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Abstract

Environmental models typically rely on stationarity assumptions. However, environ-
mental systems are complex, and processes change over states or seasons, leading to
often overlooked heterogeneity. This paper explores methods to incorporate process het-
erogeneity into statistical models to improve their performance. It considers problems
from natural hazards and earth system sciences, demonstrating the effects of process het-
erogeneity and proposing methodological advances through model extensions. The first
problem addresses flood frequency analysis, where floods are generated by different pro-
cesses in catchment and atmosphere. A mixture model combining peak-over-threshold
distributions of flood types can handle this heterogeneity, especially regarding tail heav-
iness, making it relevant for flood design. The second problem involves minimum flow
frequency analysis, with heterogeneity from different summer and winter processes. A
mixture distribution model for minima and a copula-based estimator can incorporate
seasonal distributions and event dependence, showing significant performance gains for
extreme events. The third problem examines process heterogeneity in rainfall models.
Clustering event characteristics (e.g., duration, intensity) using Gower’s distance and a
lightning index helps distinguish between convective and stratiform events, showing po-
tential to enhance rainfall generators. The fourth problem deals with parameter variation
in temporal models of environmental variables, using daily streamflow series. A tree-based
machine learning model shows that prediction performance and model parameters vary
with quantile loss optimization, suggesting the need for different or combined models for
full time series in the presence of process heterogeneity. The study highlights the impor-
tance of considering process heterogeneity in modeling from the outset and encourages a
better understanding of statistical assumptions and the enrichment of physical knowledge
in environmental statistics.
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1. Introduction
Modeling environmental variables is a challenging task. Accurate models are needed in the
context of planning and engineering design, where values representing the magnitude of events
with specified probabilities or return periods are critical. Models are also needed to answer
questions about the temporal evolution of a variable and to make predictions, often for a
future point in time, including climate projections and forecasting. In addition, they need
to answer questions about the spatial distribution and make predictions at locations without
observations. To achieve these goals, a wide range of statistical models is employed. This
includes distribution models for frequency analysis of extreme events, time series models for
stochastic simulations (such as those used in rainfall generators), regression-type approaches
for modeling the temporal evolution or spatial patterns of environmental variables, and geo-
statistical models for similar problems.
The complexity of environmental systems complicates modeling efforts. Common approaches
assume that observations are homogeneous and independent. In statistics, homogeneity is
often interpreted as stationarity, implying that observations are realizations of a set of identi-
cally distributed random variables. The importance of stationarity has been widely discussed
in the context of global change, leading to controversial views. Some researchers argue that
“stationarity is dead”, meaning that past experience and data are less representative in a
changing climate (Milly et al. 2008), whereas others assert that “stationarity is immortal”
and remains crucial for achieving efficient solutions despite non-stationarity (Montanari and
Koutsoyiannis 2014). However, the original definition of homogeneity is broader. Gumbel
(1941) defines homogeneity as “subject to a common set of forces”, suggesting that both the
homogeneity of statistical properties and the generation processes are important. A common
problem in modeling environmental systems is that samples may consist of events resulting
from distinctly different processes. In such cases, models may need to be adapted to account
for process-heterogeneity.
This paper explores various concepts for incorporating process heterogeneity into statistical
models to improve their performance. It is motivated by specific problems from natural
hazards and earth system sciences, and demonstrates model extensions using mixture models,
copula-based estimators, clustering techniques, and machine learning approaches.
The first problem pertains to process heterogeneity in flood hydrology. An introduction to
the problem is provided by a discussion of how natural phenomena often violate the statistical
assumptions used in modeling. Different types of floods pose a particular challenge to fre-
quency analysis if they follow different distributions. The second section proposes a mixture
model that combines peak-over-threshold (POT) distributions of flood types into an overall
distribution to calculate annual return periods of events.
The second problem also concerns river flows but focuses on droughts. Here, the heterogeneity
relates to different generation processes of summer and winter events, which are easier to
separate. However, the independence assumption may be violated. The proposed methods
transfer mixture distribution approaches originally defined for maxima to annual minimum
series, and a copula-based method is proposed to incorporate dependence of series.
The third problem relates to meteorology and discusses the role of process heterogeneity
in rainfall models. We propose clustering based on multiple event characteristics (such as
duration and severity) to separate rainfall series into types of events. The resulting classes
of rainfall are compared regarding to their event characteristics for plausibility. Finally,
we compare the distributions of event types to discuss the value of mixture distribution
approaches for rainfall modeling.
The fourth problem addresses parameter variation in temporal models, using daily stream-
flow as an example. Extremes of environmental variables are often generated by different
processes, leading to the expectation that parameters for temporal covariates will vary across
the variable’s range. This section demonstrates the impact of process heterogeneity on model
parametrization using a simple tree-based machine learning model. We explore whether an



126 Exploring Process Heterogeneity in Environmental Statistics

overall parametrization can provide fair estimates for the entire series or whether alternative
parametrizations tailored to specific quantile ranges offer greater advantages.

2. Homogeneity in flood statistics

The first example we would like to introduce has its origin in flood statistics. Flood statistics
is one of the major topics in hydrological research. The statistics form the basis for many
practical approaches, often related to design flood estimation. Design floods, i.e., the flood
quantile for a given probability or return period based on a time series of flood peaks, are used
for multiple purposes, e.g., the dimensioning of flood protection structure or the operation of
reservoirs (Volpi et al. 2024). Statistical theory of flood statistics dates back until the early
work of Emil J. Gumbel, who proposed the use of extreme value statistics for the estimation
of design floods (Gumbel 1941). By making use of this approach, flood quantiles for return
periods that exceed the observation period by many years can be obtained, e.g., for a return
period of 100 years, which would be the design event for a dam protecting settlements in
Germany and Austria.
Traditional flood statistics usually make use of one of two main concepts: the Annual Maxi-
mum Series (AMS), a block maximum approach; and POT approach. Let Xi be a sequence
of random variables representing a record of measurements xi on a hourly or even higher
resolution time step, and let Zi be its maxima, either of blocks of n observations, or peaks
over some high threshold u representing extreme events in the AMS and the POT approach
(Coles 2001). On this basis, the AMS approach considers the maximum flood peak in each
(hydrological) year. Thus, the probability of occurrence p obtained by this approach has a
direct relationship to the return period T by T = 1/p. The theory of extreme value statistics
provides the asymptotic distribution of these block maxima under proper normalization, the
Generalized Extreme Value (GEV) distribution (Fisher 1928). The direct relation between T
and p makes the AMS a frequently-applied approach in science and practice. However, it has
the disadvantage that exactly one event per year is considered, leading to the neglect of other
large events in the same year or the forced inclusion of small events in low-flow years. To over-
come this issue, the POT approach is applied, where all events above a predefined threshold
are considered. Here again, extreme value statistics provide the asymptotic distribution as
the Generalized Pareto Distribution (GPD; Balkema and de Haan 1974; Pickands 1975). To
obtain annual return periods for this approach, the non-occurrence probability of the flood
peak has to be combined with the probability of a given number of events per year, e.g.,
in a Poisson-Pareto model. Both approaches, AMS and POT, assume independence of the
events, which can be ensured by application of independence criteria such as a certain time
between consecutive peaks. However, both approaches also assume identically distributed,
homogeneous samples, i.e., subject to a common set of forces (Gumbel 1941). This is a crucial
assumption that heavily impacts the estimation.
Hydrological processes in nature, though, are never homogeneous. Flood events can be caused
by multiple and vastly different processes in either atmosphere or the catchment itself, and
their interplay defines the flood events, especially the hydrograph shape. Typical examples of
floods in Europe are heavy-rainfall floods, where rainfall events of high intensity but mostly
only short duration cause steep and flashy flood events, or stratiform-rainfall floods, where
long-duration rainfall over several days causes moist soils and a slow but large flood hydro-
graph. Additionally, floods can be also caused by snowmelt especially in the spring months,
where the accumulated snow cover melts and contributes to the runoff (Jiang, Bevacqua, and
Zscheischler 2022). Given these different processes and also the related different flood events,
one cannot speak of a common set of forces.
It is therefore not surprising that there has been criticism on the assumption of homogeneity
in flood statistics for quite some time. For example, already the Bulletin No. 17, which
contains flood guidelines for the United States, questions the homogeneity assumption for
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catchments with different types of floods. Practical consequences, though, were only taken
slowly. First attempts mainly focused on splitting the sample based on pure data distinction
(Potter 1958) or by making use of a mixture distribution (Singh 1974; Rossi, Fiorentino, and
Versace 1984). While the latter approach is promising from a statistical point of view, as it
clearly provides distinct samples based on a best fit, the hydrological community was critical
as clearly physical knowledge was missing. Alternatively, one could also apply Generalized
Additive Models for Location, Scale, and Shape (GAMLSS) with cyclical splines to account
for variations throughout the year, though again process knowledge might be missing here
and the high number of parameters could introduce comparably high uncertainty. Only later
approaches aimed to split samples according to their physical processes (Waylen and Woo
1982; Hirschboek 1988).
A statistical sound and nowadays more and more frequently applied approach is the split of
the sample into different event types, the fit of separate distributions to each subsample and
the combination of these distributions in a mixture model. The simplest split that still takes
into account physical processes would be the split into seasons (e.g., Yan, Xiong, Liu, Hu,
and Xu 2017; Veatch and Villarini 2022). This approach does not require process knowledge,
nor does it usually reduce the number of events per sample when considering block maxima,
as seasonal maxima are available for most catchments. For example, Fischer, Schumann, and
Schulte (2016) split the sample of flood events into summer (ZS) and winter (ZW ) maxima,
fit a GEV distribution FS and FW to each sample and combine both distributions in a
multiplicative mixture model for the whole year Fmix . The multiplicative model is chosen
here, as one is interested in the maximum value (Todorovic and Rouselle 1971):

Fmix(z) = P (max(ZS , ZW )) = P (ZS)P (ZW ) = FS(z)FW (z).

Summer and winter in this case are defined according to the hydrological calendar year in
Europe, i.e., winter starting in November and lasting until the end of April (in some regions
until end of May to consider the snowmelt period), while summer starts in May (June) and
lasts until the end of October. However, by using a seasonal split it is still not guaranteed
that floods with different genesis are split in different samples, as for example in winter
snowmelt- as well as rainfall-induced floods could occur. Moreover, it is difficult to define strict
seasons in regions where, e.g., snowmelt occurs over a prolonged period in spring and under
consideration that seasons are shifting with a changing climate. The above model also assumes
independence of winter and summer events, which is not necessarily given with a strict split in
seasons. To overcome these issues, the flood samples are often split according to some process-
based classification, the so-called flood types. There exist numerous flood classifications with
different focus points, e.g., on the hydroclimatic processes or the hydrograph (Tarasova et al.
2019; Fischer, Schumann, and Bühler 2019).
These different flood types then can be modeled in a mixture model. Such a model was
proposed, e.g., by Fischer and Schumann (2023) or Yan, Xiong, Ruan, Xu, Yan, and Liu
(2019). For a total number of J flood types, assume that for each flood type a corresponding
sample of flood peaks Z

(j)
1 , . . . , Z

(j)
nJ , j = 1, . . . , J of sample size nJ associated with that flood

type exists. First, each flood type sample is considered separately. For this purpose, a POT-
approach is applied with a type-specific threshold uj . The distribution of the exceedances of
this threshold, Z

(j)
i > uj , for each flood type j, j = 1, . . . , J , is chosen as the GPD, following

the consideration above, defined as

Gj(z; θj = (κj , βj), uj) = 1 −
(

1 + κj

(
z − uj

βj

))− 1
κj

,

for a shape parameter κj ̸= 0 and scale parameter βj > 0 with support z ≥ uj . The choice of
the threshold uj can be motivated by statistical consideration, e.g., using the mean residual
life plot (Coles 2001), or by empirical or hydrological considerations. Fischer and Schumann
(2023) propose uj to be chosen type-specifically as thrice the type-weighted mean discharge.
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The type-weighted mean discharge is derived from the monthly means of discharges weighted
according to the relative frequency of the flood type in the respective months. The POT-
approach can be generalized to an annual type-specific distribution G̃j for each flood type
simply by application of the total probability theorem to obtain

G̃j(z) =
∞∑

k=0
Pj(l = k)(Gj(z; θj , uj))k,

where Pj(l = k) is the probability that the annual number l of flood peaks of type j above the
threshold uj is equal to k and can be described by the Poisson distribution with parameter
λj ,

Pj(l = k) =
λk

j

k! e−λj ,

as described above for the general POT approach. To obtain the annual joint distribution of
all flood types, a mixture model is applied:

H(z) =
J∏

j=1
(Gj(z; θj , uj)(1 − Fj(uj ; ϑj)) + Fj(uj ; ϑj)).

The model is denoted as the Type-based Mixture model of Partial duration Series (TMPS).
In this model, the POT distribution Gj is multiplied with the exceedance probability of the
threshold 1 − Fj . Fj is modeled by a GEV distribution based on all flood peaks in the sample
of the respective flood type

Fj(z; ϑj = (ξj , µj , σj)) = exp

−
(

1 + ξj
z − µj

σj

)− 1
ξj

 ,

for 1 + ξj(z − µj)/σj > 0, where ξj ∈ R is the shape parameter, σj > 0 is the scale parameter
and µj ∈ R is the location parameter. Alternatively, Fj can also be modeled by the empirical
frequency to reduce the number of parameters in the model or by a Gamma distribution,
which has been shown to be suitable for many discharge series.
In addition to the proposed mixture models, other approaches to incorporate inhomogeneity
into flood statistics are also worth considering. This includes Bayesian hierarchical models
or Generalized Linear Mixture Models (GLMMs). Currently, such models are mainly applied
for regionalization purposes, modeling the inhomogeneity in space (Lima, Lall, Troy, and
Devineni 2016; Hofrichter, Harum, and Friedl 2016; Sampaio and Costa 2021). A basic as-
sumption in regionalization, i.e., the estimation of design variables such as floods in ungauged
catchments by transferring information from gauged catchments, is the homogeneity within
the groups of catchments. This approach can be seen as similar to having different flood types
which have to be homogeneous each. However, such models usually require huge statistical
knowledge and might thus be less easily applicable. Moreover, the type-based mixture model
allows for an easy interpretation of the impact of each flood type, and thus also a link to the
hydrological processes. This is why the focus in this study is placed on mixture models.
By making use of the type-specific distribution and the joint mixture model, it can be an-
alyzed which flood type contributes most to the extremes of the distribution and thus to
potentially heavy tails. For example, in Figure 1 two examples of the TMPS model and the
respective type-specific distributions fitted to the flood peaks of two catchments in Europe are
given, derived from the open access GRDC data base (The Global Runoff Data Centre 2024)
and classified by a hybrid-hydrograph-based flood typology (Fischer et al. 2019). The first
catchment, Saint-Cyran-du-Jambot/ Indre River in France, had discharge data available for
the years 1968 to 2012. In total, 78 flood events were identified, 25 of which being associated
with heavy-rainfall floods (R1), 18 to synoptic-rainfall floods (R2), 12 to sequence-of-rainfall
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Figure 1: Two examples of the TMPS model fit to the flood peaks at a) Saint-Cyran-du-
Jambot/ Indre River, France and b) Tenbury/ Teme River, Great Britain. Flood types
are: R1 (heavy-rainfall floods with high convective share), R2 (synoptic rainfall floods), R3
(sequence-of-rainfall floods), S1 (rain-on-snow floods), S2 (snowmelt floods).

floods (R3), 14 to rain-on-snow floods (S1) and 9 to snowmelt-induced floods (S2). The sec-
ond catchment, Tenbury/ Teme River in Great Britain, had discharge data available for the
years 1956 to 2018. In total, 216 flood events were identified, 97 of which being of type R1,
61 of type R2, 30 of type R3, 28 of type S1 and none of type S2. It is clear to see that
only certain flood types contribute to the right tail of the distribution, while others might be
more relevant in the lower range of the return periods. The use of traditional block maxima
approaches would mix these flood types in one sample and underestimate the right tail by
considering a kind of leveled mean behavior. Moreover, information on the flood type also
implicitly contains information on the flood volume. For example, for the Tenbury catchment
one has to consider medium-sized volumes for the most extreme floods, as this is what can be
expected for synoptic-rainfall floods. Flood types with larger volume, such as sequence-of-rain
floods or snowmelt floods do not contribute much to the extremes.
The combination of flood types and a mixture model has many advantages in flood statistics.
First, the improved homogeneity of the samples will lead to less violation of the statistical
assumptions. With a meaningful flood classification, the genesis of flood events can be con-
sidered such that the events in one sample should have the same origin. Yan et al. (2019)
showed that the performance of the statistical model increased when flood types were consid-
ered. But the model also has practical advantages: it incorporates physical information on
the flood events, making the results easier interpretable and allowing for a plausibility check.
The missing of physical knowledge in statistical models in flood statistics is a frequent criti-
cism (Klemes 1971). In addition, also the information content of the statistics is increased,
as implicitly not only one flood characteristics (the peak) is considered, but also information
on the flood volume and the hydrograph shape are available.
However, there are also difficulties and drawbacks that come with this type of model. Com-
pared to traditional flood statistical approaches, the number of parameters in the model is
increased by a factor equal to the number of flood types. This can increase the uncertainty
in the estimation. In a large Monte Carlo simulation study, Fischer and Schumann (2023)
analyzed the cases, where the use of a traditional block maxima model is beneficial compared
to the TMPS model in terms of bias and uncertainty. They showed that only in cases where
the probability distributions of the different flood type samples are similar in shape and scale
parameter and where only few events per year occur, the block maxima model leads to accept-
able bias and uncertainty. As soon as one flood type distribution deviates from the remaining
ones the block maxima model can no longer be recommended due to large bias. The same
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holds true in case of a large number of flood events per year. In both cases, application of the
block maxima approach will lead to severe underestimation of the flood quartiles. So, in many
cases mixture models can reduce the bias compared to traditional block maxima approaches
(Fischer and Schumann 2023) Additionally, it was shown that the Root Mean Square Error
(RMSE) of the TMPS model, despite its higher number of parameters, decreases faster than
that of the block maxima approach for increasing sample sizes. This supports the assump-
tion that inhomogeneity can heavily affect the estimation of flood quantiles and that even a
higher uncertainty in the estimation is preferable compared to the bias in the block maxima
model. In summary, there is definitely a trade-off between bias and variance. Even for the
small sample sizes one usually has in flood statistics, the bias when using mixture models is
reduced significantly compared to block maxima approaches. This comes at the cost of higher
RMSE and thus variance. The latter can only be reduced by increasing sample sizes, which
offers a perspective for the future in which increasing data samples might reduce RMSE.

3. Mixture distribution approaches for low flow
Our second example focuses on the frequency analysis of drought events. Similar to floods,
low flows are driven by a complex interplay of processes, but here the separation into process
types is more straightforward. In a seasonal climate, two different types of low flows can be
distinguished. Summer low flows are triggered by a precipitation deficit that occurs during
prolonged periods of dry weather, leading to the drying out of soils and the depletion of
groundwater and other stored sources. Such droughts are often associated with heat waves,
which increase evaporation and thus water deficits and the severity of events. Summer low
flows are therefore more pronounced in lowlands and occur over large spatio-temporal scales.
Winter low flows, on the other hand, are caused by long periods of frost when water is stored
in snow and ice. These events are most pronounced in higher mountains and occur on smaller
spatio-temporal scales.
Clearly, such mixing of processes violates the homogeneity assumption of common statistical
models and may lead to inaccurate conclusions. There have been many attempts to deal with
process heterogeneity in spatial low-flow models. Early studies focused on regression methods
that divided the study area into groups or regions and fitted individual regressions to each.
This is known as a regional regression approach (Institute of Hydrology 1980). The spatial
separations were established based on soil classification (Gustard and Irving 1994), cluster
analysis of several catchment characteristics (Nathan and McMahon 1990) or the seasonal
occurrence of low-flow events (Laaha and Blöschl 2006). Surprisingly little efforts have been
made for considering process heterogeneity for low-flow frequency analysis. Recently, two
different approaches have been developed.
In the first approach, a mixture distribution model for annual minima series has been adopted
(Laaha 2023b) and implemented in R (R Core Team 2024). It assumes independent and
seasonally separable types of low-flow events. Serial dependency has been found to be weak
for annual minima series related to hydrological years starting at the end of the groundwater
recharge period and is typically neglected in studies. Exceptions occur in climates prone to
multiannual droughts, where block sizes longer than one year can be chosen to reduce serial
correlation of events. However, unlike flood frequency analysis, a POT (or rather “pit under
threshold”) approach was not considered because of the long time scales of droughts and
groundwater processes in the catchment, which make low-flow periods in the same season
serially dependent.
In the approach, the annual minima series

Mn = min{X1, . . . , Xn}

is regarded as the minima of the annual summer minima Mn,S and winter minima Mn,W :

Mn = min {Mn,S , Mn,W } .
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In this notation, X refers to the original variable (daily flow), and Mn to its minima within
each block of size n (typically one year). Assuming that summer and winter events are
independent of each other, the probability of occurrence of an event of magnitude z is obtained
by multiplying its respective non-occurrence probabilities in the summer and winter seasons
(Stedinger, Vogel, and Foufoula-Georgiou 1993). This leads to the definition of the mixed
probability pmix for minima:

pmix = 1 − (1 − pS)(1 − pW ),

where pS and pW are the respective probabilities of occurrence in the summer and winter
seasons. These can be estimated using an empirical probability estimator based on the rank
m of the event z within the (increasingly ordered) sample of size n. The theoretical probability
estimator is obtained when inserting the marginal extreme value distributions of the summer
and winter series, FS(z) and FW (z). The Cumulative Distribution Function (CDF) F (z) of
the annual low flow is estimated as

Fmix(z) = 1 − {1 − FS(z)} {1 − FW (z)} .

A Weibull (Extreme Value type III) distribution is used as the probability model as this is
the limiting distribution for minima according to the Fisher-Tippett-Gnedenko theorem. The
mixed Weibull-model for minima can be written as

Gmix(z) = 1 −
{

exp
[
−
(

z − ζS

βS

)δS
]}{

exp
[
−
(

z − ζW

βW

)δW
]}

.

The ζ· > z, β· > 0 and δ· > 0 are the location, scale and shape parameters of the summer
(index S) and winter (index W ) marginal distributions.
The properties of the mixed probability estimator are demonstrated for two example stations
in Figure 2. The fact that the seasonal distributions differ strongly reflects the effect of process
heterogeneity on the frequency analysis. In Figure 2a, the conventional annual distribution
deviates from the mixture distribution and is expected to produce biased results. Such a
bias would not be evident from the empirical distribution of the annual series, which in both
example stations show no signs of irregularity. The biases are most pronounced for highly
mixed regimes, which are typically associated with mountain forelands (Figure 2a). They
tend to be much smaller for strong summer regimes in the lowlands and winter regimes in the
high mountains, with the differences eventually disappearing when the annual series consists
only of summer or winter events (Figure 2b).
Due to the long time scale of the events, it is unlikely that summer and winter low flows
are completely independent. The second approach extends the mixture distribution model
to capture seasonal dependence using a copula estimator (Laaha 2023a). Copulas have been
used in streamflow models either for a multivariate event characterization (e.g., volume and
duration) or to aggregate streamflow along the river (Fischer and Schumann 2021). The use
of copulas to account for seasonal dependence in extreme value statistics constitutes a novel
approach. It uses a bivariate probability model to calculate the joint probability that summer
low flows S and winter low flows W are less than or equal to magnitudes s and w, respectively:

P (S ≤ s, W ≤ w) = FS,W (s, w).

Following the theorem of Sklar (1959), the joint CDF can be written as:

FS,W (s, w) = C [FS(s), FW (w)] . (1)

The approach requires the choice of a copula model C, with the Gumbel-Hougaard copula
being considered an appropriate choice for modeling the mixture of summer and winter low
flows (Laaha 2023a). Alternatively, different families can be considered and the most appro-
priate model is selected using on a copula information criterion (Grønneberg and Hjort 2014).
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Figure 2: Annual versus seasonal and mixture distribution approaches for low-flow frequency
analysis for (a) gauge Weg, river Isen in Germany and (b) gauge St. Peter-Freienstein at
river Vordernberger Bach. Empirical distributions (circles) and fitted Weibull distributions
(lines) for annual and seasonal (summer and winter) AMS series. “Mixed” refers to annual
estimates calculated using the mixed probability estimator (Laaha 2023b).

The probability of event z occurring in any season is finally obtained by the mixed copula
estimator

Fmix,C(z) = FS(z) + FW (z) − C[FS(z), FW (z)]. (2)

As for the mixed probability estimator, a Weibull distribution is used to model the marginal
distributions of summer and winter events. In the same way as for the theoretical estimator,
we can also define a generalized empirical estimator. It can be formulated in accordance with
the theoretical probability estimator in Equation (2) as

pmix,C(z) = pS(z) + pW (z) − Cn [pS(z), pW (z)] ,

where pS(z) and pW (z) denote the empirical probability of z to occur in the summer season
and the winter season, respectively. The Cn(·) is the empirical copula, which defines the
empirical multivariate distribution in analogy to Equation (1).
The actual value of the mixture distribution approaches has been investigated in two studies.
Laaha (2023b) evaluated the performance of the mixed probability estimator using a dataset
of long-term (1976–2010) records of daily streamflow at 329 gauging stations in Austria. The
study focused on the change in the return period obtained by two different models. With
a relative deviation of 21%, 39% and 63% when estimating low flows with return periods
of 20%, 50 and 100 years, the differences to the conventional annual distribution estimator
were found to be large. For the 100-year event, 41% of the stations show a performance gain
(reduction in the absolute relative deviation of the inferior to the superior model) of more
than 50% when using the mixed probability estimator. The success of the model is strongest
for highly mixed regimes, but was found to be relevant not only for mountain forelands, but
for a wide range of catchment conditions. The effects are strongest for high return periods,
where the results vary widely across all seasonal regimes.
The relative advantage of the mixed copula estimator over the other two approaches has been
demonstrated by Laaha (2023a). The difference between the two mixture models decreases
as the return period increases, so that for the most severe events the two models are in agree-
ment. However, for moderate events, the comparison reveals a bias in the mixed probability
estimator, which can be corrected using the copula approach. The bias can be related to
the stronger serial correlations found for the moderate events and almost no correlation for
the most severe events. The mixed copula estimator is a valid generalization of the mixed
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probability estimator that relaxes the assumption of independent events. Due to its favorable
characteristics, it should be used as a new standard for frequency analysis of extreme low-flow
events.
The mixed probability estimators have many conceptual advantages. They provide an effi-
cient way to deal with sample heterogeneity, which is considered to be a major obstacle to
meeting the assumptions of the annual minimum approach to low-flow frequency analysis.
Their approach is also more process-oriented, leading to more realistic models and allowing
easier plausibility checks. However, perhaps the greatest advantage of the mixture models is
that they provide a consistent framework for summer, winter and annual events. Seasonal
characteristics are directly relevant to a number of water management tasks, including en-
vironmental flows and hydropower generation. For other problems, annual characteristics,
which describe the absolute minimum regardless of the season, are more relevant. The mix-
ture models combine the seasonal distributions into a valid annual distribution, which allows
the calculation of consistent return periods for summer, winter and annual events.

4. Clustering rainfall types for stochastic simulations
Our third example discusses process heterogeneity in rainfall modeling. Long-term rainfall
records are essential for a variety of applications, where rainfall series serve as input in process-
based models. These models are instrumental in predicting runoff for locations or time periods
lacking direct runoff observations and in generating runoff scenarios under changing system
conditions. Other model applications include natural hazards such as soil erosion or mass
movements caused by heavy rainfall, and drought impact on soil moisture or groundwater
levels during periods of low rainfall. However, in many instances, observational records of
rainfall are too short to yield reliable conclusions. To address this limitation, stochastic
rainfall generators have been developed to provide simulated rainfall data.
A variety of methods are employed for rainfall generation. Classical approaches typically
focus on point rainfall and consist of two coupled components: a rainfall occurrence model,
often represented by a Markov-chain model, and a distribution model for rainfall intensities
(Wilks and Wilby 1999). Rainfall intensities are frequently modeled using a Gamma distribu-
tion, although this approach tends to underestimate heavy rainfall events (Furrer and Katz
2008; Papalexiou, Koutsoyiannis, and Makropoulos 2013). To better capture the rainfall dis-
tribution, especially for sub-daily rainfall, more heavy-tailed distributions such as the Mixed
Gamma and Generalized Pareto distributions have been developed (Vrac and Naveau 2007).
However, rainfall is also subject to important process heterogeneity. A frequently used ty-
pology distinguishes between convective and stratiform events. Convective events are storms
that typically occur in summer when moist air moves upward due to heating and condenses
to produce rainfall. They tend to be of short duration and small spatial extent, but typically
result in intense rainfall. Stratiform events occur with weather fronts when warm air masses
pass over cold air masses. This can lead to longer but less intense events, but the event
characteristics differ between cyclone types, with cold fronts leading to a faster transition and
warm fronts tending to lead to longer events. Similar processes occur with orographic lifting,
where moist air is forced to rise over a mountain range or elevated terrain.
Since rainfall is generated by such different processes, we can expect that rainfall series will
be composed of events with different distributions. But the separation is not straightforward.
Here, we test an event separation based on features derived from Yevjevich’s theory of runs
(Yevjevich 1967). It provides a systematic approach to exploit the temporal characteristics
of rainfall events for event classification. Originally proposed for droughts, this method has
recently been applied to analyze cold spells and electricity production deficits, such as those
underlying the 2021 Texas winter blackout (Gruber, Gauster, Laaha, Regner, and Schmidt
2022).
To adapt this method for rainfall events, a threshold is defined above which rainfall is con-
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sidered significant. Rainfall events are then detected as temporally contiguous wet spells
exceeding this threshold. These events are characterized by several features, including peak
magnitude, duration, severity (i.e., total rainfall volume), average rainfall intensity (total vol-
ume divided by duration), and time to peak as a ratio of event duration. These characteristics
are subsequently used for event classification. During a rainfall event, short pauses in rainfall
or disturbances can artificially split the event into several interdependent events. To avoid
such splitting, pooling criteria are applied, using an inter-event time and volume threshold of
1.27 mm in 6 hours, a criterion commonly used in soil erosion studies (Vásquez et al. 2024).
The obtained event characteristics contain complementary information about the temporal
dynamics that should be related to the generating processes. They appear useful to separate
the rainfall series into types of events. The event information is supplemented by a binary
lightning index derived from the European lightning location system (EUCLID), which has a
detection efficiency of 96% (Schulz, Diendorfer, Pedeboy, and Poelman 2016) for downward
flashes. An event has a lightning index of one when lightning was recorded in a circular
neighborhood of 7 km during the event.
Separation of events into types can be informed by unsupervised learning methods such as
cluster analysis. The aim is to obtain classes that are homogeneous not only with respect to
the rainfall distribution, but also with respect to the multivariate signature of the temporal
event characteristics. In the analysis presented here, two methods of cluster analysis were
considered.
The first method is model-based clustering. We used the method implemented in the R
package MixAll (Iovleff 2024), which is suitable for handling large data sets. A Gamma
mixture model was adopted, taking into account the following event characteristics: peak
magnitude, duration, and severity. Other event characteristics were not included as they were
found to be redundant in a preliminary analysis. The lightning index was also not included
at this stage. The data were clustered based on the conditional independence assumption.
The optimal number of clusters was found by the ICL (Integrated Complete-data Likelihood)
criterion (Biernacki, Celeux, and Govaert 2000).
As a second method, the robust Partitioning Around Medoids method (PAM; Kaufmann and
Rousseeuw 1990) was tested. Here we considered all event characteristics and additionally
the binary lightning index for clustering. Each variable k (k = 1, . . . , p) was entered as log-
transformed values, except for the lightning index. Given the mixed data types, we used
Gower’s distance (Gower 1971) to define the (dis)similarity between events:

Sij =
∑p

k=1 wijksijk∑p
k=1 wijk

,

where the wijk are weights (here set to 1) and sijk is the similarity between the the i-th and
j-th event regarding their k-th variable. For continuous event characteristics, the similarity
corresponds to the range-normalized Manhattan distance (after logarithmic transformation):

sijk = 1 − |xik − xjk|
Rk

with Rk being the range of the k-th variable. For the binary lightning index, the sijk take
values 0 or 1, with 1 indicating equality of the two events with respect to the lightning index.
All variables were given equal weight in the distance metric. Cluster analysis was performed
with different numbers of clusters, and the optimal number of clusters was determined by the
silhouette plot and the average silhouette width.
The event classification was tested on 27 stations in Austria. Here we report on the station
Geboltskirchen, located in the foothills of the Alps in Austria, which represents a typical
behavior seen in the data set. The analyses were carried out for sub-daily time series with a
5-minute resolution, covering the summer months (April to October) from 2011 to 2020. A
threshold of 1.27 mm was chosen to identify rainfall events, resulting in a total of 869 events
encompassing 12,487 5-minute individual rainfall measurements.
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Figure 3: Rainfall event clustering for the Geboltskirchen station. (a) Model-based cluster-
ing without lightning. (b) PAM clustering including lightning. Analyses are based on the
following event characteristics: peak magnitude (magnitude), duration (duration), total rain-
fall volume (severity), average rainfall intensity (intensity), relative time to peak as a ratio
of duration (time_peak), and the lightning index (flash). The biplots display rainfall events
as points and variables as vectors along the first two principal components. The values in
parentheses refer to the portion of variance explained by each principal component.

Figure 3 shows the results of rainfall event clustering. For model-based clustering (Figure 3a)
two clusters were optimal based on the ICL criterion. However, the clusters show only small
differences in the distribution of rainfall intensities (Figure 4a). The allocation to rainfall types
is not straightforward, as convective events (lightning) are distributed across both clusters.
PAM clustering including the lightning index, on the other hand, produces two clusters with a
clear separation between convective and stratiform events (Figure 3b). This can be seen from
the lightning index, which shows an exact separation into events with and without lightning.
The convective events (Cluster 2) have a higher average intensity, peak magnitude and overall
severity. The clusters also have quite different rainfall distributions. These demonstrate the
effectiveness of event clustering using a combination of event characteristics derived from the
rainfall record and the lightning index representing the connectivity of events.
The analysis shows that event clustering is a straightforward yet effective method to reduce
process heterogeneity in rainfall frequency analysis. In our approach, the event characteristics
are obtained directly from the rainfall records, without requiring additional weather data,
which would necessitate interpretation of weather maps and satellite data. Consequently,
these characteristics are easier to obtain than those in other process classifications that require
additional steps in the analyses, which is considered a major advantage of our approach.
The potential of mixture-model-based clustering can be further enhanced by incorporating
lightning data, which will be investigated in a subsequent study.
While this study was limited to an exploration, the methods can be extended to perform
more effective classification of rainfall distributions. Finite mixture models, such as those
implemented in package flexmix (Leisch 2004; Grün and Leisch 2025), can be used for classi-
fication tasks conditional on event characteristics. These models appear promising and will be
tested in subsequent research. Alternatively, GAMLSS models with cyclical splines could be
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Figure 4: Rainfall distributions for station Geboltskirchen by cluster (a) Model-based clus-
tering without lightning, (b) PAM including lightning.

considered to account for seasonal variations, but this approach would be less process-based
than taking the different characteristics of rainfall types into account.

5. Quantile regression for temporal streamflow modeling
Our last example focuses on the prediction of the time series of daily river discharges. This
is often referred to as rainfall-runoff modeling because one of the dominant drivers of runoff
is precipitation. We can mainly distinguish between physically based models (Guo, Zhang,
Zhang, and Wang 2021; Razavi and Coulibaly 2013) and stochastic approaches, on which
we will focus here (Solomatine and Ostfeld 2008; Kratzert, Klotz, Herrnegger, Sampson,
Hochreiter, and Nearing 2019a; Kratzert, Klotz, Shalev, Klambauer, Hochreiter, and Nearing
2019b; Lees et al. 2021). The simplest case for both modeling approaches is to train the
model on a subset of the time series and evaluate it on the remaining dataset. This can
give an indication of how well the fitted models will predict outside the calibration period or
extrapolate if only a few years of data are available. Training these models usually involves
optimizing some predefined loss function. Most commonly, some adaptation of a mean squared
error called the Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe 1970) is used to train the
models, which is basically the coefficient of determination:

R2 = 1 −
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − y)2 , (3)

where ŷi is the predicted and yi the observed time series of daily discharge with n observations.
If modelers want to give more weight to the lower part of the distribution, optimization is done
using the logarithm of observations and predictions known as a NSElog-criterion. Although
these methods approximate average runoff conditions well, they fail to estimate extreme
events (such as floods and droughts). The use of some asymmetric loss functions such as
quantile regression (Koenker and Bassett 1978) or expectile regression (Aigner, Amemiya,
and Poirier 1976; Newey and Powell 1987) is less common – exceptions include Toth (2016)
and Laimighofer, Melcher, and Laaha (2022) for prediction, or Tyralis, Papacharalampous,
and Khatami (2023) or Papacharalampous et al. (2019) for probabilistic forecasting. However,
these options could improve the estimation of extreme events, which are often the main focus
of studies. In this study, we aim to demonstrate the impact of the loss function on model
performance, variable selection, and variable importance. We hypothesize that there is no
single model that is optimal for the full range of discharge or environmental variables in
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general, which has important implications for building interpretable models that capture
processes in a realistic way.
This case study uses 184 stations in Austria with a daily discharge time series from 1982
to 2017, provided through an open source dataset (LamaH-CE) by Klingler, Schulz, and
Herrnegger (2021). We train an XGBoost model (Chen and He 2015; Chen and Guestrin 2016;
Chen et al. 2021) for the sub-period 1982–2000 and evaluate the model on the remaining years.
As predictor variables, we used daily mean temperature, evapotranspiration, soil moisture,
and precipitation. Rolling sums or averages of these variables were added for one to five days,
to mimic the short-term memory of daily discharge. Additionally, accumulations over 15, 30
and 60 days were used as predictors to capture long-term processes. Further, mean annual
monthly and daily meteorological quantities are included to characterize seasonality. Finally,
the month of the year and the day of the year are added as numeric variables.
Our assessment is carried out in two steps. First, we test the ability of a quantile loss function
to approximate the high and low extremes of the time series. This is done by training the
model with a quantile error loss of τ = 0.1 for the lower quantile, and τ = 0.9 for the higher
quantile, and comparing these to the squared error loss (i.e., Ordinary Least Squares (OLS) or
mean regression approach). The response at each station was transformed by the square root,
which already gives more weight to the low values for the mean regression approach. The
second analysis aims to investigate how different optimization strategies modify the selected
variables and their contributions to the predictions. For this purpose, we identify the 25
variables that most significantly contribute to the reduction of the gradient loss function in
the models built for the years 1982 to 2000. These top predictors are then used to train a
final model on the dataset from 2001 to 2017 at each station. The goal of this final model
is to analyze how the predictor contributions change over the range of predictions. This
is achieved by computing SHAP (SHapley Additive exPlanations) values (Aas, Jullum, and
Løland 2021; Lundberg and Lee 2017). The multivariate dependency structure between the
predictor variables is hereby modeled using a conditional forest approach (Hothorn, Hornik,
and Zeileis 2006; Hothorn and Zeileis 2015). The code, data and final results can be found in
the accompanying Zenodo publication (Laimighofer 2024).
Starting with the most common metric in statistical hydrology, we compare the models using
R2 (Equation 3). Calculated for each station (and the test data period of 2001–2017), we
obtain a median over the entire dataset of 0.62 for the mean regression. The median R2 for
the lower quantile regression (τ = 0.1) is 0.04, and 0.43 for the higher quantile regression
(τ = 0.9). When models focus on low-flow events, it is often common to report the R2

of log-transformed streamflow, using NSElog as the performance measure. Not surprisingly,
the NSElog would give a higher median performance score for the mean regression (0.66)
and the lower quantile regression (0.20), since the models were optimized by the square-root
transformed daily discharge. The higher quantile regression, on the other hand, would receive
a lower median performance (NSElog of 0.36).
Both performance measures undoubtedly favor the mean regression approach; however, aver-
age conditions are often not the major concern in hydrology. Extreme events such as droughts
or floods pose a higher risk to society and nature. Hence, we propose to take into account a
broader mix of error metrics, focusing on different streamflow quantiles, to give a more holis-
tic picture of the potential of using quantile regression. First, we will consider the Quantile
Loss performance (QLτ ) adapted from Koenker and Bassett (1978), which is analogous to a
pseudo R2:

QLτ = 1 −
∑n

i=1 Lτ
QL,i(yi, ŷi)∑n

i=1 Lτ
QL,i(yi, q(yi, τ)) ,

where q(yi, τ) is used as the naive estimate of the model considering the specific quantile of
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Figure 5: Model performance for lower to upper time series quantiles depending on model
optimization using the quantile loss criterion. (a) Quantile Loss performance (QL) over all
stations vs. the τ -th streamflow quantile (values < −5 not shown). (b) Mean Relative Absolute
Error (MRAE) over all stations stratified into streamflow decile bins.

the time series and Lτ
QL is the quantile loss function, given by:

Lτ
QL,i =

{
τ · |yi − ŷi|, (yi − ŷi) ≥ 0,
(1 − τ) · |yi − ŷi|, (yi − ŷi) < 0,

where ŷi are the predicted quantiles at time step i. A value of 1 indicates that the observations
are perfectly fit by the predictions, and a value below 0 indicates that the model predictions
are worse than the naive estimate.
As expected, Figure 5a shows that for low streamflow quantiles represented by low τ values,
our lower quantile estimator (L0.1) provides the best approximation, while for high τ values
the upper quantile estimator (L0.9) performs best. The mean regression (LS) performs well
only in the middle part of the distribution. The results indicate that for low streamflow
quantiles (τ ≤ 0.3), the lower quantile estimator outperforms the mean regression approach.
Additionally, for low τ values, the mean regression approach yields a strongly biased estimate
(as indicated by negative QL values), whereas for higher τ values, such strong biases are only
observed for the most extreme quantiles (τ of 0.98, representing flood events).
By stratifying the observations into 10 equal parts of the empirical distribution, we can obtain
a complementary view of the models’ performance. For each of these parts, we calculate the
Mean Relative Absolute Error (MRAE). The results are shown in Figure 5b. For the lower
50% of the data, the lower quantile regression approach reveals advantages over the mean
regression approach. In contrast, the higher quantile estimate provides only a slightly better
estimate of the upper 10% of the data. The use of an expectile regression approach would
place even more emphasis on the highest values and thus improve the estimates for the upper
extremes.
In the second assessment, we investigate how the predictor contributions change over the full
range of data, depending on the regression approach. For this purpose, we consider the 25
most important variables and compute their SHAP values for τ = 0.01, 0.02, . . . , 0.99 quantiles
of each daily discharge time series, where τ are the respective quantiles of the quantile loss. As
the baseline estimation (mean or quantile) for each regression approach differs, we estimate
the relative contribution for each variable, defined by the contribution divided by the sum of
all absolute contributions, and summarize these relative SHAP values for each decile of the
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Figure 6: Relative averaged contribution of the main predictors for each decile of the stratified
response. Results are shown for the river Kamp for a mean regression approach (mean) and the
two quantile regression approaches (high and low). An overview of the estimated contribution
of all predictors can be found in Laimighofer (2024).

distribution.
The analysis is carried out for the river Kamp near Zwettl (results are summarized in Fig-
ure 6). We expect low flows in the catchment to be triggered by prolonged meteorological
droughts, often accompanied by high temperatures and consistently low precipitation. Floods,
on the other hand, are expected to be triggered by relatively short but intense precipitation
events in combination with high antecedent soil moisture. For low-flow events, we are primar-
ily interested in SHAP contributions that lower the baseline estimate, i.e., have a negative
effect on the prediction. Seasonal information, such as the month and the day of the year,
decreases the prediction for the mean regression (about 10%), but only by about 3% for the
low quantile regression. This suggests that seasonal information can actually provide some
adjustment to the mean regression for the low-flow season, while the quantile regression is
already adjusted for the low-flow season and requires no further adjustment. The typically
low precipitation in summer (lags and accumulated transformations) has a negative contribu-
tion for the mean regression, but has no or a positive contribution for low quantile regression.
This indicates that the low precipitation is only essential for lowering average streamflow, but
not for extreme events below the 0.1 quantile. One main contributor to low streamflow is
short-term and accumulated (15–60 days) soil moisture. This is true for the mean regression
and the low quantile regression, suggesting that the deficit in soil moisture was found im-
portant by both approaches. Regarding high streamflow events, the main predictor for both
the high quantile regression and the mean regression is soil moisture, considering current and
antecedent conditions with time lags of up to 7 days. Differences between the two regression
approaches, however, are difficult to discern.
Overall, the example demonstrated how an asymmetric loss function can provide higher pre-
diction accuracy for the tails of the distribution which correspond to the extremes of the time
series. It also illustrated how the contribution of the predictors changes across the range of
the variable of interest. The asymmetric loss functions resulted in different parametrizations
of the models, all of which were physically interpretable. Consequently, quantile regression
approaches offer a pathway to more process-oriented statistical models when combined with
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a process-oriented preselection of predictors. This is exemplified by the station at the river
Kamp, where the variable contributions at low and high quantiles could be linked to key
drivers of low flows and floods. However, a limitation of quantile regression in a time series
context is the detection of too many extreme events, leading to a high rate of false positives.
Therefore, selecting an appropriate τ value is critical to avoid such overdetection.

6. Discussion and conclusion
Nature is complex, and environmental systems are characterized by intricate interactions of
processes that can vary significantly between different states of the system, such as between
summer and winter, or dry and wet conditions. This process heterogeneity poses a major chal-
lenge for all types of models. Although many standard statistical models assume homogeneity,
this assumption is often invalid, leading to inaccurate model results. This study explores the
implications of process heterogeneity through problems related to natural hazards and earth
system sciences. It presents various approaches to account for this heterogeneity.
For example, typical applications of extreme value statistics, such as hydrological extreme
events, are influenced by different forces. Thus, different types of maxima or minima dis-
tributions are to be expected, and classical approaches to frequency analysis that assume
sample homogeneity may be misleading. In our case study on floods, the extreme value dis-
tributions differed strongly when POT samples were stratified according to flood types related
to snow, rainfall type and antecedent wetness. Other studies have shown that considering
flood types can decrease the uncertainty in the estimation of design floods for large return
periods compared to traditional methods which do not consider process heterogeneity (Yan
et al. 2019, 2023). And even though the larger number of parameters in type-based mixture
models can increase the uncertainty in the estimation, it was demonstrated in the discussion
above that the consideration of flood types in flood statistics leads to a smaller bias as soon as
there is one flood type that deviates from the remaining flood types regarding its statistical
distribution (Fischer and Schumann 2023). Moreover, the flood types make a different con-
tribution to the lower and upper tail of the overall frequency distribution of floods, leading
to a complex shape and heavy tail that may deviate substantially from a GEV of a homoge-
neous sample. It is well-known that the mixture of distributions with different tail behavior
can amplify the overall tail behavior (Merz et al. 2022). This can then again violate many
standard approaches in statistics, such as bootstrap or ordinary moments (Vogel, Papalexiou,
Lamontagne, and Dolan 2024). The use of mixture models allows to consider the origin of
this heavy tail behavior and provides a physical explanation for a statistical phenomenon, the
latter being often criticized to miss in statistical hydrology (Klemes 1971).
The same holds true for low flows, where the extreme value distributions differed strongly
when annual series were calculated for summer and winter seasons as there is a clear dif-
ferentiation between generating processes in summer and winter. Similar to the mixture of
flood distributions, Laaha (2023b) showed for low flows that a frequency distribution can
become biased as soon as single events from a different process type are mixed in. The study
gives a quantification of the possible errors made when using a classical frequency analysis
approach that neglects different process types and fits the extreme value distribution to the
heterogeneous sample. Errors were found to be particularly large for extreme events with
long return periods, for mixed alpine and lowland regimes, and for climates with cold winters
and warm summers. So again, a physical explanation of the observed statistical behavior can
be found. A possible drawback of incorporating process heterogeneity by mixing seasonal
distributions is the greater dependence between seasonal events compared to annual events,
which has resulted in a considerable bias in the upper tail of the distribution at a number of
stations. Correlation between annual low flow events is usually weak when series are derived
for hydrological years starting in string when groundwater stores are refreshed, and therefore
typically neglected in extreme value statistics. A copula-based estimator can additionally
incorporate event dependence and has been shown to provide robust estimates not only for
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extreme events, but also for moderate events. An additional benefit of the mixture distribu-
tion approaches is that they allow the calculation of consistent return periods on an annual
and seasonal scale, all of which are relevant indices for water management (Van Lanen et al.
2016; Laaha et al. 2017).

The physical difference between events was not only found on the hydrological scale. It was
shown that already in the atmospheric part of the water cycle distinct differences between
processes were visible, which was demonstrated by the third example. Similarly to the flood
example, the consideration of atmospheric covariates helped to stratify different types of rain-
fall, providing a direct link to the different types of flooding. Apart from the classification
based on rainfall event characteristics proposed here, there were only relatively few attempts to
address heterogeneity in rainfall distributions so far. One approach is rainfall clustering based
on temporal distributions of rainfall events described by the so-called Huff curves (Dolšak,
Bezak, and Šraj 2016; Dunkerley 2022), which appeared useful to explain rainfall variability
compared to flood types (Oppel and Fischer 2020) and to soil erosion events (Vásquez et al.
2024). The Huff curves contain more precise information on the timing of rainfall, but are
standardized by event duration, so the information on event severity is removed. They can
thus be seen as complementary information to the event characteristics derived by Yevjevich’s
threshold approach. As both event descriptors are complementary, their combination should
be beneficial for clustering rainfall events. Another approach would be to use other process
variables such as the lightning index in our study, or the Showalter index of the potential
for convection calculated using temperature and dew point at 850 hPa and temperature at
500 hPa (Showalter 1953). This is currently tested in an ongoing study to perform space-time
modeling of rainfall distributions. Alternatively to the classification of the rainfall itself, often
a classification based on large-scale atmospheric indices like circulation patterns or weather
patterns is performed to understand the different processes in the hydrosphere (Bárdossy and
Filiz 2005; Huth et al. 2008; Hofstätter, Chimani, Lexer, and Blöschl 2016). Compared to the
classification based on rainfall characteristics, such a hydroclimatic classification focuses more
on large-scale patterns, making it harder to interpret and to apply for small-scale processes
like flash floods, where small-scale processes of rainfall and catchment characteristics play a
major role (Tarasova et al. 2019). The proposed classification based on rainfall, considering
Yevjevich’s threshold approach, instead is developed more in the spirit of the flood classifi-
cation proposed in the first example, where also local dynamics (of hydrographs) are directly
classified (Fischer et al. 2019). It might therefore be beneficial in small-scale applications like
flood-forecasting and rainfall-runoff modeling.

The first three examples have in common that they not only introduce statistical concepts
to cope with heterogeneity in environmental data sets, they also increase the physical knowl-
edge that is included in statistics. This provides a better interpretability of the results, an
opportunity to validate the findings, and a chance to improve communication of statistical
results to practice. Furthermore, consideration of heterogeneity in environmental processes
could also lead to improvement in further applications. This also includes a broad range
of statistical models. As suggested in the last example, in temporal modeling, adopting a
single optimization strategy will only improve the performance of the model in the corre-
sponding part of the distribution. This is true not only for a tree-based model considered in
this study, but also for state-of-the-art prediction models for hydrological time series, such as
deep-learning architectures like LSTMs (Hochreiter and Schmidhuber 1997). Although, they
have been shown to provide an improvement for rainfall-runoff modeling in general (Kratzert
et al. 2019a,b; Lees et al. 2021), and also for extremes (Frame et al. 2022), their potential
may not be fully exploited, if they are not directly tailored to the research question, using
an adequate optimization strategy. However, model optimization is not limited to chasing
the best error metric. It should always aim to be process-based, to improve the physical un-
derstanding of the processes specific to the phenomenon under consideration, and to advance
science in general (Strobl and Leisch 2024). With this concept in mind, our last example
specifically showed that not only does model performance suffer from an inappropriate loss
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function, but the selection and parametrization of variables in the model is also affected. Our
study suggests that the parametrization of the model will differ along the range of the target
variable, necessitating the use of different parametrizations or a combination of models if
model predictions are sought for the full time series in the presence of process heterogeneity.
All examples demonstrate how incorporating process heterogeneity leads to enhanced meth-
ods that address a broad range of research areas and are crucial for various applications.
This calls for further model developments. Our study showed that mixture distribution ap-
proaches provide more comprehensive event descriptions and accurate predictions. Accurate
extreme value statistics are essential for water management tasks such as reservoir and dam
design, flood protection planning, and managing the residual risk of overtopping. This in-
volves disciplines from meteorology, hydrology, and natural hazards, to risk research, spatial
planning, social sciences, and policy. Often, both flood peak and volume are critical, which
are marginals of the same event distribution. In this context, an extended TMPS method
would be particularly suitable for estimating multivariate design values. For drought man-
agement, as another example, seasonal minima are often relevant for tasks like designing
water treatment plants or for ecosystem assessment (WMO 2008; DWA 2022). This calls for
specific methods, including seasonal models such as the ones presented in this paper, and
multivariate model extensions. Future research may focus on compound prediction methods
for seasonal and annual characteristics of multiple variables, such as streamflow, temperature,
and nutrients. These should be supported by operational tools such as calculation software
or regionalized water resources maps to transfer science into practice.
Accurate rainfall distributions through rainfall clustering benefits various applications, such as
rainfall generators. Rainfall is essential for agriculture and forestry, but it also poses natural
hazards like soil erosion, landslides, debris flows, and rockfalls. Extending our mixture models
with hybrid distributions appears beneficial for better covering the entire range of rainfall,
from dry spells to extreme events. Real-world applications that will benefit from more process-
realistic models include rainfall simulations used for soil erosion and flood design, as well as
rainfall forecasting. Studies such as Goodarzi, Banihabib, Roozbahani, and Dietrich (2019)
have shown the advantages of advanced statistical models in operational forecasting. These
methods can also inform climate impact projections, as demonstrated by Parajka et al. (2016)
and Laaha et al. (2016) in the context of droughts.
Finally, incorporating process heterogeneity enhances not only distribution approaches but
also spatio-temporal models. Our research highlights the dangers of ignoring process hetero-
geneity in temporal models, which can lead to inappropriate parametrizations and biased pre-
dictions. Therefore, addressing process heterogeneity in model design – by including appropri-
ate model structure, optimization criteria, and process-oriented variable selection – is crucial.
Similar benefits, as found for temporal models, are expected in spatial and spatio-temporal
modeling contexts. This is illustrated by Laimighofer and Laaha (2025), who demonstrated
the advantage of incorporating deterministic trend and seasonality components with machine
learning. Their advanced explainable machine learning method outperformed simpler models,
further showcasing the benefits of process-based statistical models. Moreover, our experience
from transdisciplinary projects shows that better representation of processes in stochastic
models, achieved by considering heterogeneity, also increases acceptance in practice. This is
particularly evident in the field of machine learning, where the “black box” nature of some
methods is often criticized.
In summary, this study should be seen as an encouragement to better understand statistical
assumptions in the applied models and to enrich the physical knowledge included in environ-
mental statistics. Heterogeneity of processes often turns out to be an obstacle in modeling.
The approach of including heterogeneity in the statistical models could be seen as an alter-
native to the development of more complex models that can cope with the variability and
heterogeneity in the data, which often suffer from limited data bases. While both perspectives
offer important knowledge on the statistical theory, consideration of heterogeneity in com-
bination with a linkage to physical processes could also improve interdisciplinary knowledge
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transfer. In some instances, even the combination of both approaches could be beneficial,
developing more sophisticated models as well as increasing the incorporated statistical and
physical knowledge.
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