitive cells based on various statistical
disclosure control rules.
In this example we now want to set all cells for variable "income" as sensitive to which less
than 15 units contribute which can be achieved using $supp_freq() as shown in Listing 18.

1 tab$supp_freq(
2 v = " income ",
3 n = 15,
4 weighted = FALSE
5 )

Listing 18: Identify sensitive cells according to threshold-rule

The output of the method (again omitted from the article for better readability) shows the
number of cells identified and marked as sensitive, which in this case refers to 3 cells.

3.3. Generating perturbed outputs

You can perturb variables mapped to appropriate parameter sets using the $perturb()
method. This functionality allows for the simultaneous perturbation of multiple variables.
In this example (see Listing 19), both available count variables are perturbed concurrently to
demonstrate this feature.

1 tab$ perturb (
2 v = c(" total ", "cnt_ highincome ")
3 )

Listing 19: Perturb count variables "total" and "cnt_highincome"

The $perturb() method also prints information about the perturbed variables to the R
terminal, which is omitted from this article. After this call, the object tab is updated to
include perturbed values for the variable "total". It is important to note that no explicit
assignment is needed, as the update is applied directly to the object. The results can then be
extracted using the $freqtab() method (see Listing 20) which returns the results displayed
in Table 4.

1 tab$ freqtab (v = " total ")

Listing 20: Extracting original and perturbed values for variable "total"
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Table 4: Results of perturbing count variable "total"

sex age vname uwc wc puwc pwc
Total Total total 4580 275874 4580 275874.0000
Total age_group1 total 1969 118309 1970 118369.0858
Total age_group2 total 1143 69498 1144 69558.8031
Total age_group3 total 864 51866 864 51866.0000
Total age_group4 total 423 25135 423 25135.0000
Total age_group5 total 168 10301 169 10362.3155
Total age_group6 total 13 765 14 823.8462
male Total total 2296 137743 2296 137743.0000
male age_group1 total 1015 60335 1015 60335.0000
male age_group2 total 571 34449 570 34388.6690
male age_group3 total 424 25704 424 25704.0000
male age_group4 total 195 11696 196 11755.9795
male age_group5 total 84 5144 84 5144.0000
male age_group6 total 7 415 5 296.4286
female Total total 2284 138131 2285 138191.4777
female age_group1 total 954 57974 954 57974.0000
female age_group2 total 572 35049 573 35110.2745
female age_group3 total 440 26162 439 26102.5409
female age_group4 total 228 13439 228 13439.0000
female age_group5 total 84 5157 82 5034.2143
female age_group6 total 6 350 7 408.3333

The $freqtab() method returns a data.table (Barrett, Dowle et al. 2024) containing de-
tailed information for each cell, defined by the dimensional variables (e.g., "age" and "sex"),
and for each perturbed variable (column "vname"). The table includes the following columns:

• "uwc": Unperturbed unweighted counts

• "wc": Unperturbed weighted counts

• "puwc": Perturbed unweighted counts

• "pwc": Perturbed weighted counts

It can be observed from Table 4 that the impact of the perturbation is minimal, but it still
introduces non-additivity. If greater distortion is required, the existing perturbation results
must first be reset. This can be accomplished using the $reset_cntvars() method for count
variables or the $reset_numvars() method for numeric variables. After resetting, a new
perturbation parameter object must be created, mapped to the variable, and the $perturb()
method re-applied. This possibly iterative process allows for adjustments to the perturbation
parameters to achieve the desired level of noise.
To add noise to continuous variables, the $perturb() method needs to be used as well,
specifying the variables to be perturbed as shown in Listing 21.

1 tab$ perturb (
2 v = c(" income ", " savings ")
3 )

Listing 21: Perturb count variables
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After this step, the results can be extracted, as shown in Listing 22, using the $numtab()
method. In Table 5, the output for the variable "savings" is presented.

1 tab$ numtab (
2 v = " savings "
3 )

Listing 22: Extracting original and perturbed values for variable "savings"

Table 5: Results of perturbing numeric variable "savings"

sex age vname uws ws pws
Total Total savings 2273532 137309328 137308234.1
Total age_group1 savings 982386 59350762 59347303.4
Total age_group2 savings 552336 33405236 33410476.6
Total age_group3 savings 437101 26318762 26318146.7
Total age_group4 savings 214661 12843203 12837435.1
Total age_group5 savings 80451 4984343 4987596.1
Total age_group6 savings 6597 407022 412304.2
male Total savings 1159816 69435588 69435588.0
male age_group1 savings 517660 30818165 30815833.3
male age_group2 savings 280923 16810501 16806397.9
male age_group3 savings 214970 13006252 13003331.2
male age_group4 savings 99420 5922654 5926643.2
male age_group5 savings 43233 2660516 2662494.9
male age_group6 savings 3610 217500 212688.1
female Total savings 1113716 67873740 67872512.5
female age_group1 savings 464726 28532597 28532968.0
female age_group2 savings 271413 16594735 16592702.4
female age_group3 savings 222131 13312510 13313258.4
female age_group4 savings 115241 6920549 6923327.2
female age_group5 savings 37218 2323827 2314098.9
female age_group6 savings 2987 189522 192895.3

The $numtab() method also returns a data.table containing detailed information for each
cell in the table defined by the dimensional variables. The table includes the following
columns:

• "vname": Identifies the continuous variable.

• "uws": The unperturbed unweighted values.

• "ws": The unperturbed weighted values.

• "pws": The perturbed weighted values.

The $numtab()$ method also allows the use of the mean_before_sum argument. If set to TRUE,
the perturbed values are adjusted using the factor n

n+p , where n is the original weighted cell
value and p the perturbed cell value. This adjustment prioritizes the accuracy of the variable
mean over the accuracy of the variable sums. By default, this argument is set to FALSE,
meaning no adjustment is applied.
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It should also be noted that both the $freqtab() and the $numtab() method include a
path argument that allows users to save the resulting tables directly to a .csv file. This
functionality is particularly useful for exporting perturbed frequency and numeric tables for
further analysis or for sharing results with collaborators in a widely compatible format.

3.4. Assessing data utility

For count variables, the $measures_cnt() method can be used to calculate a variety of utility
statistics that evaluate the impact of the perturbation. These statistics provide insights into
how the perturbation has affected the data. $measures_cnt() returns a list containing various
measures. These measures are explained in detail in the package documentation, which can
be accessed using ?cellkey_pkg. One of the key elements in the returned list is "overview",
which provides a data.table summarizing the distribution of the noise applied during the
perturbation process. An example of this output is shown in Table 6. The relevant code is
shown in Listing 23.

1 tab$ measures _cnts(v = " total ")$ overview

Listing 23: Extracting Utility Measures for perturbed variable "total"

Table 6: Overview on perturbation impact on variable ‘total‘

noise cnt pct
-1 8 0.3809524
0 9 0.4285714
1 2 0.0952381
2 2 0.0952381

Table 6 illustrates the impact of perturbation by showing how the noise distribution can
be analyzed to evaluate its effects. The overview element provides a data.table with the
following columns:

• "noise": The amount of noise, calculated as the difference between the original value
(orig) and the perturbed value (pert).

• "cnt": The number of cells that were perturbed by the noise value specified in the noise
column.

• "pct": The percentage of cells perturbed by the noise value given in the noise column.

This table allows for a clear assessment of the perturbation’s impact by summarizing the
distribution and prevalence of the applied noise. For numerical variables, currently no quality
measures are implemented which is a topic of future development.

4. Results and discussion
The cellKey package contains a robust and flexible approach to statistical disclosure control
by implementing a post-tabular perturbation algorithm. The methodology ensures a consis-
tent application of noise across tables, preserving coherence while anonymizing data. This is
particularly advantageous for NSIs managing interconnected, linked datasets.
The Cell Key Method is especially effective in situations where the statistical tables required
to be published are highly detailed or have to be dynamically generated, making traditional
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methods like cell suppression impractical. Modern data dissemination often involves tables
generated on demand, where users customize queries to suit their needs. In such cases, it is
impossible to predict all potential table configurations in advance, which is a requirement for
cell suppression to identify sensitive cells and maintain consistency. The CKM addresses this
challenge by perturbing table cells dynamically and consistently utilizing only the record keys
from the underlying micro-data set. This process ensures that identical cells across different
and possibly linked tables receive the same perturbation values as the contributing record
keys remain the same.
For highly detailed, high-dimensional statistical tables, the method also provides fast solu-
tions. As the number of cells increases, traditional suppression-based methods become more
complex and may require significant manual intervention to produce acceptable results.
Another possibility is that the table’s complex structure requires extensive suppression to
protect contributing units, leading to significant data loss. As a result, the data’s utility may
be so reduced that publication becomes unfeasible.
The CKM addresses this issue by perturbing each cell independently while preserving coher-
ence across shared cells, even in high-dimensional tables. This approach also maintains high
data utility by adding noise rather than removing cells entirely, preventing the large data
loss that is often associated with cell suppression. In addition, the CKM supports automa-
tion and scalability, making it suitable for large datasets and dynamic table builders where
queries do not need to be known in advance by the data holder. Its computational efficiency
enables seamless integration into automated workflows, providing a practical alternative to
traditional suppression methods.
The method is very flexible and can easily adapt to changing requirements, allowing adjust-
ments for new datasets or shifting priorities without having to reprocess numerous tables.
This flexibility is achieved by defining ptables that can be fine-tuned in detail. For example,
it is easily possible to create a perturbation table that prevents the appearance of small values
within a specified range in the perturbed, safe table.
This adaptability, combined with its ability to provide privacy while maintaining high data
utility, makes the CKM a practical and reliable choice for handling detailed or dynamic tables.
One major limitation of the CKM is its non-additive nature, which poses challenges for
its use in NSIs. The publication of non-additive results is often considered as a problem
because they may undermine the perceived reliability and trustworthiness of the published
data. Users, such as policymakers or researchers, typically expect statistical tables to maintain
strict additivity, where marginal totals match the sums of their corresponding inner cells.
When not-additive results are published however, concerns such as a perception of inaccuracy
or challenges to the further usage of data in other software tools can arise.
However, many users might prefer slightly non-additive results with high data utility to strictly
additive tables with low utility caused by extensive suppression. Consequently, it is crucial
for an NSI to clearly communicate how the CKM differs from suppression-based approaches,
that non-additivity is a feature of the perturbation process and not a problem per-se and to
highlight its distinct advantages. This would likely facilitate broader acceptance and practical
implementation of the CKM in statistical practice.
Future developments of the cellKey package could focus on implementing utility measures
for numerical variables, expanding documentation with additional case studies, and enhancing
compatibility with other statistical software tools. These enhancements would further improve
the package and make it an invaluable toolset allowing NSIs to protect outputs and fulfil
requirements regarding data privacy.
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