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Abstract

We investigate suitable methods for clustering multivariate ordinal data assuming that
the data are collected in surveys with item batteries on the same ordinal answer format
and that respondents are to be grouped to characterize different answering patterns and
tendencies. We consider heuristic partitioning methods and model-based methods which
fit within the flez-scheme proposed by Fritz Leisch for clustering, in combination with
different variants of scale handling (numerical coding, nominalization and respecting the
ordinal scale). The performance of the methods to extract the true clustering structure
is assessed in an illustrative simulation study using artificial data where the number
of observations, the number of variables and the number of response levels as well as
the difficulty of the clustering problem are systematically varied to highlight in which
situations certain methods might be preferable. By extending the flexz-scheme with new
methods, which we provide in our R package flexord, we help pave the way for future
research on ordinal data clustering with even more complex and diverse data-generating
processes.

Keywords: ordinal data, partitioning clustering, model-based clustering, flex-scheme.

1. Introduction

Finding groups in data is a common research aim in many fields, including for example market
research, education, or health care (Ghosal, Nandy, Das, Goswami, and Panday 2020). The
data used in these applications usually come from surveys where answers to item batteries
are collected on ordinal scales. Ordinal scales are valued for their ease of administration amd
various types of ordinal scales are commonly used, in particular with respect to the number
of response options offered to respondents typically ranging from two-point to eleven-point
options, see, for example, Taherdoost (2019). However, data collection using ordinal scales
leads to challenges during data analysis as many of the usual default analysis methods have
been developed for either metric or nominal data.

“Clustering” is an umbrella term for a wide array of unsupervised methods designed to find
groups in data. These methods are commonly differentiated into distance-based (hierarchi-
cal or partitioning) and model-based clustering methods (Dolnicar, Griin, and Leisch 2018,
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pp. 75-142). The first approach assigns cluster memberships by minimizing distances be-
tween cluster members, i.e., partitioning the observations into groups such that they are
similar within groups, and the second via cluster-specific distributions.

In their extensive work on partitioning and model-based clustering, Leisch (2004, 2006); Griin
and Leisch (2007, 2008) indicated that the choice of algorithm (specifically, the distance mea-
sure and centroid determination mechanism used for partitioning; and the distribution used
for model-based clustering) has a significant influence on any — inherently exploratory — clus-
tering result. For this reason, Fritz Leisch developed the flex-scheme to provide toolboxes
for partitioning and model-based clustering where distance/centroid determination and clus-
ter distribution can be easily switched. This scheme is implemented for the R environment
for statistical computing and graphics (R Core Team 2024) in the packages flexclust and
flexmix (Leisch 2006; Griin and Leisch 2025). These implementations allow to easily con-
sider extensions and variants and compare their results. Additionally, these packages contain
functionalities that mitigate the risk of choosing solutions which correspond to local optima
via automatized re-runs of the algorithm; and they provide tailored visualization tools. The
packages contain eight pre-implemented distance functions!, five centroid functions® and 13
distributions® for clustering. Most of these functions are tailored for interval data, and only
few options for ordinal data are available. However, the packages are designed in such a way
that they can easily be extended to other algorithms.

Different approaches for clustering ordinal data have been pursued in the literature. One
extreme approach is to treat ordinal variables as nominal, i.e., ignoring the ordering of cat-
egories. With this strategy, one can be sure not to violate any assumptions towards the
data. However, treating ordinal data as nominal induces a loss of available methods, and a
loss of power in the methods that are available (Agresti 2010, pp. 2-3). The approach at
the other extreme is to treat ordinal variables as interval scaled, i.e., by assuming categories
as equidistant or by assigning suitable scores. Inspired by the terminology coined by Foss,
Markatou, and Ray (2019) for mixed-type data, we will refer to these two extremes as nom-
inalization and numerical coding. Between these two extremes lie strategies that attempt
to respect ordinal scales, for example by restricting parametric analyses to rely only on the
ordering information of categories (Agresti 2010, p. 4). In this area, approaches differ with
respect to the stringency of assumptions they impose on ordinal scales. For example, Podani
(1999) states that subtractions, multiplications or divisions even of ranks of ordinal raw data,
are only permissible if there are no tied ranks (which will frequently be present for ordinal
response scales in surveys which are inherently limited). Thus, rank operations must be ex-
tended to account for ties. Walesiak and Dudek (2010) established an even more stringent
rule stating that only comparison functions such as equal, greater than, or smaller than are
permissible for ordinal data. In general, ordinal data analysis clearly needs to be performed
within the spectrum between the two extremes of numerical coding and nominalization.

In the field of partitioning algorithms, the best known and most commonly applied methods
that attempt to respect ordinal scales are K-medians and Partitioning Around Medoids using
Gower’s distance extended for ordinal data as proposed by Kaufman and Rousseeuw (1990).
Alternatively, Szepannek, Aschenbruck, and Wilhelm (2024) proposed an adaptation of the
K-prototypes algorithm (which is a K-centroids clustering algorithm adapted to handle both
numeric and categorical variables). Their approach handles ordinal categorical variables via
the extension of Gower’s distance proposed by Podani (1999). In their 2020 paper, Zhang
and Cheung lament the dearth of distance measures available for ordinal variables, and there-
fore develop an automatized distance calculation method, where inter-category distances are

'Buclidean distance, Manhattan distance, maximum distance, Minkowski distance, Canberra distance,
Jaccard distance, the angle between observations, and one minus the correlation between observations.

2Mean, standardized mean, median, a numerical optimizer, and a numerical optimizer with constraints 0
and 1.

3Multivariate Gaussian, inverse Gaussian, lognormal, exponential, gamma, Weibull, Burr, inverse Burr,
multivariate binary, combinations of Gaussian and binary data, Poisson, and factor analyzers.
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102 Ordinal Clustering with the flex-Scheme

iteratively adjusted to optimize clustering efficiency.

Several approaches have also been considered in the field of model-based clustering of ordinal
data. For example, Hennig and Liao (2013) use an adjacent category logit model as an
extension to the latent class analysis model. McParland and Gormley (2016) pursue a latent
variable approach where a multivariate Gaussian latent variable is mapped to an ordinal scale
using suitable thresholds. Furthermore, Jacques, Biernacki, and Selosse developed model-
based clustering algorithms based on their proposed Binary Ordinary Search distribution
(2018; 2020). The extension of the proportional odds model to various clustering applications
was proposed by Costilla, Liu, Arnold, and Ferndandez (2019) and Preedalikit, Ferndndez,
Liu, McMillan, Nai Ruscone, and Costilla (2024). Anders and Batchelder (2015) consider
a clustering approach tailored towards work within the Cultural Consensus Theory that is
based on an ordered polytomous distribution (which is a generalization of the proportional
odds model that allows for category-specific intercepts).

In the literature, clustering of ordinal data has often been addressed in the context of cluster-
ing mixed-type data. In addition, the contributions often take an approach based on mapping
the data to a different scale level or only taking into account either the partitioning or the
model-based framework. In this paper, we consider a clustering task for ordinal data col-
lected on a set of items using the same scale, i.e., the same number of response levels is
available for all variables. We provide an overview of suitable partitioning and model-based
methods in this situation with the flez-scheme allowing for different mappings to scale levels,
and we compare their performance in an illustrative simulation study using artificial data.
The simulation study focuses on the ability of the clustering methods to extract the true
clustering solution in situations with different sample sizes, different numbers of variables,
different lengths of response levels and different difficulty of the cluster structure in the data.
We provide the algorithms behind the methods that had not previously been implemented
into the flez-scheme (or, in some cases, had not yet been applied to partitioning/model-based
clustering of ordinal data at all) in our R package flexord, available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=flexord (Ortega
Menjivar and Ernst 2025), and share the scripts behind our simulations in the reproduction
repository available from Ortega Menjivar, Ernst, Scharl, and Griin (2025).

2. Methods

Table 1 provides an overview on methods for clustering ordinal data which make use of the
flez-scheme. The methods are split by clustering type (partitioning and model-based) and cat-
egorized with regard to their approach to scale handling (numerical coding, respecting ordinal
scales and nominalization). In addition to the methods listed in Table 1, we also consider
partitioning method for ordinal data which do not fit within the flex-scheme: Partitioning
Around Medoids (PAM) in combination with Gower’s distance as well as the GDM2 distance.
The following sections provide more details on all these methods.

2.1. Partitioning methods

Partitioning methods aim at grouping a set of observations into a prespecified number of
disjoint groups K where their union corresponds to the total set of the observations. In
the context of K-centroids clustering, the clustering problem consists of determining a set
of centroids Ck such that the average dissimilarity of each point to the closest centroid is
minimal (Leisch 2006):

1 N
D(Xn,Ck) = N Z d(xy, c(xn)) — rgin,

n=1 K

where Xy = {x1,...,xxN} is the set of observations, Cx = {¢i,...,ck} is the set of centroids
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Table 1: Overview on ordinal methods within the flez-scheme, with partitioning methods on
top and model-based methods at the bottom by scale handling type and distance measure &
centroid /distribution

Partitioning based on K-centroids clustering

|
Scale handling Method Distance measure Centroid ‘
Numerical coding kmeans squared Euclidean distance mean ‘
Nominalization kmodes 1 — Simple Matching Coefficient =~ mode ‘
Respecting ordinal scale  kmedians Manhattan distance median
kGower Gower’s distance for ordinal data numerical optimizer
kGDM2 Generalized distance measure for mode

ordinal data

Model-based using finite mixtures

|
|
|
|
median
|
|
|
|

Scale handling Distribution ‘
Numerical coding normal |
Nominalization multinomial ‘

Respecting ordinal scale  binomial
beta-binomial

and

¢(x) = argmind(x, c)
ceCk

assigns each point to its closest centroid.

To perform K-centroids clustering, one requires a dissimilarity measure between observations
x and potential centroids ¢. In addition, the space considered for observations and centroids
needs to be specified.

Determining the globally optimal solution is difficult and usually an iterative algorithm is
employed to find a solution. The iterative algorithm consists of the following steps:

Step 1: Choose initial cluster centers (“centroids”) at random.
Step 2: Assign data points to the centroid where the dissimilarity is minimal.
Step 3: Determine cluster centroids based on the given partition.

Step 4: Repeat Steps 2 and 3 until the centroids no longer change.

This algorithm solves the K-means clustering problem, when the squared Euclidean distance
is used as dissimilarity measure and the centroids in Step 3 are determined in closed form as
the column-wise mean values across all observations currently assigned to the cluster.

Step 3 results in canonical centroid estimates if the cluster centroids minimize the sum of
dissimlarities to the observations in the cluster. In this case the algorithm converges because
the objective function is monotonically decreasing. However, convergence is only to a local
optimum and depends on the initialization.

Determining canonical centroids requires solving an optimization problem, where the solution
is available in closed form for some cases. If the solution to this optimization problem is not
available in closed form (e.g., when using the Jaccard dissimilarity for binary data), faster
clustering versions are obtained by plugging in different ways to determine the centroids,
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e.g., by inserting the usual K-means step and determining the cluster-specific component-
wise means as centroids. We will to refer to these types of centroids as pragmatic centroids,
as they are chosen for practical reasons, such as speedup or interpretability. For pragmatic
centroids, however, convergence is no longer guaranteed. For more information see Leisch
(2006).

Leisch (2006) presents and compares several variants of K-centroids clustering algorithms,
distinguishing in particular the space 2 of an observation x and the admissible space % for
a centroid c. For p-dimensional metric spaces where observations and centroids are elements
in RP, in particular the following two versions result:

kmeans: uses squared Euclidean dissimilarity d(x,c¢) = ?:1(133' — ¢;j)? and has the cluster-
specific component-wise means as canonical centroids.

kmedians: uses Manhattan dissimilarity d(zx, c) = Z§:1 |z; — ¢;| and has the cluster-specific
component-wise medians as canonical centroids.

Package flexclust provides them by calling kccaFamily () with argument which = "kmeans"
or "kmedians" (Leisch 2006). Both variants may be used for clustering ordinal data. When
using kmeans, numerical coding is assumed for the observations. Using kmedians respects
the ordinal scale when relying on the use of ranks (see the Gower’s coefficient for ordinal data
below and the implementation in package cluster; Maechler, Rousseeuw, Struyf, Hubert, and
Hornik 2024).

In the context of p-dimensional nominal data, the following version results:

kmodes: uses 1 minus the Simple Matching Coefficient as dissimilarity measure, i.e.,

d(ﬂ&',C) _ #{] =1,. pap‘x] 75 Cj}

and has for each cluster the cluster-wise modes (i.e., the most frequent values) as canon-
ical centroids.

Package klaR (Weihs, Ligges, Luebke, and Raabe 2005) provides an R implementation of
this algorithm. This clustering approach is provided in package flexord for the flex-scheme
by providing a function for determining the dissimilarity between data points and centers
and a function determining the centers and by combining them with functions from package
flexclust.

Leisch (2006) also discusses a K-centroids clustering version based on the Jaccard dissimilar-
ity for binary data where either canonical or pragmatic centroids are determined. However,
the clustering of ordinal data is not considered. To obtain K-centroids clustering for ordinal
data, suitable dissimilarity measures for ordinal variables need to be specified. In the context
of mixed-type data, Gower (1971) proposes a coefficient of (dis)similarity for p-dimensional
observations containing dichotomous, qualitative and quantitative variables where the dis-
similarity is obtained as a weighted sum over the variable-specific dissimilarities:

301 Oingd(wig, Trj)
Z?:l 5z‘kj ’

where 6;,; = 1 if x;; and x; are not missing and if not both are 0 for a binary variable j
(corresponding to an asymmetric dissimilarity measure for binary variables).

d(a:i, .’Ek) =

Kaufman and Rousseeuw (1990, pp. 35-36) build on Gower’s coefficient of (dis)similarity
using the same weighted sum approach and extend it to also include ordinal variables. They
propose to replace ordinal observations with their ranks before determining the dissimilarity
for variable j as:

r(@ij) — r(2K)
R; ’

d(zij, Trz) =
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where the ranks assigned take values in {1,2,..., R;} such that equal measurements have
equal ranks and each rank occurs at least once and R; represents the range of ranks of
variable j in the sample.

Package cluster implements the calculation of the matrix of pairwise dissimilarity measures
between N observations in function daisy () based on these ideas. However, the function uses
the internal codes {1,..., M} for an ordinal variable with M levels instead of the ranks and
determines the range based on the sample. This implies that potentially not all ranks, i.e., not
all values in {1,..., R;} may be observed in the data, and that the range is determined based
on the range of the observed internal codes. An alternative extension of Gower’s dissimilarity
to ordinal data is considered in Podani (1999, pp. 335-336) who uses sample ranks with ties
and includes a correction for ties in the dissimilarity measure.

Leisch (2006) points out the need to define the space for the centroids when solving the K-
centroids clustering problem which can correspond to the space of the observations but can
also differ, e.g., in the binary case considered. This aspect is of particular importance in
the context of mixed-type data cases and for ordinal data. To address this issue, Kaufman
and Rousseeuw introduced the notion of a medoid as centroids for partitioning clustering
(Kaufman and Rousseeuw 1990, pp. 68-123). “Medoids” correspond to observations in the
data set, i.e., refer to a row x,, in the data set, which is then used as centroid c¢;. They thus
in general represent pragmatic instead of canonical centroids.

Restricting centroids to observed data points implies that PAM does only require a pairwise
dissimilarity matrix between the N observations as input, i.e., indeed no space for the ob-
servations needs to be defined. If observations are provided, the PAM algorithm starts with
calculating the pairwise dissimilarity matrix. The PAM implementation also includes a build
phase where a good set of initial centroids is identified implying that the clustering obtained
with PAM relies less on a specific random initialization. For these reasons, a distinction will
be made from now on between “classical” K-centroid procedures and PAM.

PAM in combination with Gower’s coefficient of dissimilarity is an established method for
clustering mixed-type or ordinal data and can directly be performed with the implementa-
tion in package cluster. In addition, Gower’s dissimilarity coeflicient for ordinal data may
also be combined with a “classical” K-centroids implementation using the flex-scheme. In
the implementation available in package flexord, the centroids do not necessarily need to
correspond to an observation in the data set. No closed form formulas for determining the
canonical centroids for this dissimilarity are available and an exhaustive search approach may
be pursued where the centroids are determined separately for each variable j by selecting
the response level out of all possible response levels which minimizes the dissimilarity to all
cluster members.

Walesiak (1993) and Walesiak and Dudek (2010) propose a generalized distance measure for
ordinal variables (GDM2). GDM2 only relies on the properties of ordinal variables, i.e., the
notion that two values of an ordinal variable are either equal or the first one is greater or
the first one is smaller. For a given set of observations Xy, they propose to determine the
distance between observations x; and xj using

PN P
1 (ijl D=1 @iljQklj + g aikjak:ij>

dy(zi,zr) = - | 1 -
\/ (Z?:l Y, a?zj) (25:1 iy a%lj)

(1)

with
1 if Tij > Tk,
Qi = 0 if Tijj = Tky,
-1 if Tij < Ty,

where i,k =1,...,N and j = 1,...,p. This implies that dy(x;, xx) € [0,1] for all x;, x) €
Xn.
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This distance measure is implemented in the R package clusterSim (Walesiak and Dudek
2020) such that a distance matrix is returned given a data matrix with N observations and
p variables. The resulting matrix can then be used as input for partitioning clustering with
the PAM algorithm.

Equivalently, the GDM2 distance measure for an ordinal variable j can be defined based
on the relative frequencies of each level of the ordinal variable j in Xy and the empirical
cumulative distribution given by

) 1 3 1
fin(x) = N#{Z =1,...,N|z; = x}, Fin(x) = N#{’L =1,...,N|zy < x}.

By reformulating the GDM2 formula in Equation (1) in this way, we can define for arbitrary
values x € & and c € ¢

Z 5z c l_‘_2FR,N(:U')_FR,N(C‘))_(S:v-:c- f',N(:L")
dN(:n,c)zl 1_(31 (e} (W ‘J j j J’ {zj=c;} /i J)

2 (0 = fan(ea)) (S0 - Fiv(er)) |

with Fj, n defined as

N X 1.
Fjn (@) = Fin(z) = 5 fin(@)

and with dcondition being 1 if the condition holds and 0 otherwise. For the detailed derivations,
see Appendix A.

With this alternative definition, which extends the calculation of the distance to two arbitrary
data points, we are now able to evaluate the GDM2 distance not only in combination with
medoids as centroids, but also in the general K-centroids context where the impact of different
types of centroids can be evaluated. We can thus extend package flexclust to use also GDM2
as distance measure. The implementation in package flexord allows to choose for Step 3 that
either a general purpose optimizer is used to obtain the canonical centroids, or a pragmatic
centroid is chosen, such as the mode as in kmodes.

2.2. Model-based methods

The model-based approach to clustering assumes that the data Xy are generated from a finite
mixture distribution:

N K
= H szfk T |0). (2)

Clusters are also referred to as components in the mixture model setting. That is, each
cluster k € {1,..., K} is represented by a component distribution f; with parameters 6.
Ty, represents the prior probability of each observation belonging to a certain component and
thus corresponds to the cluster size, with 7, > 0 and Zle T = 1.

We define the component distribution for the p-dimensional observations based on the con-
ditional independence assumption to be given by

P
Sr(@n|0k) = [T frj(@nsl0k;)-
j=1

For the purpose of this paper we assume that each fj; is from the same parametric family,
i.e., across variables as well as components. Generally this assumption is not necessary for
mixture models. In particular the distribution fi; does not have to be the same across
variables. A more flexible specification is in general useful for example when modeling mixed-
type data. Note that fi; could also be multivariate if the variables are split into p blocks with
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the conditional independence function applying to the blocks and a multivariate distribution,
such as for example a multivariate normal distribution, used for a block.

When using mixture models for clustering, the corresponding estimation problem is twofold:
(1) the parameters 6y of each component and the prior weights 7, need to be estimated
and (2) the cluster memberships for each observation need to be determined. Each problem
individually would be easily solvable if the solution to the other were available, i.e., given the
cluster memberships parameter estimation could be performed on subsets of the original data,
and if the parameters were known one could assign observations to the component where they
were most likely generated from.

This aspect is exploited by the Expectation-Maximization (EM) algorithm (Dempster, Laird,
and Rubin 1977). The EM algorithm is often used for maximum likelihood estimation but
is equally applicable for maximum a-posteriori estimation. In general, the EM algorithm is
useful in a missing data context where the complete-data log-likelihood or posterior is easier
to maximize. In mixture models, the missing data correspond to the cluster memberships.
The likelihood of a mixture distribution can be unbounded leading to spurious solutions. A
Bayesian regularization approach corresponding to maximum a-posteriori estimation can be
employed to avoid this (Fraley and Raftery 2007).

The EM algorithm is an iterative estimation scheme where each iteration consists of both, an
E-step and an M-step. The E-step determines the expected complete-data log-likelihood or
posterior given the observed data and current parameter estimates. The M-step maximizes
the expected complete-data log-likelihood or posterior with respect to the parameters.

For mixture models, the complete-data log-likelihood or posterior is linear in the missing infor-

mation. The E-step consists of computing for each observation n = 1,..., N the conditional
probability that object n belongs to the kth component:

. e 1 (2 | O

Znk = ( n’ ) . (3)

S T fi(a]05)

The M-step then estimates parameters 0, and 75 given the conditional probabilities Z,.
Both steps are iteratively computed until convergence. Based on the parameter estimates
obtained at convergence, observations are assigned to the cluster with the highest conditional
probability Z,x. Given its iterative nature, the results of the EM algorithm heavily depend on
its initial values. As such it is common to re-run the algorithm multiple times with randomly
chosen starting values in order to alleviate this dependence (Biernacki, Celeux, and Govaert
2003).

The R package flexmix implements the EM algorithm in a way that is easily extendable. In
order to extend the package with a new distribution one needs to implement two ingredients:
(1) the likelihood contribution of each observation and (2) a weighted estimator for the pa-
rameters of the component distributions. For the purpose of this paper this was done for the
distributions listed in the following and made available in package flexord.

Normal distribution

When treating ordinal data as interval scaled, any mixture model for metric data may be used,
with the normal distribution representing the default choice as cluster distribution (Scrucca,
Fraley, Murphy, and Raftery 2023). Based on the conditional independence assumption, a
univariate normal distribution is assumed for each variable and cluster with density given by:

1 (g — purj)?
2 nj J
Trj(@njlpng, ok;) = = OXp (— 52
\/ 270 Okj
with means p; and variances a,%j for each variable and cluster. For small values of O']%j, the

density takes large values which tend towards infinity in case the variance tends towards zero.
Le., the density is unbounded for zero values of the variance (Fraley and Raftery 2007).
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In order to avoid this problem, we use Bayesian regularization and we impose Bayesian reg-
ularization on both parameters. For the mean, a normal prior is used conditional on the
variance

2 2
plo” ~ N(up,0”/kp).
For the variance, an inverse gamma prior is used

0% ~ inverseGamma(vp /2, (5 /2).

This is the conjugate prior for the parameters of the univariate normal distribution. The
hyperparameters pup, kp, vp and C% are the mean, shrinkage, degrees of freedom and scale.
The weighted maximum a-posteriori (MAP) estimators for the regularized Bayesian estima-
tion in the M-step are given by:
. KpUp + Mg,
Bej = ————F—
Kp + ng

with the sum of posterior weights given by n; = Z,]Ll Znk and the weighted mean by Zy; =
1/ng Zﬁle ZnkZnj. The MAP estimator for the variance is:

o2 _ Pt Grpng (Bt — 1) & Ene Fuk(ny — )
kj vp +ng+3

We use the same choices for the prior hyperparameters as Fraley and Raftery (2007):

e up: the mean of the data.

e kp: 0.01. For the mean estimator above this hyperparameter can be seen as adding xp
observations with value up to each group in the data. The value of 0.01 was derived by
experimentation in Fraley and Raftery (2007).

o Up: 3.

o (3: var(data)/K? that is the empirical variance divided by the square of the number of
components.

Multinomial distribution

With the multinomial distribution each ordinal variable is treated as unordered, i.e., the
ordinal property is not taken into account. The density is given by

é _
{epj=c}
fri@njlmng) = || 750"
c=1
with probabilities for all categories my; = (7xj1,- - -, Trj,») With 7 corresponding to the reponse

level length and the indicator function § which is either 1 or 0 depending whether the condition
in the subscript is fulfilled or not.

During estimation, parameter estimates may become numerically zero. This violates the
condition that the parameters of the multinomial distribution are positive. Again Bayesian
regularization helps to avoid degenerate solutions by performing MAP estimation after im-
posing a proper conjugate prior (Galindo Garre and Vermunt 2006). The conjugate prior of
the multinomial distribution is the Dirichlet distribution. The parameters of the Dirichlet
prior are selected to correspond to the marginal distribution of the variable across all obser-
vations. These parameters are obtained using unweighted maximum likelihood estimation for
the aggregate data:

1 N
Ak
e = 3 2o Haw=c)
n=1
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for each variable j and category ¢ € {1,...,7}. The weighted MAP estimator of the regular-
ized estimation in the M-step is then given by

A sk N 2
QT e + anl an:(;{xnjzc}
o+ ng ’

Tkjc =

The hyperparameter a can be seen as adding a observations with values 77, to each compo-
nent. In this paper we use as default for regularization o = 1 such that the “distortion” by
the regularization is rather mild but still boundary estimates are avoided.

Binomial distribution

The binomial distribution is a parsimonious way to model ordinal data. The distribution is
characterized by a single parameter corresponding to the mean and has a unimodal shape.
This makes this distribution in particular appealing for a model-based clustering context by
facilitating the interpretation of the clusters.

The component distribution is given as

r—1 i P
Jrj(@nglmi;) = ( )szj’(l — Tgy) "
:L'nj

with the number of categories r and my; the success probability in component £ and variable
J with ,; € {0,...,7r =1}

We use again a regularized parameter estimator, which results from adding artificial obser-
vations to the data set corresponding to the population mean. Firstly, we need the overall
estimates, which correspond to the unweighted maximum likelihood estimator:

J anlr—l’

which is the same as the column means of the original data set with entries re-scaled to [0, 1]
by dividing by the number of categories » minus one.

The MAP estimator for each cluster & and variable j is obtained using the prior m; ~

Beta(a#}, a(l — 77)) using

~x N 5  Tnj
Qmy; + D on=1 Znkoog

o+ ng

7Tkj—

« may again be interpreted as the prior sample size, i.e., the number of artificial data points
added to each component. This avoids degenerate solutions by “pulling” the parameter
estimates toward the aggregate mean in the sample. As a side effect, this causes the estimated
clusters to be slightly more similar to one another which is negligible for small values of «
but can also be done on purpose using larger values, as discussed in Section 3.2.

Beta-binomial distribution

The beta-binomial distribution is an extension to the binomial distribution. Instead of a
single parameter m, this distribution is parameterized by two shape parameters a,b making
it more flexible than the binomial distribution where both, the mean and variance, are fixed
by a single parameter. The density is given by

r—1\ B(xn; + agj, 7 — 1 — xn; + byj)
Jij(@njlars, bij) = e
]( n.7| J .7) Tnj B(akj7bk])

with the beta function
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While maximum likelihood estimation is not available in closed form for the beta-binomial
distribution, one can employ a simple gradient descent method (Kondofersky 2008). The
partial derivatives of the log density are given by

0
Bar, log fij(Tnjlaks, bij) =1 (znj + agj) — p(r — 1+ agj + biz) — Y (ar;) + (aks + bij),
J
0
Dor log fij(znjlaks, bij) =1 (znj + brj) — Y(r — 1+ agj + bij) — ¥ (bky) + ¥ (ar; + biy),
J

where the digamma function is defined as the logarithmic derivative of the gamma function
v(z) = LlogT(:)
z) = —logT'(2).
dz &

To avoid degenerate solutions, we can impose regularization in a similar vein as before, i.e.,
corresponding to adding o observations equal to the population mean to each component. We
obtain estimates for the population mean simply by maximizing the unweighted log-likelihood.
We then regularize the weighted log-likelihood by adding to the weights 2, a constant weight
a/N and multiplying these with the component-specific likelihood contribution of each ob-
servation. Thus we obtain the regularized log-likelihood contribution log Lj; for component
k and variable j as

N
log Lij(xjlag;, be;) = > (an + ) log frj(znjlaks, br;),
n=1
where x; = (1j,...,2nN;).

This results in the following partial derivatives of the regularized log-likelihood contributions:

0 Y a 0
P log Lyj(xjlarg, brj) = (an + N) ( Jar, log fij(Tnjlak;, bej )> :

n=1

o) N o
ab—kjlog Lij(xjlakj, bj) = Z (znk + ) <8b log fk](xnj|akj,bkj)>

n=1

This implies that only the weights 2,5 used for the maximum likelihood estimator need to be
changed to impose this kind of regularization. Hence the (unregularized) maximum likelihood
estimator results as a special case of the regularized maximum likelihood estimator and the
same implementation of the estimator can be used in both cases. Given that this approach
only changes the weights and is agnostic of the specific component density f;; used, one could
also implement this for other component-specific distributions.

3. Simulation study

3.1. Input data

Fop, Smart, and Murphy (2017) conducted latent class analysis with variable selection on a
data set of 464 patients containing the information whether 38 different symptoms of lower
back pain were detected for each patient. They clustered the multivariate binary data using
a finite mixture of independent Bernoulli distributions. They were able to retrieve the three
diagnosis types (Central Neuropathic, Peripheral Neuropathic, and Nociceptive) assigned by
experts to the patients (Smart, Blake, Staines, and Doody 2010, 2011), after selecting a
subset of 11 symptom variables out of the 38 variables. These 11 symptom variables contain
the essential information for retaining the cluster structure while approximately fulfilling the
conditional independence assumption. We use this data set as the basis for our simulation
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study because of its reasonably well-defined cluster structure along roughly two axes, for
which the true cluster memberships are known through the expert diagnoses.

3.2. Study design

In our present work, we fit mixture models to the data set presented in Fop et al. (2017)
using the 11 variables they selected. We use these fitted models as generative models to
create artificial data with a known clustering structure in the simulation study. Similar to
Fop et al. (2017), we also fit finite mixtures with three components where the component
distributions are multivariate independent Bernoulli distributions. In order to be able to
obtain clustering structures of different difficulty, we impose different degrees of regularization
on the component distributions to shrink the component distributions to a common mean
distribution to a varying extent. We then generate data by drawing from the fitted mixture
models using binomial distributions for the components where the parameter for the number
of trials is varied to reflect different lengths of the ordinal response scales.

In this way, we obtain simulated data sets consisting of multivariate ordinal variables that
have the following characteristics:

(1) The data sets are obtained based on a realistic setup for data collected in surveys with
multi-item ordinal answer scales, given that pain scales in medical research are a common
ordinal measuring tool in this context.

(2) The data sets exhibit a clustering structure similar to a structure encountered in real
data.

(3) The data sets may vary regarding their sample size N, the number of levels of the ordinal
response scale r, the number of available variables m, and the difficulty of extracting the
cluster structure via the regularization parameter o.

The true cluster memberships of the observations are known in the artificial data sets via
the simulation process where first the cluster memberships are drawn from a multinomial
distribution.

Fitting unregularized component distributions to the original binary data set resulted in a
generative model where the clustering structure is quite pronounced and the three groups
can easily be extracted regardless of the clustering method applied. In order to be able to
adjust the difficulty of the clustering problem we fitted regularized component distributions
shrinking the component means and thus inducing a higher overlap between components. In
Section 2.2, we considered regularized versions of the component distributions in order to
avoid boundary or degenerate solutions. For such a use case, one usually only adds a small
degree of regularization corresponding to adding only a small number of artificial observations.
For the simulation study, the intention is to impose suitable regularization such that the
components of the resulting mixture models vary considerably in their degree of separateness.
To obtain rather difficult clustering problems, a large degree of distortion of the original cluster
structure needs to be achieved and we have to select rather large values of up to a = 150
for the regularization parameter to obtain data sets with a rather diffuse and challenging
cluster structure. After having fit regularized binomial mixtures for each selected difficulty
(i.e., corresponding to a specific a value), we simulate data sets from the generative process
resulting from the fitted parameters. This strong degree of regularization is only imposed
when fitting the finite mixture model to determine the generative process, but not when
assessing the performance of the different clustering approaches in the simulation study.

We vary the number of variables in the simulation study by using the subset of the most
important variables determined by a ranking of the variables for the given 11 variables. We
determine a simple variable importance measure for each variable by fitting simple multino-
mial regression models where the true clustering of the original data is the dependent variable
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and one of the 11 variables is the independent variable. The log-likelihood of the fitted models
is used to rank variables in their importance. The importance measure is thus only computed
once on the original data set and the ranking of variables is identical across all iterations of
the simulation. For each simulated data set, we select the m variables of highest “importance”
in the original data set.

We investigate the influence of varying the following characteristics:

o the regularization parameter o € {0, 75,150}, where more regularization results in more
diffuse clusters;

o the sample size N € {50,200, 500};
o the number of response levels of each ordinal variable r € {2,...,11}; and

o the number of variables m € {3,6,11}, with the clustering problem being easier with
more variables.

We create 100 data sets for each combination of these factors. This results in total in 27,000
data sets to which we applied the methods presented in Section 2 using K = 3, i.e., assuming
that the true number of clusters is known. Each method based on the flex-scheme is applied
using the default settings in packages flexclust and flexmix for initialization as well as assessing
convergence.

In package flexclust, the K-centroid algorithm is initialized by randomly selecting K distinct
observations from the data set. Package flexmix assigns a-posteriori probabilities based on
random component assignments to K components where a weight of 0.9 is assigned to this
component and 0.1 to all other components and these weights are then re-scaled to sum
to one. Each algorithm is initialized randomly 10 times and the best solution obtained is
retained (corresponding to within-cluster sum of distances in the partitioning case and the
log-likelihood in the model-based case). The maximum number of iterations is set to the
default value of 200. In contrast to the flex-implementations, the number of re-starts is set to
one when applying the PAM algorithm. Each application of a clustering procedure results in
a partition of the data and the clustering performance is measured by comparing the obtained
partition to the true cluster memberships based on the Adjusted Rand Index (ARI; Hubert
and Arabie 1985).

3.3. Results

The simulation results are summarized in Figures 1, 2 and 3. Each figure shows box plots of
the ARI values across the 100 clustering results against the true clusters obtained for each
method and data set characteristics defined by a specific combination of N, m, and r. The
regularization strength « is varied across the three figures, i.e., the difficulty of the clustering
problem increases from Figure 1 to Figure 3. Outliers outside 1.5 times the inter-quartile
range are omitted from the box plots to improve readability.

Each of the figures shows the results for the partitioning methods on the left and for the
model-based methods on the right. Among the partitioning algorithms, we only show in
Figures 1, 2 and 3 the version of the kgower algorithm where we use the canonical centroid,
as the alternative version shows results that are virtually equal to kmeans, for more details
on this see below. Thus, we show 11 of the 12 evaluated algorithms in the figures. The
sample size is varied in the columns and the number of variables in the rows. In each panel,
the response level length is on the z-axis and the box plots showing the performance of the
different methods for the same data setting are grouped together. In general, the clustering
information in the data increases with the number of observations, the number of variables
and the response level length.

Figure 1 shows the “easy” clustering case, where a regularization parameter of & = 0 is used
to obtain the generative model and the resulting clusters are well separated. In this “easy”
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case, we can see that most algorithms manage to retain the true cluster structures well (with
a median ARI of around 1). This holds in particular true for data sets containing many
variables and a high response level length regardless of the sample size. In these cases only
using kmodes, i.e., imposing a nominal scale, for the partitioning methods induces solutions
where the ARI is not around 1. In general retaining the true cluster structure is harder when
fewer variables are available.

With respect to the partitioning methods, it can be observed that kmodes struggles with
higher response levels regardless of sample size and number of variables and also the methods
based on the GDM2 distance perform considerably worse than those using either numeric
coding or making stronger assumptions about differences between scale levels for the same
number of observations and variables, and response level length. Overall, kmeans as well as
kmedians and kGower provide good results in case the response level length is at least five.

The model-based methods in general perform poorly for three variables in combination with
a multinomial distribution for the components, while the performance is very good in case the
response level length is at least five and a method is used which either uses numeric coding or
respects the ordinal scale. In contrast, for six variables using regularized normal distributions
for the components consistently results in poor clustering performance. In this case using
either a nominal scale or respecting the ordinal scale gives good results in case the response
level length is at least five.

The tendencies described above are very similar for the “intermediate” clustering case with
regularization parameter o = 75, which is shown in Figure 2. Naturally, ARIs are on average
lower and show more variability, with a higher variability for partitioning methods than
for model-based ones. In general, clustering solutions obtained with methods where ordinal
scales are respected tend to outperform numerical coding and/or nominalization. Again,
for partitioning clustering, nominalization via kmodes gives extremely poor results. Also
imposing strict assumptions regarding ordinality leads to worse results than numerical coding
or applying more lax assumptions regarding ordinality. In the intermediate case, PAM: Gower
(partitioning around medoids via Gower’s distance) is slightly more unstable in several data
situations than kmeans or kmedians, but overall, the performance is very comparable.

For the “difficult” case with more diffuse clusters and a regularization parameter of o = 150
(see Figure 3), model-based methods tend to outperform partitioning methods and numerical
coding does a bit worse on average than either nominalization or respecting ordinal scales.
Among the partitioning methods, nominalization should be avoided. The methods that re-
spect ordinal scales all show very similar performance (with PAM:GDM2 doing slightly worse),
while numerical coding via kmeans tends to perform similarly if not better.

In summary, the results obtained across the three evaluated levels for « (i.e., the different dif-
ficulty levels for clustering) as well as across the different values for N, m, and r indicate that
respecting ordinal scales via model-based clustering using either a binomial or beta-binomial
distribution shows good clustering performance in most of the evaluated data scenarios when
taking both the median ARI and the range of the ARI into account. The results of these two
methods slightly differ depending on the specific data situation but overall, the results are
very similar (with equal ARIs for 49.1% of the data sets, and ARIs that are within +0.05 of
each other for 73.0% of the data sets).

Also, nominalization via model-based clustering with a multinomial distribution tends to
produce good results. In comparison to kmeans, which is the best contender among the par-
titioning methods, model-based clustering via a multinomial distribution produces clustering
with an equal or higher ARI for 58.2% of the data sets.

Among the partitioning methods, numerical coding via kmeans is the algorithm that provides
the best results in most data situations, with kmedians in general being a close second. For
the partitioning methods that rely on respecting the ordinal scale, we take a closer look at
the results using Gower’s distance and the GDM2 distance. We applied Gower’s distance
in combination with canonical centroids calculated via a numerical optimizer and pragmatic



Austrian Journal of Statistics

centroids via medians for K-centroids clustering; as well as via medoids as pragmatic centroids
via PAM. kGower using medians as centroids brings the same results as kmedians in 96.4%
of cases and can thus be considered equivalent in this context (and is thus excluded from the
figures). kGower using a canonical centroid outperforms its PAM pendant for 43.9% of the
cases. This happens especially for data sets with a higher response level length 7.

Regarding the GDM2 distance, we have results using PAM as well as K-centroids clustering
with the mode as pragmatic centroid. As already discussed, very stringent assumptions
regarding ordinality bring worse results in the partitioning case, and the overall comparison
shows that these two algorithms only manage to beat kmodes. Comparing the two indicates
that kGDM2 has a very slight edge of being equal or better for 56.4% of the cases. The K-
centroids clustering approach tends to do better in situations with a higher response level
length r, while PAM tends to do better in situations with a lower r.

3.4. Discussion

We evaluated the following methods, categorized by their assumptions towards ordinal scales,
in our simulation study:

(a) Numerical coding: We used a regularized normal distribution for model-based clustering
and kmeans in the partitioning case.

(b) Nominalization: We used a regularized multinomial distribution for model-based cluster-
ing and kmodes in the partitioning case.

(¢) Respecting ordinal scales: We compare two distributions, specifically binomial and beta-
binomial distributions for model-based clustering; and among the partitioning methods
we compare 4 K-centroids algorithms (K-medians; K-centroids clustering with ordinal
Gower’s distance, both in combination with a numerically optimized centroid, as well
as with cluster-wise medians as centroids; K-centroids clustering with GDM2 distance
in combination with modes as centroids) and 2 PAM algorithms (using ordinal Gower’s
distance and GDM2 distance).

The following methods have previously not been implemented in the flez-scheme and are now
available in package flexord:

Model-based clustering: regularizations for beta-binomial, normal and multinomial dis-
tributions.

Partitioning clustering: kmodes based on the simple matching distance and modes as cen-
troids, kGower using the ordinal Gower’s distance with adapted numerical optimizers for
obtaining the centroids, and kGDM2 based on the pairwise GDM2 distance. Furthermore,
this is the first work where the GDM2 distance has been reformulated to be applied in
the context of K-centroids clustering with arbitrary centroids.

In our simulation study, model-based methods tend to outperform partitioning methods, and
among the model-based methods, using distributions that respect ordinal scales bring the best
results. However, we have to keep in mind that the simulated data sets were drawn from this
data generation process, giving these methods an advantage over the other methods. Regard-
ing the two model-based methods respecting ordinal scales, the simulation study indicates
that — while results are very similar across all evaluated data situations —, using a binomial
distribution tends to bring better results in cases where the generative model corresponds
to binomial component distributions which are either fitted not regularized at all, or only
slightly regularized, while using a beta-binomial distribution provides superior results when
the simulated data sets are clustered more diffusely.

Other methods that did comparably well in retaining the true cluster memberships were
model-based clustering via a multinomial distribution, and partitioning clustering via kmeans
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(i.e., using a numerical coding) followed by kmedians. Performance degrades for model-based
clustering via a regularized normal distribution; and partitioning clustering with distances
and centroids that respect ordinal scales. The worst results are obtained when performing
kmodes clustering (i.e., using a partitioning method that relies on nominalization).

For model-based clustering via a multinomial distribution, the ARIs obtained are very close
to those obtained when clustering using a binomial or beta-binomial distribution for the
components. There is only one noticeable exception: The multinomial distribution severely
underperforms in data cases that were simulated without any regularization and use only three
variables. When investigating the distribution of ARIs more closely in these cases, we can see
that the ARIs for the multinomial distribution are bimodal. This may be due to identifiability
issues in case only three variables are observed; and the multinomial distribution might be
most strongly affected by this as it is the distribution that uses the least information from
the data and contains a relatively high number of parameters.

Another interesting observation is that the conclusions regarding the scale treatment of or-
dinal variables completely differ between the partitioning and the model-based clustering
approaches. Respecting ordinal scales and nominalization are a good choice for model-based
clustering, but less so for partitioning clustering. For partitioning clustering, algorithms that
apply numerical coding or have comparably lax assumptions regarding ordinality tend to
perform better. Mitigating factors here might be (1) that, when clustering via a regularized
normal distribution, the variance is underestimated, and thus numerical coding produces rel-
atively subpar results in the model-based case. And (2), for the partitioning methods, it could
be that in cases where the differences between the response levels of the ordinal variables are
indeed not equidistant, the methods more geared towards ordinal data would have a higher
chance to show their strengths.

4. Conclusion

In the present study, we exploited and extended the flez-scheme for partitioning and model-
based clustering to investigate different clustering methods for multivariate ordinal data. We
provided an overview of different options available for analysis in dependence of assumptions
made regarding the scale level. We indicated how they may be included in the flez-scheme by
extending the R packages flexclust and flexmix via package flexord. In total, this resulted in 12
different model-based and partitioning algorithms. We reviewed their clustering performance
for ordinal variables in a simulation study evaluating 270 different combinations of data
characterstics on 27,000 data sets. Our contribution to clustering research is thus twofold: on
the one hand, we provide an overview and schematic categorization of both partitioning and
model-based methods for clustering ordinal data and we extend the flez-scheme to handle new
methods in this context. On the other hand, we compare their performance in an extensive
simulation study.

In our simulation study, model-based methods generally outperform partitioning methods.
Among the model-based methods, the strongest performers for clustering ordinal data are
those that respect ordinal scales by using binomial or beta-binomial distributions. Among
the partitioning methods, K-means with numerical coding and K-medians provided the best
performance. The results of the simulation study also highlight the nuanced performance
differences obtained depending on the scale type imposed for analysis. In general, model-based
clustering benefits from respecting ordinal scales or using nominalization, while partitioning
methods perform better with numerical coding. These findings underline the importance
of selecting suitable clustering methods and scale handling strategies based on the specific
characteristics of the data.

We designed the simulation study to use synthetic data sets generated with a realistic cluster-
ing structure where we could easily vary aspects like number of variables and response level
length, but also the number of observations and the difficulty of extracting the clustering
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structure. This specific study design, however, might have given the model-based approach
respecting ordinal scales an unfair advantage. This aspect should be taken into consideration
when assessing the results. This also suggests that further research is needed to assess if these
conclusions might be generalizable to other data structures and data generating processes.

Further use and extension of the flex-scheme will be helpful in these future endeavors. To
further aid this, we provide the methods that are newly implemented into the flexz-scheme in
the R package flexord (Ortega Menjivar and Ernst 2025), and share the scripts behind our
simulations in the reproduction repository available from Ortega Menjivar et al. (2025).
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A. Further details on the GDM2 distance

Walesiak (1993) and Walesiak and Dudek (2010) define the GDM2 distance matrix for a data
set X with p-dimensional ordinal variables as follows for a pair of observations x; and xy
from Xy

D N oo P o
1 1 (Zj:l Zl:l a;1j0k1; + Zj:l azkjakz]>

dn (i, k) = 5
\/(Z§=1 Yy G%Zj) (ZIJ?:l Sy ailj)

with

if Tij > Ty,
aikj =<0 if :L‘ij = :L‘kj,

-1 if Tij < Tk,

where i,k =1,...,N and j = 1,...,p. This implies that dy(x;, zx) € [0,1] for all x;, x) €
XN.
Alternatively, the GDM2 distance can also be defined based on the relative frequencies of each

level of the ordinal variable j in X and the empirical cumulative distribution of variable j
given by

A 1 , 1
fin(x) = N#{Z =1,...,N|zj = x}, Fin(x) = N#{z =1,...,N|zy < x}.

Re-writing the formulas containing a based on the relative and empirical frequency distribu-
tions gives for x;; = xy;:

1

N N

1 ~

N (Z aj; + a?z‘j) =N (E :azzlj> =1- fjn(wij)
=1 =1
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and for x;; < xy;:

1 /N
N ( Zailjaklj + aikjakij) =
=1

A A

= Fyn (i) = fin(wig) + 1= Fyn (@) — (Fn(aig) = fin(ag) - Fin (@) - %

j) = 2E5 N (@) + fivang — %
fj (l’kj)> - (FJ,N(%) - ;fj,N(xz‘j)» - %
When combining the case x;; < x3; with the case xy; < x;;, this results in the following for
Tij F Tyt

1
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with Fj, N defined as

- . 1.
Fin(e) = Fyn(e) = 5 fin(a).

Inserting this into the distance measure gives
dn (i, zk) =
Y (S0 (0= Gayy oy (3 +2 ‘Fj,N(ﬂ«“kj) = Fyn (i) = 0wy sy i (@i5)) )
V(570 = Fa(ei) (240 fixtans))

2
where Ocondition 1S 1 if the condition holds and 0 otherwise.

Based on this, one can define for arbitrary values * € 2" and c € %

S0r L= Sayey (3 + 2| Fin (@) = Fjv(es)]) = Opaymen fin (2))
dN(x,c):l 1_(31 {7¢}N ’jNJ N j’ {z; J}JN]>

? \/(Z§1(1 — fin(e)) (S0 (1= fin(e)))

Based on this alternative definition, the GDM2 distance may be determined for new data
points, and can thus be used in a K-centroids clustering context.
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