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Abstract

This paper introduces circlus, an R package designed for clustering circular and spher-
ical data using Poisson kernel-based (PKB) distributions and spherical Cauchy distribu-
tions. The package leverages the general framework for Expectation-Maximization (EM)
estimation implemented by package flexmix and provides model drivers for estimating
PKB and spherical Cauchy distributions in the components. The drivers implement two
approaches for the M-step. The first is a direct maximization approach implemented
in C++ via Repp, while the second incorporates covariates by solving the M-step using
neural networks with the torch package. The package is particularly suited for high-
dimensional clustering tasks, such as text embeddings on a spherical space, and supports
models both with and without covariates. As a case study, we apply circlus to cluster
the abstracts of papers co-authored by Fritz Leisch and demonstrate the use with and
without the inclusion of co-author count as a covariate.

Keywords: spherical data, model-based clustering, embeddings, flexmix, R.

1. Introduction

Clustering is a fundamental technique in data analysis and machine learning, commonly used
to uncover underlying patterns in data by grouping similar items. Traditional clustering
methods, such as k-means (Macqueen 1967) and Gaussian mixture models (Dempster, Laird,
and Rubin 1977), assume that data lie in Euclidean space, which works well for many appli-
cations. However, certain types of data, such as directional data, biological data, and text
data, are often more appropriately modeled on spherical or circular spaces. In such cases,
applying Euclidean-based methods can lead to suboptimal or misleading results.

The extension of k-means clustering to spherical data uses the cosine similarity as distance
(Maitra and Ramler 2010) and an implementation for the R environment for statistical com-
puting and graphics (R Core Team 2024) is available in package skmeans (Hornik, Feinerer,
Kober, and Buchta 2012). Similar to how Gaussian model-based clustering is the generaliza-
tion of k-means to a model-based approach (see, for example Griin 2019), mixtures of von
Mises-Fisher distributions (Banerjee, Dhillon, Ghosh, and Sra 2005) have been proposed as
generalization of spherical k-means and an R implementation is available in package movMF
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(Hornik and Griin 2014).

Model-based clustering of spherical data based on finite mixtures is provided for specific
component distributions by separate R packages. E.g., package movMF provides fitting of
finite mixtures of von Mises-Fisher distributions and package QuadratiK (Saraceno, Marka-
tou, Mukhopadhyay, and Golzy 2024) covers finite mixtures of Poisson-kernel-based distri-
butions. However, neither of these packages allows the inclusion of covariates to control
for differences in the component-specific parameters in dependence of covariates. A more
general implementation within the flexmix framework (Leisch 2004), allowing for different
component distributions and the inclusion of covariates, is thus warranted. This gap is filled
by circlus (Sablica, Hornik, Gruen, and Leydold 2024), the R package we introduce in this
paper and that is freely available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=circlus.

Building on the solid foundation provided by flexmix, circlus extends
its capabilities to circular and spherical clustering by allowing to specify
as component distributions the Poisson kernel-based distribution (Golzy QXRE’E’US
and Markatou 2020) and the spherical Cauchy distribution (Kato and
McCullagh 2020). Package circlus contributes new models that enable ) // {\\\
the clustering of data on the surface of a sphere. Two estimation methods
for the M-step are offered for each of the two distributions: one imple-
mented in C4++ for direct and efficient calculation, and another using
neural networks via the torch package (Falbel and Luraschi 2024), which
allows for the incorporation of covariates into the clustering process. This
neural network approach maps the covariate space to clustering parameters, facilitating the
inclusion of additional data, such as metadata or context, in the clustering model.

The rest of this paper is organized as follows: in the next section, we define the Poisson
kernel-based and spherical Cauchy distributions that underlie the models in package circlus.
In Section 3, we discuss the strengths and advantages of clustering on the sphere compared to
Euclidean methods. Section 4 introduces the circlus software package, detailing its architec-
ture and implementation. This is followed by an application section, where we demonstrate
package circlus in action by clustering abstracts written by Fritz Leisch, with and without
the inclusion of co-author count as a covariate. Finally, we conclude by summarizing the key
contributions of package circlus.

2. Spherical distributions for clustering

Various rotationally symmetric distributions have been developed for modeling data on the
unit sphere, including the von Mises-Fisher (vMF) distribution (Khatri and Mardia 1977),
Poisson kernel-based distribution (Golzy and Markatou 2020), and spherical Cauchy distri-
bution (Kato and McCullagh 2020). In more detail, these are as follows.

von Mises-Fisher (vMF) distribution. Let S9! = {z € R? : ||z|| = 1} represent the
unit sphere in R%. A random vector € S9! has a von Mises-Fisher (vMF) distribution
with parameters x > 0 and pu € S% ! if its probability density function is given by
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where H, (k) = oF1(;v+1;k2/4) = Hl;;r)l)l (k) with ¢F; and I, being the confluent hyperge-
ometric limit function (e.g., Mardia and Jupp 2009, page 352) and modified Bessel function
of the first kind (DLMF 2024, Eq. 10.25.2), respectively. The vMF distribution is widely used
for spherical data due to its simplicity, with a concentration parameter x determining the

level of clustering and p as the location.

fVMF(x|H7M) =
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However, due to the exponential decay of its density function, the vMF distribution can
struggle in scenarios with outliers or broader variability, as it tends to sharply cluster data
around the mean direction. This makes it less suitable for datasets that require more flexibility
in capturing heavy-tailed structures. Additionally, while a closed-form expression for the
normalizing constant exists, its computation can be numerically demanding and can easily
overflow for large parameter values (Hornik and Griin 2014).

Poisson kernel-based (PKB) distribution. The Poisson kernel-based (PKB) distribu-
tion provides an alternative with better stability and computational efficiency. The PKB
distribution with parameters 0 < p < 1 and p € S9! has the following density function with
respect to the uniform distribution on the unit sphere:
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For p = 0, this distribution reduces to the uniform distribution on the sphere, and as p — 17,
it tends toward the Dirac distribution centered at u. The PKB distribution belongs to a
family of densities of the form:

f(@) o |lz—pul| ¢, ze8%t £>0.

The PKB distribution arises for £ = d, making it particularly useful for modeling spherical
data. One key advantage is that the PKB distribution allows for straightforward density eval-
uation without the need for complex special functions, unlike the vMF or Watson distributions
(Sablica and Hornik 2023).

Spherical Cauchy distribution. The spherical Cauchy distribution is another member of
the same family of distributions. Its density is closely related to that of the PKB distribution,
and the two distributions coincide when d = 2. The density of the spherical Cauchy distri-
bution with parameters 0 < p < 1 and p € S9! with respect to the uniform distribution on
the unit sphere is given by:
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Similar to the PKB distribution, when p = 0, the distribution reduces to the uniform dis-
tribution on the sphere, and as p — 17, it tends toward the Dirac distribution centered at
78

The spherical Cauchy and PKB distributions have the following advantages compared to
the vMF distribution: (1) They have heavier tails, making them ideal for capturing large
deviations and outliers, much like the role of the Cauchy and Student-t distributions in
Euclidean space. (2) They are much simpler and computationally more efficient to evaluate on
modern accelerators such as GPUs. Both distributions avoid the need for computing complex
normalizing constants that must be sequentially evaluated, which would otherwise hinder
parallel processing on GPUs. The density evaluation for both PKB and spherical Cauchy
distributions essentially reduces to matrix operations, such as computing norms and matrix
multiplications, which are highly optimized for GPU architectures. This allows for efficient
and scalable implementation of spherical clustering, making these distributions particularly
well-suited for modern, large-scale data processing tasks.

The PKB has slightly heavier tails than the spherical Cauchy, offering a good option when
dealing with data containing more extreme outliers. The spherical Cauchy distribution pro-
vides a balance between the traditional von Mises-Fisher and the extremely heavy-tailed PKB,
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making it suitable for data with moderate outliers or when a balance between robustness and
computational efficiency is desired.

3. Clustering on the sphere

3.1. Spherical clustering for high-dimensional data

Clustering data on the sphere has become increasingly important with the rise of high-
dimensional data representations, particularly in natural language processing and machine
learning. Embeddings, such as those derived from models like BERT (Devlin, Chang, Lee,
and Toutanova 2019) or other transformer-based architectures, are often normalized to lie on
the surface of a unit sphere. This normalization occurs because the magnitude of the embed-
dings, which represent the strength or scale of the data points, is irrelevant in most contexts,
what matters is their direction. Clustering on the sphere allows for a better understanding of
relationships between data points, as it operates in the correct geometric space, making the
results more accurate and meaningful.

3.2. Regression-based clustering with covariates

While spherical clustering is powerful on its own, adding the ability to incorporate covariates
into the clustering model further enhances its usefulness. Covariates provide a way to control
for known factors in the data that could influence clustering, allowing the model to focus on
discovering more subtle or latent patterns.

In many practical applications, the data being clustered comes with associated metadata
or known characteristics that can be incorporated into the model. For instance, imagine
clustering the text embeddings of financial reports from various companies. Without any
additional information, the clustering algorithm might primarily group companies based on
their industry or market segment, which is an obvious correlation often reflected in the text
of such reports.

By incorporating covariates, we can “control” for this known information and allow the model
to focus on other latent patterns within the data. For example, if we input the market segment
as a covariate into the clustering model, the algorithm can focus on distinguishing companies
within the same market segment based on their risk exposure, financial strategy, or other
factors that are not immediately obvious from surface-level industry groupings.

Another example is the clustering of patient health records, incorporating age, gender, or pre-
existing conditions as covariates. This approach could allow the model to focus on discovering
patterns related to treatment effectiveness, lifestyle impacts, or specific health risks that are
not simply reducible to demographic categories.

More formally, this approach can be viewed within the framework of model-based clustering.
In this context, we aim to maximize the likelihood of a multivariate mixture model, given by:

n K
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where y; € S is the observed spherical response and z; € R™ the covariate vector for obser-
vation i, m; is the prior probability of belonging to cluster j (with Z]K:l ;= 1), fj(yilAj, z;)
is the spherical density function for cluster j, and K is the number of clusters. In our case,
f; could be the PKB distribution or the spherical Cauchy distribution.

To incorporate covariates into this framework, we link the parameters of the spherical dis-
tribution, u (location) and p (concentration), to the covariates x; through a cluster-specific
linear map represented by the matrix A; € R™*4 This mapping is given by:
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where 0;; € R? is an unrestricted parameter vector characterizing the spherical distribution
for cluster j. The matrices A; contain the learnable parameters and can be estimated using
optimization techniques such as those employed in neural networks.

Since p must lie on the unit sphere and p must remain positive and bounded, a direct linear
mapping is insufficient. For that reason we then link ¢;; to the parameters p and p through
suitable transformations
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This mapping provides a 1-to-1 correspondence between R? and the set of parameters (1, p),
ensuring that p is always a unit vector and that p remains within the valid range (0, 1),
thereby guaranteeing well-defined model parameters. While this parametrization does not
allow for completely independent modeling of location and concentration, in our experiments,
it has proven general enough to provide robust estimates while offering the advantages of com-
putational speed and simplicity. More flexible parametrizations, allowing for more nuanced
relationships between covariates and concentration, could be explored in future research.

This model-based clustering framework, with the inclusion of covariates, allows us to group
together observations that exhibit similar relationships between covariates and the parameters
of the spherical response distribution. Essentially, we are clustering observations based on
the similarity of their covariate-response mappings.

In the case of only one mixture component (K = 1), this simplifies to a simple regression
task, as we are effectively estimating a single mapping from covariates to the response distri-
bution. Conversely, with only an intercept as a covariate, we recover standard clustering of
the responses, as the model focuses solely on grouping similar responses without considering
any additional covariate information. The mixture likelihood can be estimated using various
methods, including the Expectation-Maximization (EM) algorithm (Dempster et al. 1977).

4. Software

The circlus package extends the flexibility of the EM framework implemented in package
flexmix to handle spherical clustering using Poisson kernel-based and spherical Cauchy dis-
tributions. The package implements four M-step drivers, which provide the two distribu-
tions (PKB and spherical Cauchy distribution), with and without covariates. Each model
is designed to integrate seamlessly into the flexmix implementation, providing methods for
maximum likelihood estimation through the EM algorithm (Dempster et al. 1977). Below,
we introduce the key functions for clustering and explain their functionality and parameters.

4.1. Clustering with PKB distributions

The circlus package provides two main functions for performing the M-step of clustering using
the Poisson kernel-based distribution:

FLXMCpkb (formula

~)
and
FLXMRpkb(formula .~., EPOCHS = 100, LR = 0.1,

max_iter = 200, adam_iter = 5, free_iter = adam_iter,
line_search_fn = "strong wolfe")

31
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The first function, FLXMCpkb, uses C++ code to perform the M-step, making it highly efficient
and well-suited for tasks where speed is crucial. The “C” in FLXMCpkb stands for “clustering”,
indicating that this function focuses purely on clustering without the inclusion of covariates.
The second function, FLXMRpkb, leverages neural networks through the torch package to
incorporate covariates into the estimation process, with the “R” standing for “regression”,
signifying the function’s ability to handle covariates in the clustering model.

The FLXMCpkb function performs the M-step using a direct C++ implementation via Repp
(Eddelbuettel and Frangois 2011) based on Golzy and Markatou (2020), which is designed
to handle the estimation process efficiently without the need for any additional optimization
frameworks. This approach excels in both speed and simplicity, making it ideal for scenarios
where covariates are not needed. We note that this algorithm has also been implemented
in pure R within the QuadratiK package (Saraceno et al. 2024), which offers a robust suite
of methods for working with spherical data, including tests for multivariate normality, tests
for uniformity on the sphere, and clustering algorithms, among other valuable tools. To
extend the possible applications, particularly for models that incorporate covariates, enhance
performance through C++, and leverage the wide range of functions offered by the flexmix
framework, we developed circlus. By building on the strengths of existing tools, circlus offers
users additional flexibility and scalability, particularly for larger datasets and more complex
clustering tasks involving covariates.

The FLXMRpkb function, on the other hand, uses a neural network to perform the M-step.
Function FLXMRpkb can be used with or without inclusion of covariates into the clustering
model. More specifically, in case covariates are included, the algorithm maps the covariate
space to the space of response variables using a simple linear transformation network without
a bias term and links the mapped vector to parameters p and p exactly as discussed in
Section 3.2.

The optimization process in FLXMRpkD starts with the robust Adam optimizer (Kingma and Ba
2014) and resets the weights of the neural network at every iteration to prevent local minima
and ensure robustness in the early stages of training. After an initial phase controlled by the
adam_iter parameter, the algorithm switches to the quasi-Newton L-BFGS method, which is
better suited for fast convergence in the later stages of optimization. The number of epochs
for the Adam optimizer and the maximum iterations for L-BFGS are controlled by the EPOCHS
and max_iter parameters, respectively. The learning rate for both optimizers is set by the
LR parameter. Additionally, the line_search_fn parameter specifies the line search function
used in the L-BFGS optimizer, with the "strong_wolfe" method being the default. For more
details on this parameter, see the documentation of package torch.

4.2. Clustering with spherical Cauchy distributions

The circlus package also provides two key functions for clustering based on the spherical
Cauchy distribution:

I
R
~

FLXMCspcauchy (formula

and

FLXMRspcauchy (formula ~ ., EPOCHS = 100, LR = 0.1,
max_iter = 200, adam_iter = 5, free_iter = adam_iter,
line_search_fn = "strong_wolfe")

These functions follow a similar design to the PKB distribution functions, leveraging the
flexmix framework to perform model-based clustering with and without covariates.

The FLXMCspcauchy function provides a direct, fast, and efficient solution for spherical Cauchy
clustering without covariates, utilizing C+—+ for the M-step. It uses the method of Algorithm
4.1 in Kato and McCullagh (2020). This algorithm is extended to cover the mixture model
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case by weighting the sum by the posterior probabilities of the data points belonging to each
cluster, with the weights normalized to sum to 1 for each cluster. The initial 1y for the
algorithm is estimated using the method of moments, as outlined in Subsection 4.1 of the
reference, where Y in Equation 4.1 is also weighted according to the posterior probabilities.
In addition, FLXMRspcauchy incorporates covariates into the clustering process using a neural
network based on the torch package. The neural network maps covariates to the parameters
of the spherical Cauchy distribution in the same manner as the PKB distribution model.

To our knowledge, there are currently no other implementations available that provide spher-
ical Cauchy-based clustering with or without covariates, making circlus the first package to
offer this capability within the flexmix framework.

4.3. Simulation methods

In addition to the clustering functions, the circlus package also provides random sampling
methods for both the Poisson kernel-based and spherical Cauchy distributions. These random
sampling methods are valuable because they allow for further analysis of clusters through
techniques like the parametric bootstrap, where one can assess the variability or stability
of the identified clusters by resampling from the fitted model. For instance, in applications
such as text analysis or financial modeling, simulated data can be used to validate model
performance or to test the sensitivity of clustering results. See for example McLachlan (1987)
and O’Hagan, Murphy, Scrucca, and Gormley (2019).

Function rpkb(n, rho, mu, method = "ACG") generates random samples from the PKB
distribution. The user can specify the number of random draws n and the desired parameters
rho (the concentration) and mu (the location). The method argument allows the user to choose
between two sampling approaches: the first uses the Angular Central Gaussian (ACG) distri-
bution as the envelope in a rejection sampling scheme, while the second method is based on
the projected Saw distribution. Both methods are efficient and follow the approach described
in Sablica, Hornik, and Leydold (2023). The ability to switch between these methods offers
flexibility depending on the specific use case or computational requirements. We note that
PKB random sample generation is also available in the packages QuadratiK and Directional
(Tsagris, Athineou, Adam, and Yu 2024).

For the spherical Cauchy distribution, function rspcauchy(n, rho, mu) provides a direct
method for generating random samples. The number of samples n, concentration rho, and
location mu can be specified. This method is based on the M&bius transformation of uniform
samples on the sphere, as detailed in Kato and McCullagh (2020).

5. Case study: Clustering Fritz Leisch’s work

Friedrich “Fritz” Leisch was a highly respected figure in the field of statistical computing,
known for his broad contributions that spanned multiple domains. His work on flexible
clustering models has had a lasting impact on the world of data analysis. Leisch’s research
was not only theoretically innovative but also highly practical, enabling users across disciplines
to apply sophisticated clustering techniques to real-world problems.

Throughout his prolific career, Leisch was involved in a wide range of research topics, con-
tributing to areas such as benchmarking, computational statistics, and reproducible research.
His work was characterized by a collaborative spirit, with nearly 300 unique co-authors, re-
flecting his strong belief in interdisciplinary research and the importance of working with
others to advance science. Leisch’s collaborations and innovations have helped shape modern
statistical methodology, making his work essential reading for statisticians and data scientists
alike.

For this analysis, we compiled a dataset of 129 abstracts from the works of Fritz Leisch,
which were verified through the Crossref API (CrossRef 2024). Alongside the abstracts, we

33
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collected important metadata, including the number of pages, digital object identifier (DOI),
journal name, names of the co-authors, and the year of publication. The dataset is made
available as Abstracts within the circlus package. Co-author information has been encoded
using 272 dummy variables, where each co-author is represented as a binary variable. To
numerically represent the textual data, we transformed the abstracts into embeddings using
four different models. The first method employed the gte-large-en-v1.5 embedding model
from Alibaba (Zhang, Zhang, Long, Xie, Dai, Tang, Lin, Yang, Xie, Huang et al. 2024), which
produced embeddings with 1024 dimensions. The remaining three methods used OpenAT’s
text-embedding-3-large model (OpenAl 2024), with output dimensions of 3072, 512, and
256, respectively. These embeddings outputs are available as the last four columns of the
Abstracts dataset. Overall this results in a dataset with 129 rows and 283 columns, offering
a comprehensive view of Leisch’s collaborations across different publications.

Given the relatively small number of abstracts and their thematic similarity, we selected the
256-dimensional embeddings for our analysis. We found that this dimensionality was sufficient
to capture the essential semantic relationships between the abstracts without overcomplicat-
ing the clustering process. In general, the choice of dimensionality should be guided by a
combination of factors such as sample size, data complexity, and computational constraints.
For larger or more complex datasets, higher-dimensional embeddings might be necessary, but
it is important to balance the need for detail with the risk of overfitting and increased com-
putational burden. It is recommended to explore different dimensionalities and embedding
models to find the best fit for the specific data and task.

5.1. Mixtures of distributions

In the first stage of our analysis, we clustered the dataset without incorporating any covari-
ates. Assuming that the word usage distribution differs by research area, this approach aims
to cluster the abstracts such that the clusters correspond to research areas. The estimation
of the mixture model was carried out using the default parameters of flexmix for the EM al-
gorithm. This implies that the EM algorithm is randomly initialized by assigning a-posteriori
probabilities to observations and then continuing with an M-step. When specifying only the
number of clusters, observations are randomly assigned to clusters with equal probability and
weights of 0.9 assigned to these clusters and weights of 0.1 for the remaining ones. In addition
the parameter minprior is set to 0.05. This parameter ensures that any cluster representing
less than 5% of the data is eliminated from the estimation process during the EM iterations.
This provides a more stable estimation avoiding estimation issues in the M-step in case of very
small components which could result in degenerate solutions where only observations with
identical values have positive weights for this component. In addition, a minimum cluster
size is usually of interest for an interpretable solution. In our experiments where we fitted the
spherical cluster model with different, higher numbers of components, the model consistently
reduced to eight clusters during the EM algorithm. We adopted this as the final number
of clusters for our analysis. This number of clusters provided a meaningful balance between
interpretability and capturing the diversity of research topics within the dataset.

We chose the spherical Cauchy distribution for this case study, as the even heavier tails of
the PKB distribution were not necessary for data that is relatively similar. All abstracts
represent scientific contributions in neighboring disciplines. The clustering was performed
using both available models in the circlus package: FLXMCspcauchy, which leverages the
direct estimation, and FLXMRspcauchy, which incorporates a neural network to estimate the
M-step. The code used for this analysis is shown below, with the clustering results following.

First we loaded the necessary packages and the dataset as well as extracted the embedding
obtained for OpenAl with dimension 256:

R> library("flexmix")
R> library("circlus")
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R> data("Abstracts", package = "circlus")
R> 0AI256 <- do.call(rbind, Abstracts[, "OpenAI_embeddings256"])

We applied the FLXMCspcauchy () model:

R> set.seed(1)

R> (SC_abstract_8 <- flexmix(0OAI256 ~ 1, k = 8,

+ model = FLXMCspcauchy()))

Call:

flexmix(formula = 0AI256 ~ 1, k = 8, model = FLXMCspcauchy())

Cluster sizes:
1 2 3 4 5 6 7 8
15 9 16 19 9 16 19 26

convergence after 16 iteratioms

The default print () method for objects fitted with flexmix () indicates how the object was
created by showing the call as well as the cluster sizes of the partition obtained by assigning
observations to the cluster where their a-posteriori probability is maximum. The output
shows that the clusters vary in size and have between 9 and 26 abstracts assigned.

Next, we used the neural network-based model for comparison:

R> set.seed(1)

R> torch: :torch_manual_seed(1)

R> (SCNN_abstract_8 <- flexmix(0OAI256 ~ 1, k = 8,

+ model = FLXMRspcauchy(LR = 0.02, adam_iter = 0, free_iter = 5)))

Call:
flexmix(formula = OAI256 ~ 1, k = 8, model = FLXMRspcauchy(LR = 0.02,
adam_iter = 0, free iter = 5))

Cluster sizes:
1 2 3 4 5 6 7 8
15 9 16 19 9 16 19 26

convergence after 18 iterations

Both models resulted in identical cluster allocations, with each cluster containing the same
number of abstracts. Setting the random seed to the same value ensures that the EM al-
gorithm is initialized using the same a-posteriori probabilities for the first M-step. Hence,
only the optimization step in the M-step differs for these model fits. This congruence in
results shows that the M-step implementations are robust and produce consistent clustering
outcomes, even though they rely on different optimization techniques. While it is common for
estimates obtained with different optimization algorithms to yield slight different results, in
this case, the resulting cluster allocation sizes were fully aligned, highlighting the reliability
of the estimation for this particular dataset.

In terms of log-likelihood, FLXMCspcauchy achieved a final log-likelihood of 12674.6, while
FLXMRspcauchy reached 12674.61, confirming that both methods converged to virtually iden-
tical solutions.

We analyzed the content of the abstracts within each cluster to verify that indeed spherical
clustering identified eight distinct clusters that represent different areas of Fritz Leisch’s re-
search. Based on this inspection of the content, we classified the clusters and assigned titles
as shown in Table 1 which capture the primary scientific focus of each group.
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Table 1: Cluster titles based on abstract content

| Cluster No. | Cluster Title

1 Genetic Influences on Psychiatric and Behavioral Disorders

2 Advancements in Model Validation and Benchmarking Techniques
3 Travel Behavior and Environmental Impact in Transportation and
Tourism

Environmental and Biological Effects of Agrochemicals

Market Segmentation Techniques and Applications
Biopharmaceutical Production Through Data-Driven Approaches
Finite Mixture Models and Their Applications

Clustering Techniques in Data Analysis
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Figure 1: Word cloud visualization of the most frequently occurring terms (left) and co-author
networks (right) across the clusters

Inspecting the concentration parameters of the clusters indicates how compact or spread out
the identified clusters are. Clusters 4 and 8 have the smallest concentration parameter values,
with p = 0.346 for Cluster 4 and p = 0.397 for Cluster 8, indicating that they represent the
least compact clusters. These clusters include observations that are not easily assigned to
the more specialized clusters, serving as broader, less-defined groups that capture data points
with weaker associations to the other, more focused clusters. Cluster 8 (titled “Clustering
Techniques in Data Analysis”), in particular, acts as a background cluster for the more data-
driven clusters such as Clusters 2, 6, and 7, as can be seen by comparing the cosine distances
between the location parameters p of the individual clusters.

To further visualize the content of these clusters, we calculated a term frequency matrix for
the dataset as a whole with respect to the individual clusters. This enabled us to identify the
most frequently occurring terms within each cluster. Using the wordcloud package (Fellows
2018), we created visual representations of the key terms for each cluster (see the left sub-
image of Figure 1).

In addition to the thematic analysis, we aimed to highlight the extensive network of col-
laborations that Fritz Leisch fostered throughout his career. For each of the eight clusters,
we generated a co-author frequency matrix, which quantified the presence of each co-author
within the publications assigned to that cluster. Using the comparison.cloud() function
from the wordcloud package, we visualized the co-author networks for each cluster in the
right sub-image of Figure 1, showcasing the diverse and widespread collaborations across
different fields of research.

One key insight from examining the dataset is the variation in the number of co-authors across
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Figure 2: Boxplot of the number of co-authors across clusters

different scientific disciplines. Certain fields tend to have more co-authors per publication,
reflecting the collaborative nature of these research areas. This variation is also evident in
the clusters identified which correspond to different research areas where Fritz Leisch has
contributed to. Figure 2 visualizes the number of co-authors for each of the eight clusters in
a parallel boxplot.

5.2. Mixtures with covariates

As illustrated in Figure 2, clusters corresponding to genetics, biology and biopharmaceutics
generally exhibit a higher number of co-authors compared to other clusters. This is valuable
information that can be explicitly included in our clustering model as a covariate, allowing
the model to account for the number of co-authors while focusing more on other abstract
features such as the content and semantic relationships within the embeddings.

To incorporate this into our analysis, we re-estimated the model using the number of co-
authors as a covariate and the spherical Cauchy distribution as the component distribution.
The following code shows the estimation process:

R> (SCNN_abstract_8b <- flexmix(0AI256 ~ 1 + num_of_coauthors, k = 8,
+ model = FLXMRspcauchy(EPOCHS = 200, LR = 0.02, adam_iter = 10)))

Call:
flexmix(formula = OAI256 ~ 1 + num_of_coauthors, k = 8, model =
FLXMRspcauchy (EPOCHS = 200, LR = 0.02, adam_iter = 10))

Cluster sizes:
1 2 3 4 5 6
15 30 27 15 19 23

convergence after 28 iterations

As seen from the output, while we initially started with eight clusters, the automatic removal
of clusters with a small component size during the iterative procedure of the EM algorithm
reduced the number of clusters to six clusters. Our experiments revealed that incorporating
the number of co-authors as a covariate often leads to fewer clusters, as the model uses the
covariate information to account for variation between abstracts within a cluster depending
on the number of co-authors. In this case, the achieved log-likelihood was 14192.16, which in-
dicates that the model found a better fit with six clusters, compared to the previous clustering
solution that used eight clusters without covariates.
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Figure 3: Boxplot of the number of co-authors in the cluster solution with covariates

By including the number of co-authors, the model successfully captures the variation in the
number of collaborators across different research areas, without needing to rediscover this
pattern. This allows the model to focus on other important relationships in the data, such
as thematic content or research methodologies. To illustrate this further, we can once again
plot the number of co-authors across the newly formed six clusters using a parallel boxplot.
As shown in Figure 3, the number of co-authors across the six clusters has become more
uniform, which demonstrates that the covariate was successfully controlled for in the model.
This approach shows the power of incorporating known metadata into clustering models
to reduce the number of clusters and account for within-cluster heterogeneity due to this
covariate in an efficient way.

When we compare the clustering results before and after including the number of co-authors
as a covariate, we can observe notable shifts in how the abstracts are assigned to clusters. The
addition of this covariate introduces a significant factor in determining cluster membership,
leading to observable movements of certain abstracts between clusters. The table below shows
the comparison, where the rows represent the assignments with covariate and the columns
represent the cluster assignments without covariate:

R> table(with_num_of_coauthors = clusters(SCNN_abstract_8b),
+ without_num_of_coauthors = clusters(SC_abstract_8)

without_num_of_coauthors

with_num_of coauthors 1 2 3 4 5 6 7 8
16 0 0 2 7 0 0 O
2 0 01611 0 3 0 O
3 9 9 02 01 0 6
4 0 0 0 4 2 0 0 9
5 0 0 0 0 010 0 9
6 0 0 0 0 0 219 2

We observe that Clusters 2, 3, 5, and 7 of the clustering solution without covariates exhibit
little to no movement (with respective changes of 0, 0, 2, and 0 abstracts). In contrast, the
other clusters get moved considerably. In particular, Cluster 8, which had previously been
identified as the background cluster for the more statistically oriented clusters, shows the
strongest decomposition when the number of co-authors is included. This is likely due to the
catch-all nature of this cluster in the solution without covariates, which captured abstracts
that did not fit neatly into more specific research categories. Cluster 4, which has an even
smaller concentration parameter than Cluster 8, also shows significant decomposition, further
underscoring its role as one of the least compact clusters in the clustering without covariates.



Austrian Journal of Statistics

By incorporating co-author information, we decompose these background clusters, leading to
a clearer separation of abstracts and improving the overall clustering model.

One of the strengths of the flexmix package is the suite of high-level functions it offers for
investigating clustering results, such as the summary and plot methods for objects returned
by flexmix. These methods focus on providing valuable insights into the quality of the
clustering, i.e., indicate how close the a-posteriori probabilities are to a 0-1 distribution. The
summary function shows key metrics like the prior probabilities (the overall proportion of
data belonging to each cluster), the number of assigned observations per cluster, and the
ratio of assigned observations to those with a positive posterior probability (by default using
a threshold of eps = 1e-04). This ratio is particularly useful for understanding how well-
separated each cluster is from the others. A high ratio (close to 1) indicates that most assigned
observations have a strong affinity for their assigned cluster and are unlikely to belong to other
clusters. A lower ratio suggests some observations might have comparable probabilities for
multiple clusters, indicating potential overlap.

R> summary (SCNN_abstract_8b)
Call:
flexmix(formula = DAI256 ~ 1 + num_of_coauthors, k = 8,

model = FLXMRspcauchy(EPOCHS = 200, LR = 0.02, adam_iter = 10))

prior size post>0 ratio

Comp.1 0.116 15 15 1.000
Comp.2 0.233 30 34 0.882
Comp.3 0.209 27 29 0.931
Comp.4 0.116 15 15 1.000
Comp.5 0.147 19 19 1.000
Comp.6 0.178 23 23 1.000

'log Lik.' 14192.16 (df=3077)
AIC: -22230.32 BIC: -13430.67

In our results, four clusters (1, 4, 5, and 6) are perfectly separated with a ratio of 1.000, while
Clusters 2 and 3 show some overlap, with ratios of 0.882 and 0.931 respectively. This indicates
that there are observations which have some posterior probability to be from Clusters 2 and 3
but are eventually assigned to a different cluster. But overall, the clusters are well separated,
reflecting a strong clustering fit with a clear assignment of observations to clusters.

6. Conclusion

In this paper, we introduced the circlus package, which extends the EM framework imple-
mented by package flexmix to perform spherical clustering using the Poisson kernel-based
and spherical Cauchy distributions. By providing efficient C++ implementations and flexible
neural network-based models, package circlus allows for clustering on the sphere, with and
without covariates. The inclusion of covariate-based models adds a significant advantage,
enabling users to account for known metadata and focus the clustering process on uncovering
deeper relationships within the data.

Our case study of Fritz Leisch’s published works demonstrates the practical application of
spherical clustering, highlighting how different research areas can be clustered based on their
abstract embeddings. By incorporating metadata, such as the number of co-authors, we fur-
ther showed how covariates can enhance the clustering model’s interpretability and accuracy.
This approach allows the model to focus on more nuanced aspects of the data, leading to
alternative clustering solutions.

39



40 circlus: An R Package for Circular and Spherical Clustering

The results of our analysis reveal that spherical clustering, combined with covariate infor-
mation, offers a powerful tool for handling high-dimensional and complex datasets, such as
text embeddings. The flexibility of the circlus package makes it suitable for a wide range of
applications, from natural language processing to biological and social sciences, where data
naturally lie on a sphere.

Overall, the circlus package builds upon the legacy of Fritz Leisch’s contributions to statistical
computing, offering modern and scalable tools for model-based clustering on spherical spaces.
We hope that this work will continue to support research in these areas and inspire further
advancements in clustering methodology and statistical modeling.
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