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Abstract

The problem of recursive filtering in linear state-space models is considered. The
solution to this problem is the classical Kalman filter which is optimal in the sense that
it minimizes the variance of the estimated states, if the error processes of the state and
observation equations are both Gaussian. However, the Kalman filter is well known to
be sensitive to outliers, so robustness is an issue. Two approximate conditional-mean
(ACM) type filters for vector-valued observations are proposed that generalize existing
univariate filters of similar type to the multivariate case. These new ACM-type filters are
compared by simulations in a multivariate setting with additive outliers to the classical
Kalman filter and the robust least squares (rLS) filter, another approach robustifying
the Kalman filter. Additionally, different settings of tuning parameters and their impact
are investigated. The results of the simulation experiments show that in the presence
of additive outliers the multivariate ACM-type filters not only outperform the classical
Kalman filter, as expected, but they also outperform the rLS filter.

Keywords: additive outliers, ACM-type filter, rLS filter, robust Kalman filtering, state-space
models.

1. Introduction

In 2005 Fritz Leisch was invited to give a seminal talk on behalf of the R Core Team with
the title ‘R: The Language, Common Pitfalls & Underused Features’ at the 1st International
Workshop on Robust Statistics and R in Treviso, Italy. The development of the statistical
software R, in which Fritz Leisch had a major role, enables statisticians in general, but also in
the area of robust statistics, to implement theoretical ideas and to make them available to a
broader user community. To highlight just one of the many developments in the area of robust
statistics, a paper on robust fitting of mixtures by Neykov, Filzmoser, Dimova, and Neytchev
(2007) builds on Fritz Leisch’s seminal and most cited work on finite mixture models (Leisch
2004). This exchange of ideas was not just one way but went both ways as there exists a
paper, too, in which Fritz proposes how to tackle the EM-estimation of mixtures of regression
models in the presence of outliers (Leisch 2008). To his memory we dedicate this article.

In the following, let y,;, t = 1,...,n, denote an observed g-dimensional, vector-valued process
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which is assumed to be a linear transformation of an unobserved p-dimensional signal x; with
some noise added. Then the state-space model can be defined as follows:

e = Pxi1twy, (1)
Yy, = Hzxi+v,,

where x; is the unobserved p-dimensional vector called state vector. The first equation in
(1) is named state equation and the second observation equation. It is assumed that w; has
dimension p, ® is a p X p matrix and H is a ¢ x p matrix. Further, a; is independent of
future values of w;, and w; and v; are zero mean independent and identically distributed
(iid) sequences which are mutually independent but could be non-Gaussian. A more general
definition of state-space models considering correlated errors as well as more complex models
including exogenous variables or selection matrices can be found in Durbin and Koopman
(2012) or Shumway and Stoffer (2025).

Generally, three types of outliers may be considered: innovation outliers (I0), additive out-
liers (AO), and substitutive outliers (SO). In our context, innovation outliers will change the
error process w; of the state equation. Hence, they are propagating as they affect all sub-
sequent observations. Additive outliers will change the error process v; of the observation
equation whereas substitutive outliers will change the observation y, directly. Hence, additive
outliers and substitutive outliers are non-propagating as they have no effect on subsequent
observations. Innovation outliers and additive outliers were first introduced by Fox (1972).
Here we focus on a special case of non-Gaussian distributed v, i.e., on additive outliers. The
original additive outlier model (AO model) is a commonly used model for outliers in the case
of univariate time series. It consists of a stationary core process to which occasional outliers
have been added. For the methods presented here, it is convenient to model the distribution
of v; by a contaminated multivariate normal distribution

CN (v, R, 9, R = (1 — )Ny (p, R) + 4Ny (u'9, R©)) | (2)

where v is the amount of contamination. In addition, Ny(p,X) is the multivariate normal
distribution with d-dimensional mean vector g and d x d covariance matrix 3. The value of ~
defines the percentage of additive outliers within the data. For natural reasons v is expected
to be less than 50%. Although additive outliers were originally introduced for univariate time
series, we will still use this term because we refer to situations where the observation process
Y, is disturbed by a contamination at certain times ¢.

Based on Masreliez’s result (Masreliez 1975) an approximate conditional-mean (ACM) type
filter for vector-valued observations is proposed which generalizes Martin’s result (Martin
1979) to the multivariate case. By extensive simulation studies we show that the suggested
new filter performs better in a multivariate setting with additive outliers than the robust least
squares (rLS) filter, another approach robustifying the Kalman filter, proposed by Ruckdeschel
(2001).

The outline of the paper is as follows: In the next section the new multivariate approximate
conditional-mean type filters are described in detail, whereas the rLS filter proposed by Ruck-
deschel (2001) is summarized in Section 3. In Section 4 the outline of the simulation study is
given and the results are presented. In Section 5 further applications of the proposed filters
are discussed and additional remarks are given. Finally, Section 6 summarizes and concludes
the paper. In Appendix A the classical Kalman filter and smoother is briefly reviewed and
the notation that is used in the paper is specified.

2. Approximate conditional-mean type filtering

The robust filter described in this section is an approximate conditional-mean (ACM) type
filter motivated by Masreliez’s result (Masreliez 1975).
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152 Robust Filtering of State-space Models

2.1. Masreliez’s theorem

If w; and v; are Gaussian a straightforward calculation of x;; = E(x|Yy) with Y, =
{yy,...,y,} yields the Kalman filter recursion equations (see, for example, Jazwinski 1970).
For non-Gaussian v; the calculation of the exact z,, is difficult. However, Masreliez (1975)
made the simplifying assumption that the state prediction density fg,(-|Y—1) is Gaussian,
ie.,

x| 1 NNp(wt\tfhPﬂtfl) .

Note that in the Gaussian case the prediction and filtering error covariance matrices Py
and Py, do not depend upon Y1 and Y7, respectively. (An exact definition of Py,
and Py, is given in Appendix A.) However, one should not expect Py;_; and Py to be
independent of the data in general, and in fact it turns out that in Masreliez’s result both,
Py;_ and Py, depend upon the data in an intuitively appealing manner.

For the following ACM filter theorem it is assumed that the observations are generated by
(1) and that @, the covariance matrix @ of the w; and the density f,, of the v; are known
in advance.

Theorem 2.1. (Masreliez 1975). If ®|Y 1 ~ Np(®yp—1, Pyy—1), t > 1, then @y, =
E(x|Y+), t > 1, is generated by the recursions
Tyt = Typ—1 + Pt|t—1HT‘I’t(yt) ;
Pt|t = Pt|t—1 - Pt|t—1HT\Ij;(yt)HPt|t—1 ) (3)
Py = q)Pt|t(I)T +Q,

where Vi (y,) is a qg-dimensional vector with components

(Vi(y))i = —(9/0y;) log fy,(y|Y 1)

and is usually called the score function for the observation prediction density fy (-|Y—1), and
Ui(y,) is a ¢ X q matriz with elements

(WH(y))ij = (9/0y;)(We(y))i -

If fy,(-|Y¢-1) is Gaussian, it is easy to verify that Masreliez’s filter reduces to the Kalman
filter. In this case we have

Vi(y,) = (I{Pﬂt—lI{T + R>_1('£/t - Hwt\t—l) )
Uy (y,) = (I{Pﬂt—lI{T +R),

where R is the covariance of the observation noise v;.

Although Masreliez (1975) did not specify initial conditions for the above recursions, appro-
priate ;g and Pjjp may be set to &g = E(x1) = py and Pyg = Cov(z1) = Xy, i.e., the
unconditional mean and covariance of 1 (cf. Martin 1981). However, in order to agree with
the definition of the classical Kalman filter recursions we will specify the initial conditions
for the above recursions by setting zgg = E(x0) = py and Pgjg = Cov(zg) = X (see, for
example, Durbin and Koopman 2012; Shumway and Stoffer 2025). This will lead to slightly
different results only for the first few Py;_’s and Py’s.

2.2. Masreliez’s filter for state-space models with additive outliers

Assume in the following that the observation noise v; is contaminated by additive outliers
according to a contaminated multivariate normal distribution given in (2).
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Proceeding from Masreliez’s theorem (cf. Section 2.1) it is also still assumed for the state
prediction density fz,(-|Y 1) that @|Y; 1 ~ Np(2s—1, Pyy—1). Then the observation pre-
diction density fy, (-[Y¢—1) in Masreliez’s theorem is obtained by convolving the prediction
density f,(-|Y¢-1) of z¢|Y 1 ~ Nq(H:ct|t_1, HPt|t_1HT) for z; = Hx; with the observa-
tion noise density fy,.

Now, if the v;’s have a contaminated multivariate normal distribution (2) with g = p(®) =0
convolution of f,, with f,, gives

YY1~ (1 - ’Y)Nq(Hwﬂtfla R;) + ’YNq(Hwﬂtfla Rgc)) )

with R; = HPt|t,1HT+R and REC) = HPt‘t,lH—u—R(c). We can also write the observation
prediction density f,, as

fyt('|Yt71) =gi(. — H$t|t—1) )
where ¢y is obtained by convolution, i.e., it is the density function of the distribution
Nq(07 HPtlt—IHT) * fvt )

and F,, denotes the distribution of the observation noise v;. To ease notation we will further
on set e, =y, — Hayy 1.
Thus, Masreliez’s filter recursions (3) become
Tyt = Typ—1 T Pt|t—1HT‘I’t(€t) ;
Pt\t = Pt|t—1 - Pt|t—1HT\II:5(Et)HPt|t—1 ) (4)
Py = ‘I’Pt\tq’—r +Q,

where Wy(e;) is a g-dimensional vector with components

(Ve(y))i = —(0/0y;) log g:(y)

and V) (e;) is a ¢ X ¢ matrix with elements
(Wi(¥))ij = (0/0y;)(Ve(y))i -

As an illustrative example we plot the score function of a contaminated bivariate normal

distribution at time ¢ for two combinations of values of v, R; and Rgc):

Situation A
. (10 (¢g _( 100 0O
v=0.1, Rt—<01>, R; —<0 100).

Situation B

B B 2 -02 (¢) _( 100 0O
=01, Rt‘(-o.z 2 ) R _< 0 100)'

The resulting score functions are shown in Figures 1 and 2. In all four sub-plots the z-
y plane is the domain of either the contaminated bivariate normal density function or its
score function. In plot (a) the graph of the contaminated bivariate normal density function
is displayed. Plot (b) shows the logarithm of the contaminated bivariate normal density
function as contour plot, where the ellipses connect points of the same value, together with
the corresponding score function, which is in the case of ¢ = 2 a two-dimensional vector field
of gradients. In the lower row of Figures 1 and 2 the graphs of the first and second coordinate
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Figure 1: The contaminated bivariate normal distribution (a) and the corresponding score
function of Situation A as two-dimensional vector field of gradients (b) as well as its first (c)
and second (d) coordinate plotted separately.

of the corresponding score function are shown. The first coordinate is plotted on the vertical
axis in plot (c) and the second one in plot (d).

Now the density function g; can be represented as
g1(et) = |Stlg(Sier) , (5)
where ¢ is the density function of the distribution
N, (0, Ay) x Fy, B
with
Fo,B(0) = Fo, (Biu) ,
and Sy, A; and By are appropriately specified.

It is easily proven that (5) is valid if F,, is Gaussian or a mixture of Gaussian distributions with
component-specific mean vectors 0 and arbitrary covariance matrices. As in the univariate
case, this is generally not true if 7, is non-Gaussian.

Hence, in the case of F,, being a contaminated multivariate normal distribution (2) with
= pl9 =0, if we set

S, =v,D;'*v]
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Figure 2: The contaminated bivariate normal distribution (a) and the corresponding score
function of Situation B as two-dimensional vector field of gradients (b) as well as its first (c)
and second (d) coordinate plotted separately.

with Ry = V,D\V] = HPy, 1H' + R, and further,
A, =S HP,, \H'S,, and B,=8;",
we get
9(w) = 9q(u; 0, A¢) * [(1 = 7)| Bl (Biu; 0, R) + 7| Bylioy(Byui; 0, R©)|
= (1=7) [pa(;0, A7) 04 (u; 0,(B; ) ' RB; )| +
v [0a(;0, A1) 5 0y (u; 0, (B ) TR B
= (1= 7)pg(u; 0, I,) + vp,(w; 0, S, RV S,) |

where pg4(-; p, ¥) denotes the density function of the d-dimensional multivariate normal dis-
tribution Ny(p,X). To emphasize the fact that the (1 — +)-weighted part of the density
function g is the density of the ¢g-dimensional standard normal distribution N;(0, I,;) we drop
the subscript ¢. The matrix D; denotes the diagonal matrix containing the eigenvalues of Ry
and V7 is the matrix of the corresponding eigenvectors.

If v =0, i.e., in the pure Gaussian situation, the idea is simply to standardize &; by S;. In
cases where only few outliers are expected ¢g; may be still approximated by a multivariate
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Gaussian distribution with mean vector 0 and covariance matrix R, = HPy,_H T+ Ras
before.

Note that Sy is simply the square root of the inverse of Ry, i.e., S;S; = Rt_l. Note further

that S = VD, 1 2VtT is symmetric and is just a distortion of the g-dimensional space
without any rotation.

Based on the same considerations as before an approximation of the score function ¥; can be
obtained:

\I’t(Et) = St\Ij(StE?t) s (6)
and
\Ilg(é't) = St\III(St&g)St s
where ¥(S,e;) is a g-dimensional vector with components

(Y(y))i = —(0/0yi)log g(y)

and ¥'(Sie;) is a ¢ X ¢ matrix with elements
(U'(y))i; = (0/9y;)(¥(y))i -
This yields simplified versions of (4):

Ty = Typ1 + Pt|t—1HTSt‘I’(St€t) ,
Py =Py — Pt|t—1HTSt‘I’/(St€t)StHPt\t—l ) (7)
Py =dP @' +Q.

2.3. ACM-type filters for state-space models with additive outliers

Since Fy, will rarely be known in practice, we follow on the same lines as proposed by Martin
(1979). Therein he suggests how to define an approximate conditional-mean (ACM) type filter
for autoregressive models of order p. We now generalize his results and define a multivariate
approximate conditional-mean (ACM) type filter for state-space models with vector-valued
observations.

Like for univariate M-estimators the score function W is replaced by a good robustifying psi-
function 1, which is bounded and continuous and leaves “small” vectors unchanged. Again,
let

($:8) ' =R, =HP,, \H +R,
where R is the covariance matrix of the uncontaminated multivariate Gaussian distribution
of the observation noise v;. Then, noting that e; = y, — Hx;_1, the recursions (7) are
Tyjp = Tyjp—1 + Pt|t—1HTSt¢(St(yt — Hzxy 1)) ,
Pt|t = Pt|t—l - Pt|t—1HTSt¢/(St(yt - Hwt\t—l))StHPﬂt—l ) (8)
Py = 2Py @' + Q.

with @y, = ®x;_1);_1. Further, (S (y,—Hwxy;_1)) is a g-dimensional vector and ¢’ (S (y,—
Hz,;_,)) denotes a ¢ X ¢ matrix with elements

(W' (¥))ij = (0/9y;)(¥(y)): -

In the univariate setting psi-functions are defined in a way that they leave small values
unchanged whereas large values will be bounded or even set to zero as for redescending psi-
functions. One way to extend this approach to the multivariate case is to apply it to the
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Figure 3: First (a) and second (b) coordinate of the approximated score function of the
contaminated bivariate normal distribution of Situation A.
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Figure 4: First (a) and second (b) coordinate of the approximated score function of the
contaminated bivariate normal distribution of Situation B.

length of a vector, i.e., the direction of the vector remains unchanged and only its length
is altered. We therefore suggest to define a multivariate analogue of Hampel’s three-part
redescending psi-function in the following way:

s if [[s][<a
- - ﬁs if a<|s||<b
VY (s) = a i ’
14 (8) (e — HSH)H%” if b<|s|<c )
6 it o< |-

Furthermore, we propose to use the multivariate analogue of Hampel’s two-part redescend-
ing psi-function where we set a = b in the robustifying psi-function 1 of the above filter
recursions. Figures 3 and 4 show the approximated score functions of Figures 1 and 2 us-
ing the approximation (6) and the multivariate analogue of Hampel’s two-part redescending
psi-function with parameters a = b = 2.5 and ¢ = 5.0. Plot (a) shows the graph of the first
coordinate of the approximation of the score function originally displayed in plot (c), whereas
plot (b) corresponds to the original plot (d).

Hence, the ACM filter for state-space models based on the multivariate analogue of Hampel’s
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two-part redescending psi-function has the appealing feature that x;; = ®x;_;_; and Py, =
P,,_, by virtue of wgﬂ)(s) = w’%)(s) = 0 if ||s|| > ¢. This characteristic is exactly as

expected from an outlier-rejection rule in the filtering context.

2.4. An alternative ACM-type filter for state-space models with additive
outliers

We note that the weighting in the correction step of the univariate ACM-type filter as well as
of the multivariate one is a discontinuous function if using Hampel’s redescending psi-function
g4 or its multivariate analogue w;ﬁ). For the univariate case we have explicitly implemented
the first derivative of Hampel’s psi-function, whereas for the multivariate case the calculation
of the Jacobian matrix is accomplished via numerical differentiation.

To illustrate why this can be problematic, we give an example in the following. Let Ay, =
y,— Hzyy = (—3.33, 3.73)" and compute the first derivative of Hampel’s multivariate psi-

function w%) with a = b = 2.5 and ¢ = 5.0 using numerical differentiation. The resulting
Jacobian matrix is given as

(m)’ o g (m) [ 1473131 x107%  —3.093866 x 10~
(wHA (Ayt))w - (8/891)(¢HA (Ayt))l - ( —1.650248 x 10—05 3.465155 x 10—05 ’

although it should be equal to Oz as ||Ay,|| = ||(—3.33,3.73)T|| = 5.00018 > c. More-
over, note that the Jacobian matrix is not symmetric anymore which yields non-symmetric
prediction and filtering error covariance matrices.

To avoid discontinuities in the univariate case, the first derivative of the psi-function may be
replaced by a continuous weight function

w(r) =¥ua(r)/r (10)

as already proposed by Martin and Thomson (1982).

To avoid discontinuities in the case of vector-valued observations Gandhi and Mili (2010)
proposed to apply psi-functions as well as weight functions coordinate-wise which will bound
the effect of the residuals but will change their direction in space.

An alternative approach may be to reformulate the multivariate analogue of Hampel’s re-
descending psi-function given in (9) as follows:

W (s) = wia(lsl) s, where

1 if r<a
i} e if a<r<b
Via(r) = (c—r)k if b<r<c
0 if e<r.

Note that in RT the function 1% ,(r) is equal to the continuous weight function w(r) given
in (10). Now, to ease notation we will set Ay, =y, — Hx;_; and propose a new correction
step replacing the recursions (8) by
Tyt = Tyjp—1 + Pt|t—1HTRt_1w}{A((Ay;rRt_lAyt)l/Q)Ayt )
Py =Pyy1 — Pt\t—lﬂTRfllZf}}A((Ay;erlAyt)l/Q)HPt\tﬂ ;
Py =®P @' +Q.
We will refer to this variant as alternative ACM-type filter (ACM2) in the remainder of the

manuscript. Note that |S;Ay,|| = (Ay/ 8:S:Ay,)'/? = (Ay] R7'Ay,)'/? is the Maha-
lanobis norm of Ay, with respect to the multivariate Gaussian distribution N, (0, R;). This
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avoids the calculation of Sy, the square root of the inverse of Ry, too. A similar approach was
used by Boudt and Croux (2010) to bound the effect of returns in a multivariate GARCH
model.

3. The robust least squares (rLS) filter algorithm

Ruckdeschel (2001) proposed an alternative robustified version of the Kalman filter which
is briefly reviewed in the following. For details the reader is referred to Ruckdeschel (2000,
2001).

The idea is simply to reduce in the correction step (A.3) of the classical Kalman filter the
influence of an observation y, that is affected by an additive outlier. Instead of K:e; with
et =y, — Hxy; 1 a Huberized version of it is used, i.e.,

b

Hy(K =K in{l, ———
b( tet) t€¢ mln{ ) HKtEtH} )

so that the obtained result will be equal to the one of the classical Kalman filter, if || K&;]| is
not larger than b. If on the other hand ||K;e|| exceeds the value of b, the direction of K&,
will remain unchanged but it will be projected on the g-dimensional ball with radius b, i.e.,
its influence is bounded by the value of b.

Hence, these modifications almost yield the classical Kalman filter recursions with the only
exception of replacing the first line of the correction step in (A.3) by

xyy = Xy + Hy(Ki(y, — Hxy1)) -

Ruckdeschel (2001) proved that the rLS filter is SO-optimal under certain side conditions.
The term SO stands for substitutive outlier and means that, instead of disturbing wv;, con-
tamination affects y, directly, replacing it by an arbitrarily distributed variable y} with some
low probability.

Note that the calibration, i.e., finding b to a given loss of efficiency, has to be done beforehand.

4. Simulation study

To test the performance of the multivariate ACM-type filters three different state-space mod-
els with different additive outlier situations and different amounts of contamination were
simulated and the results were compared to those of the rLS filter.

Example 4.1. For the first state-space model the following hyperparameters were used:

po = (0,007, 3o = 02x2 ,

0.5 0.3 3 2
® = ( 0.6 0.5 > , Q= 2 3 > ’

1 —1 2 —0.2
H_<O 1 ) ’ R= —-0.2 0.5 ) ’

where 0,, denotes the p X p zero matrix.

The v;’s of the observation process were simulated from a contaminated bivariate normal
distribution (2) defined by

<1—v>Nz<<8),R>+7N2<<8>,<180 180)>.

159
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Example 4.2. For the second state-space model the following hyperparameters were used:

“0:(2070)T7 z:0_02><27
11 0 0

® = ( 0 0 ) ’ L0 9 ’
03 1 9 0

H ( —-03 1 ) ’ L0 9

Note that the first coordinate of the above state process is a random walk and therefore
non-stationary, whereas the second coordinate is just white noise.

Here the v;’s were simulated from a contaminated bivariate normal distribution with a con-
taminating distribution given by

(1—7)/\/2((8>7R)+7Nz(<§g>a<0(')9 099>>.

Note that the mean of the contaminating normal distribution, p(%), is now unequal to zero. In
the original work by Martin (1979) it was assumed that ,u(c) is equal to zero, this assumption
can be further relaxed.

Example 4.3. The third state-space model is taken from Becker (2023). A six-dimensional
Kalman filter is designed to estimate the vehicle’s location in the z-y-plane. We further
assume constant acceleration dynamics. The system state @; is defined by:

P . NT
Ty = (xtaxtaxtaytaytayt)

The vector y, contains the observed x and y coordinates of the vehicle at time ¢,t=1,...,35.
The following hyperparameters were used:

Mo = (O,O,O,O,O,O)T 5 20 = O6><6 )

1 At 05A 0 0 0 110500 0
0 1 At 0 0 0 01 1 00 0
s_|0 0 1 0 0 0 o0 1 00 0
“10 o 0 1 At 0.5A¢ 00 0 11 051"
0 0 0 0 1 At 00 0 01 1
0 0 0 0 0 1 00 0 00 1
S04 4 0 0 0 L1190 0
ATtSAtZAtO 0 0 11000
At? 1
Q= 2 AF 1 A?:‘* A?s3 A?f? oo = (2)(1)(1)828 0.2%,
o 0 0 5 F 5F § 2 2
0 0 0 A2 A At 000 5 11
A2 000 % 11
0 0 0 A% At 1 3
100000 9 0
H_<000100>’R_<09>’

where At = 1s is the time between successive measurements and o2 is a random variance in
acceleration.

Here the v;’s were simulated from a contaminated bivariate normal distribution with a con-
taminating distribution given by

<1—7>N2<<8>,R>+7N2<<8>,<180 180)>.

For all state-space models the contamination v was varied from 0% to 20% by steps of 5%
and 400 realizations for each level of contamination were simulated.
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Figure 5: Boxplots of the median absolute errors of Example 4.1 (a), Example 4.2 (b), and
Example 4.3 (c¢). The rLS filter (rLS) was calibrated to a given loss of efficiency § = 0.1 for
all examples with a clipping value b = 3.7 (Examples 4.1 and 4.3) and b = 2.4 (Example 4.2),
respectively. For the ACM-type filters (ACM, ACM2) the tuning parameters of the multi-
variate analogue of Hampel’s three-part redescending psi-function were set to a = b = 2.5

and ¢ = 5.0 for all examples.

Then the multivariate state processes of each simulated realization of all state-space models
were computed using the multivariate ACM-type filters and the rLS filter proposed in Sec-
tion 2 and by Ruckdeschel (2001), respectively. For the ACM-type filters the multivariate
analogue of Hampel’s three-part redescending psi-function with different combinations of the
parameters a, b, and ¢ was used for all examples. We set the tuning parameters (a, b, c) " equal
to (2.5,2.5,5.0)7, (2.6,2.6,3.6) ", and (3.0,3.0,7.0) ", respectively. These combinations have
already been used in the literature for Martin’s original ACM-type filter which is limited to
the univariate case (Martin 1979). Additional details may be found in Martin (1979), Martin
and Thomson (1982), and Insightful (2001). The rLS filter was calibrated to a given loss of
efficiency § = 0.1 for all models and the clipping value b was set to b = 3.7 in Example 4.1
and Example 4.3 and to b = 2.4 in Example 4.2. As we do not know the amount of contam-
ination in practical applications, setting 6 = 0.1 seems to be a reasonable trade-off between
protecting against outliers and still achieving a relatively high efficiency. Moreover, also the
classical Kalman filter estimates were calculated.

Finally, the median absolute error, denoted by MAFE, between the true state process and the
different filter estimates was computed, i.e.,

MAE%W = median|x; — Zy,||

where @; and Z;; denote the true state vector and the filter estimate, respectively. Addition-
ally, we compute the standard error of the median. It is well known that the distribution
of the median of a sample of size n, from a population having the density function f(z), is
asymptotically normal distributed with mean m and variance

1
nf(m)?

where m is the median of the population (see, for example, Cramér 1946, p. 369). A kernel
density estimator was used to estimate f(z).

Regarding the computation time the rLS filter and the alternative ACM-type filter (ACM?2)
perform slightly better than the ACM-type filter (ACM) once the clipping value b is fixed.
This is due to the fact that additional computations of the Jacobian matrix of Hampel’s
multivariate psi-function have to be done within the correction step of the ACM-type filter.

In Figure 5 the results of the simulation study are presented. For the first simulation experi-
ment (Example 4.1) plot (a) displays the median absolute errors between the true state vector
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Table 1: Median MAE and corresponding standard error of the median (given in parentheses)
of Example 4.1

0% (s.e.) 5% (s.e.) 10% (s.e.) 15% (s.e.)  20% (s.e.)
cKF 97 (01) 1.01(.01) 108 (.01) 1.16(.01) 123 (.01)
LS b=37 1.00 (.00) 104 (.01) 1.09 (01) 116 (.01) 1.22 (.01)
ACM  a=b=25c=50 .98(00) 1.00(.01) 103 (.01) 1.07(01) 111 (.01)
ACM  a=b=26,c=36 .98(.00) 1.00(.01) 1.04(.01) 1.07(01) 111 (.01)
ACM  a=0=30,c=70 .97 (01) .99 (.01) 1.03 (.01) 1.07 (.01) 1.11 (.01)
ACM2 a=b=25¢=50 .98 (.00) 1.00(.01) 103 (.01) 1.07(.01) 1.11 (.01)
ACM2 a=b=26,c=36 .98(01) 1.00(01) 1.04(.01) 1.08(.01) 112 (.01)
ACM2 a=b=30,c=70 .97 (.01) .99 (.01) 103 (.00) 1.07 (01) 111 (.01)

Table 2: Median MAE and corresponding standard error of the median (given in parentheses)
of Example 4.2

0% (s.e.) 5% (s.e.)  10% (s.e.)  15% (s.e.)  20% (s.e.)
¢cKF 280 (03) 3.76 (07) 542 (.18)  8.97 (.29) 13.60 (.32)
LS b=24 321 (.04) 342 (05)  3.58 (05)  3.90 (.06)  4.30 (.09)
ACM  a=b=25c=50 282(03) 295(.03) 2.97(03) 3.06(.03) 3.16 (.04)
ACM  a=b0=26,c=36 282(03) 297(.03) 3.02(.03) 3.08(.03) 3.19 (.04)
ACM  a=b=30,¢=70 279 (.03) 2.95(.03) 2.94 (.03) 3.05(.03)  3.19 (.04)
ACM2 a=b=25c=50 281 (.03) 296 (.03) 2.97(.03) 3.06(.03) 3.15 (.04)
ACM2 a=b=26,c=3.6 282(.03) 297 (.03) 3.01(03) 3.00(03) 3.17 (.04)
ACM2 a=b=30,c=70 2.78 (.03) 2.93 (.03) 2.96 (.03) 3.05 (.03)  3.17 (.04)

and each filter estimate for all levels of contamination. Similarly, the median absolute errors
for the second and third state-space model (Examples 4.2 and 4.3) are seen in plot (b) and (c),
respectively. In general, the MAE increases as the amount of contamination increases. This
is especially visible in plots (a) and (b) of Figure 5. As expected, this difference is largest
for the classical Kalman filter estimates. However, it is also larger for the filter estimates
obtained by the rLS filter than for those of the ACM-type filters.

Note that we omitted the results of the ACM-type filter (ACM) of Example 4.3 in plot (c)
of Figure 5 as for some simulated processes the discontinuity of the multivariate analogue of
Hampel’s psi-function yields non-symmetric prediction and filtering error covariance matrices.
This seems to be an issue especially in higher dimensions.

Moreover, because of the fact that the rLS filter was calibrated to a given loss of efficiency
6 = 0.1 it yields larger errors in the case of no contamination compared to the other methods.
This has already been noted by Ruckdeschel (2001) and is especially visible in plot (b) of
Figure 5. Furthermore, it can be seen that according to the median absolute errors the
ACM-type filter performs better than the rLS filter for all contamination levels.

Additionally to Figure 5 the median MAE of Examples 4.1, 4.2 and 4.3 are listed in Tables 1,
2 and 3, respectively. For each state-space model, all filters, and each level of contamination
the median MAE together with their corresponding standard errors (given in parentheses)
were calculated and the best method for each contamination level is highlighted in bold.

We would expect that the classical Kalman filter always performs best in the case of no
contamination; this is, according to Tables 1, 2 and 3, only true for Example 4.3 (cf. Table 3).
However, it should be noted that in the case of no contamination the classical Kalman filter
and both variants of the ACM-type filter perform equally well for Examples 4.1 and 4.2
(cf. Tables 1 and 2). In the case of outliers, regardless of the level of contamination, the ACM-
type filter performs best. Additionally, there is no major difference in the performance of both
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Table 3: Median MAE and corresponding standard error of the median (given in parentheses)
of Example 4.3

0% (s.e.) 5% (s.e.)  10% (s.e.) 15% (s.e.)  20% (s.e.)
cKF 2.81 (.03)  3.03 (.03)  3.22 (.04) 3.44 (04)  3.59 (.05)
LS b=37 314 (.04)  3.31 (05) 3.58 (07) 378 (.08)  4.15 (.09)
ACM2 a=b=25c=50 286 (.03) 298(.03) 3.03(04) 3.18 (.04) 3.33 (.04)
ACM2 a=b=126,c=36 2.87(03) 299 (.03) 3.10(.04) 320 (.04) 3.35(.05)
ACM2 a=b=30,c=70 282(.03) 2.98 (.03) 3.03 (.03) 3.20 (.03)  3.36 (.05)

ACM-type filter variants regarding the tuning parameters a, b, and c¢. The results in Tables 1,
2 and 3 suggest to set the tuning parameters a, b, and ¢ equal to (a,b,c¢)’ = (3.0,3.0,7.0)7,
if one expects a low to moderate contamination of outliers, and to (a,b,c)’ = (2.5,2.5,5.0)"
in situations with an expected moderate to high contamination of outliers. As we usually do
not know the amount of outliers in practical applications the default values for a, b, and c are
set to (a,b,c)T = (2.5,2.5,5.0)".

5. Discussion

It is worth noting that, following the classical Kalman filter routine, the robustness adjust-
ments only alter the correction step (A.3) of the Kalman filter recursions. Thus, our proposed
filter procedures are strictly recursive and can therefore be applied to more complex mod-
els such as state-space models including exogenous variables or models with time-varying
transition and observations matrices, ®; and H, respectively (see, for example, Durbin and
Koopman 2012; Shumway and Stoffer 2025). An extension to time-varying parameter (TVP)
regression models (see, for example, Lubik and Matthes 2015; Hauzenberger 2021; Hauzen-
berger, Huber, Koop, and Onorante 2022; Lucchetti and Valentini 2024) is straightforward as
these models can be represented as state-space models, too. Additionally, the proposed filters
can easily be used to also robustify the Extended Kalman filter or the Unscented Kalman
filter for non-linear state-space models (see, for example, Wan and van der Merwe 2001).

The proposed robustification of the Kalman filter may be linked to score-driven models that
are also called dynamic conditional score models (Harvey 2013) or generalized autoregressive
score models (Creal, Koopman, and Lucas 2013). A score-driven model can be regarded as
providing an approximation to the solution for the corresponding parameter-driven unob-
served component model (Harvey 2022). The unobserved component model is in state-space
form, and as such, it may be handled by the Kalman filter. The main ingredient in the score-
driven approach is the replacement of the one-step ahead prediction error in the Kalman
filter by a variable that is proportional to the score of an assumed conditional distribution of
the observation at time ¢. Thus, this setup allows the score-driven model to guard against
outliers.

As already mentioned in Section 1 outliers may be propagating or non-propagating, which
induces the somewhat conflicting goals of tracking and attenuation. Here, we focus on additive
outliers, i.e., we are interested in estimating the underlying clean state process x; in situations
where the observed signal y, is contaminated by non-propagating outliers. This is a typical
filtering application. On the other hand, in situations where the state process x; is affected
by innovation outliers we want to follow the state process as quickly as possible. This typical
tracking application was studied in Ruckdeschel, Spangl, and Pupashenko (2014).

Note that the proposed psi-functions allow you to identify outliers on the fly. The psi-function
will downweight an outlying observation if the length of Ay, = y, — Hx,;_; exceeds a certain
value. Thus, it will downweight all coordinates simultaneously. However, there are situations
where only one or more coordinates of an observation are suspect whereas the others are fine.

163



164 Robust Filtering of State-space Models

By downweighting such an observation entirely we may lose valuable information residing in its
uncontaminated coordinates. Hence, another contamination model may be considered, that of
cellwise outliers (cf. Alqallaf, Van Aelst, Yohai, and Zamar 2009). In an autoregressive model
AR(p) of order p outlying observations will typically lead to cellwise outliers. Raymaekers
and Rousseeuw (2024), to their knowledge, have been the first who applied cellwise robust
methods to AR(p) models.

Although the estimation of the model parameters is not the objective of this paper, as we as-
sume they are known, we would nonetheless like to make a few comments on their estimation.
The model parameters may be estimated by maximum likelihood (see, for example, Durbin
and Koopman 2012). However, it is well known that maximum likelihood estimators can be
very sensitive to outliers (see, for example, Neykov et al. 2007). To overcome this problem
robustified maximum likelihood estimators such as the weighted trimmed likelihood estima-
tor (TLE; Vandev and Neykov 1998) or the weighted maximum likelihood estimator (WLE;
Markatou, Basu, and Lindsay 1998) have been proposed. The latter was used to robustly
estimate the unknown parameters of an autoregressive-moving average model by Agostinelli
(2003). Instead of maximizing the loglikelihood directly by means of iterative numerical pro-
cedures we suggest to use an EM-type algorithm proposed by Shumway and Stoffer (1982).
This EM algorithm is not robust per se but it can easily be robustified by using robust filters
and smoothers. This approach using the rLS filter has been studied by Ruckdeschel et al.
(2014).

In general, the number of model parameters grows at a quadratic rate with the process di-
mension. However, knowing the physical properties underlying the process being modeled can
reduce the number of parameters that need to be estimated. Hence, for practical applications
the transition and observation matrices will often be sparse and the covariance matrices will
have a diagonal or block-diagonal structure.

6. Conclusions

Based on the work of Masreliez (1975) and Martin (1979) new multivariate approximate
conditional-mean (ACM) type filters for state-space models with vector-valued observations
are developed which generalize Martin’s results (Martin 1979).

The results of the simulation experiments show that the multivariate ACM-type filters per-
form very well compared to the rLS filter proposed by Ruckdeschel (2001). Additionally, the
results suggest to set the tuning parameters a, b, and ¢ equal to (a,b,c)’ = (3.0,3.0,7.0)7,
if one expects a low to moderate contamination of outliers, and to (a,b,c)’ = (2.5,2.5,5.0)"
in situations with an expected moderate to high contamination of outliers. Moreover, the
ACM-type filters yield remarkably good results in situations where the v,’s have a contami-
nated multivariate normal distribution as well as in outlier situations where the mean of the
contaminating distribution is additionally unequal to zero.

The adaptation to other kinds of outliers, namely innovation outliers and their joint appear-
ance with additive outliers, are the focus of ongoing research.
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A. The classical Kalman filter

The primary aim of any analysis using state-space models as defined by (1) is to find estimators
of the underlying unobserved signal x;, given the data Y5 = {yy,¥s,...,Ys}, up to time s.
If s<t, s=tors>t, the problem is called prediction, filtering or smoothing, respectively.

In addition, the obtained estimators 7; of x; given Y s should be best in the sense of the
minimum mean-squared error. The solution is the conditional mean of x; given Y, i.e.,

T,(Ys) = E(z|Ys) ,

and will further on be denoted by xy,.

If the problem is restricted to the class of linear estimators, the solution to these problems is
accomplished via the Kalman filter and smoother (cf. Kalman 1960; Kalman and Bucy 1961).

In the following we will first focus on the Kalman filter. Its recursions can be split into three
steps:

1. Initialization (¢t = 0):
ZTojo = Mo, Pojo =20, (A1)

where g and 3 are the p-dimensional unconditional mean and p X p covariance matrix
of xy.

2. Prediction (t > 1):
Ty = Pwyqp1

T (A.2)
Py 1=®P;, 1 1% +Q.
3. Correction (t > 1):

Ty = Ty + Ki(y, — Heg_q)
Pt\t = Pt\t—l - KtHPt|t71 ) (A-S)
with K, =P, H' (HP;;, \H +R)™".

The p x ¢ matrix K is called the Kalman gain. The p x p matrix Py;_ is the conditional
prediction error covariance matrix,

Py = E((mt — @) (T — mtlt—l)T‘thl) ,
and the conditional filtering error covariance matrix Py, is given by
_ T
Pt|t = E((wt - $t|t)($t - $t|t) |Yt> .

The p x p matrix Q and the g X ¢ matrix R denote the covariance matrices of w; and vy,
respectively.

We now state the recursions of the Kalman smoother based on Kalman filtering results:
4. Smoothing (t < n):

Ty = Ty_1p—1 + Jt-1 (T — PTi_1p—1)

Py iy =Py — Ji1(Py,, — Py1)J] (A4)
with J;_q = Pt,ut,lqﬁpgtl_l .

Moreover, let fg, (-|Y¢—1) denote the state prediction density, i.e., the density of x; conditioned
on prior observations yi,¥ys,...,y; 1. Similarly, fy (-|Y;_1) is the observation prediction
density conditioned on the past observations.
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