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Abstract

Market segmentation partitions multivariate data using some clustering algorithm, re-
sulting in some number of homogeneous clusters of consumers for marketing purposes.
Often this type of data has no clear cluster structure, that is, no separations or gaps
between clusters of points exist, which is why this is considered partitioning rather than
clustering. Understanding the differences between the clusters is typically done by ex-
amining single features. However, this can be inconclusive as multiple clusters might
share similar characteristics on individual features and the market segmentation parti-
tion actually defines the clusters based on different linear constraints on the features. To
understand what uniquely characterizes a cluster of customers, examining linear combi-
nations of features may be helpful. This article introduces the R package lionfish that
provides interactive and dynamic tools to facilitate the exploration and refining of market
segmentations. The package integrates tour algorithms that use linear combinations of
features to view high-dimensional data, from the tourr package, with Python-powered
interactivity, allowing manual control, interactive selection, and multiple linked windows,
to support revising the cluster memberships based on visual feedback. The focus is on the
widely used k-means clustering algorithm, but the tools also support other algorithms.
The utility of the software is demonstrated through three example analyses from the do-
main of market segmentation. The flexible, user-driven approach provided by package
lionfish offers deeper insights into complex market behaviors, enabling more effective seg-
mentation and enhancing strategic decision-making.
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Figure 1: The different ways we might expect a clustering algorithm to partition 2D data
with different association structure. If the correlation is high (C), the partitioning happens
along the primary direction of the association.

1. Introduction
Clustering algorithms are often used to make large and complex datasets more digestible.
For market segmentation, clustering algorithms are used to partition observations into a
small number of subsets, by incorporating associations between the features. Market seg-
mentation supports targeted approaches to different subsets of customers based on common
traits. Clustering provides a data-driven solution to partitioning customer data into subsets
for marketing purposes. Dolnicar, Grün, and Leisch (2018) provide an extensive overview
of using clustering algorithms for market segmentation applications, and the advantage of
visualization for the interpretation of the resulting clusters was demonstrated in Babakhani,
Leisch, and Dolnicar (2019).
A difference between cluster analysis and partitioning is typically the nature of the data. With
cluster analysis, we usually envision data that contains separated clusters, and a successful
clustering result is one that divides the data based on these gaps. With partitioning, the
role of the clustering algorithm is to propose smaller homogeneous subsets, whether there are
gaps present or not, with potential for different marketing approaches as done with market
segmentation. The shape of the data will affect how it is partitioned. Figure 1 illustrates
the different ways that clustering might partition a 2D dataset into four subsets, when the
correlation between the two features varies. When the correlation is high (Figure 1C), the
partitioning will be along the combination of features that produces the highest variance.
With lower correlation (Figure 1B), the clustering partitions the bottom and top, and di-
vides the middle into two parts in the opposite direction. When there is no association, the
partitioning is radial like a windmill (Figure 1A).
From the plots of the full 2D data, in each dataset, we can see how the data is divided into
four parts. Typically though, the approach is to plot the partition on a single variable, as done
in Figure 2. The histograms of the two features, V1, V2, show some relationships between
the four subsets. For dataset C, the red cluster has low values on both features and the green
cluster has high values for both. Looking more closely, the orange cluster has moderately low
values on both and the blue cluster has moderately high values on both. We could infer from
this that the partitioning is being done along an equal combination of V1 and V2, but we
cannot see the partition.
When there are more than two features, histograms of the individual features are still com-
monly used to display the partitioning results. This means that the analyst likely cannot
understand how the partitioning divides the data. All that they can observe is roughly how
the individual features relate to the partition, which is useful but inadequate. To understand
how the partition is formed in the data we need to view linear combinations of features, and
often, focus on specific subsets. Figure 3 illustrates this approach, for the 2D data, where
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Figure 2: The typical approach to understanding the data partition is plotting individual
features using histograms, where the subset is mapped to color. Here, the three datasets
displayed in Figure 1 are shown in the columns, and the rows correspond to the two features,
V1, V2. Differences between clusters can be seen, and interpreted on a single variable level,
such as that the red subset has low values on both V1 and V2 in dataset C. However, how
the data is divided cannot be seen.

this is not necessary, but will be useful to obtain a mental model of how this operates in
higher dimensions. The partition corresponds to cuts of the data, and is so best viewed using
jittered dotplots (using Clarke, Sherrill-Mix, and Dawson (2023)’s ggbeeswarm package). For
dataset A, we plot V1 where the partitioning of the green and blue clusters happens. Note
that the orange and red clusters are faded in the plot, because there is no single linear view
where all clusters can be discerned and so one needs to focus on two clusters only. Compare
this with the full data plot in Figure 1. The separation between the red and orange clusters
could be seen if we plotted V2, and subsetted the data to these two clusters. Similarly, other
pairs of clusters would be examined. For dataset B, the linear combination that is roughly a
contrast of V1 and V2 shows the distinction between the blue and green clusters, and because
there is no single linear combination revealing all clusters we would choose a different linear
combination to examine the distinction between other pairs of clusters. In dataset C, all four
clusters can be seen when a linear combination constructed from a roughly equal combination
of V1 and V2 is used. Here this is actually computed by using the first principal component.
In a realistic, higher-dimensional setting, dedicated approaches for the visualization of cluster
analysis results (Leisch 2008) can provide more detailed insights. For example, neighborhood
graphs (Leisch 2010) can be used in combination with linear projections, to include informa-
tion about cluster separation. This is in particular interesting when looking for projections
that separate one of the clusters from the rest, as possible when using the methods suggested
in Hennig (2004). The resulting view will often show other clusters as overlapping, even when
they are clearly separated in the full space.
In general, with data having more than two features, tour methods to view high dimensions
can be used to do this visualization. A tour (Asimov 1985, and see Lee, Cook, da Silva,
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Figure 3: The way to examine partitions in high dimensions is to examine linear combinations,
for each of the datasets. The three jittered dotplots show the views of the three datasets (A,
B, C) revealing the partitioning. For datasets A and B, the red and orange clusters have been
faded out in order to focus on the blue and green subsets, because there is no single linear
combination where a separation between all clusters is visible. All four subsets can be seen
for dataset C, because there is a linear combination which distinctly splits the clusters.

Laa, Spyrison, Wang, and Zhang 2022) is used to show scatterplots of linear combinations of
features and thus provides views like that in Figures 1 and 3 where distinct differences between
clusters can be observed. High dimensions are still tricky, and a combination of animations of
the linear combinations, and interactive control (Cook and Buja 1997; Laa, Aumann, Cook,
and Valencia 2023) over the combinations is important. A scatterplot of a combination of
features can be considered to be a projection of the data, and thus like a shadow of a 3D
object, some aspects of the data (object) can be obscured. Using slices of the projected data
(Laa, Cook, and Valencia 2020) can be a useful addition to projections. This paper illustrates
how to do this to better understand partitioning results for multivariate data.
In this article, we will (i) describe the lionfish software (available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=lionfish) and (ii)
demonstrate its utility through three example analyses in the domain of market segmentation
using k-means clustering algorithms. The paper is organized as follows. Section 2 describes
the software and its attributes. The user workflow is explained in Section 3. Illustrative
market segmentation case studies using various tourism datasets provided in Dolnicar et al.
(2018) can be found in Section 4. Sections 5 and 6 discuss the limitations and potential future
developments of package lionfish.

2. Interactive interface with lionfish

One of the aims of this work is to build an interface that allows for interactive exploration
of clustered multivariate data. In some combination of the features, as provided by a tour
algorithm, one may be able to see the separations between the clusters as illustrated in the
2D example in Figure 1. The grand tour (Asimov 1985) provides a sequence of projections
that is essentially an interpolated random walk over all possible projections. It is useful to
get an overview of multivariate data. A manual (Cook and Buja 1997) or radial (Laa et al.
2023) tour is used to control the contribution of a single (or multiple) features to a projection,
typically using it to change the projection from including or excluding the variable. It is useful
for assessing the sensitivity of the clustering to particular features. Lee et al. (2022) provide
an overview of the many different tour algorithms.
While tour animations are best obtained within R (R Core Team 2024) using the tourr pack-

https://CRAN.R-project.org/package=lionfish
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age (Wickham, Cook, Hofmann, and Buja 2011), it does not enable the interactivity required
for example for a manual tour. Interactive graphics are available when using Javascript, as
implemented in the detourr package (Hart and Wang 2023). This allows the replay of a
recorded tour path with interactive graphics, and can also be linked with additional displays,
but lacks capabilities for manual tours. The objectives for our intended interactive interface
are to enable:

1. Visualizing the distinctions between clusters based on combinations of features using
various tour methods, but most importantly the manual tour.

2. Interactively selecting datapoints (brushing) to refine the cluster solution, as done with
spin-and-brush tools (Cook and Swayne 2007).

3. Linking multiple displays to focus on particular clusters, and simplify the problem to
better understand the clustering solution.

4. Updating displays based on user selections such as feature selection or cluster selection,
or re-scaling.

To integrate user interactions with the capabilities of the tourr package an active communi-
cation with the interface is required. For example, we may wish to explore the local neighbor-
hood of a projection selected by the user with a local tour animation provided by tourr, or we
may want to optimize a guided tour path using subsets identified via brushing. Our solution is
to use Python (Van Rossum and Drake 2009) for high-performance interactivity, through the
packages Tkinter (Lundh 1999), CustomTkinter (Schimansky 2024), and matplotlib (Hunter
2007), with integration to the tourr package (Wickham et al. 2011) via reticulate (Ushey, Al-
laire, and Tang 2024), a framework that facilitates seamless interoperability between Python
and R. Through matplotlib, Python provides interactivity on the plots, allowing elements to
be directly selected or changed, and low-level bit blit control (for details see Section 2.4),
enabling efficient updates and rendering of plots. CustomTkinter is a framework that al-
lows users to effortlessly integrate matplotlib into a graphical user interface (GUI). An R
native approach would be to use shiny (Chang, Cheng, Allaire, Sievert, Schloerke, Xie, Allen,
McPherson, Dipert, and Borges 2024) for the GUI, but this would not provide interactivity
directly on the plots (e.g., Laa et al. 2023) or low-level bit blit control.
The interface was implemented in the R package lionfish and offers a variety of linked in-
teractive plot types, providing users with the flexibility to visualize their data from multiple
perspectives. The ability to navigate through various projections of the displayed tours di-
rectly within a GUI enables users to explore different aspects of the dataset. Furthermore,
users can initiate new tours directly from the interface. The GUI also supports interactive
feature selection, allowing users to specify which subset of features should be visualized in the
plots. Once users have identified interesting views or settings, lionfish allows them to save the
displayed projections, subsets, and plots. This functionality ensures that analysis states can
be preserved for further examination or reporting, making the package particularly useful for
iterative analysis where findings may need to be revisited or shared with collaborators.
With its high level of interactivity, performance, and ease of use, lionfish streamlines the
exploration of complex datasets, offering a powerful tool for researchers working with high-
dimensional data.

2.1. Overview of the graphical user interface

The lionfish GUI can be launched using the function interactive_tour(). At minimum,
this function requires the data and a list of plot objects to display (typically a 1D or 2D tour,
a barchart, scatterplot, etc.). Optionally, the user can define an initial clustering of the data
as cluster memberships matching the rows of the data, the layout of the plots, the number of
available subsets, the size of the GUI, initially selected features for display, a scaling factor for
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Figure 4: Overview of the GUI. A: Sidebar controls; B: Display area; C: Feature selection
checkboxes; D: Subset selection with color indicators; E: Frame selection interface; F: In-
terfaces for adjusting the number of bins of histograms, animating tours and blending out
projection axes with a low norm; G: Save and load buttons; H: Interface for starting new
tours; I: Metric selection interface.

the projected data and a few minor plotting instructions such as color schemes. If no initial
clustering is provided all data will be in one subset, and partitioning can be performed later
via manual selection. The n_subsets argument fixes the number of available subsets of the
GUI upon startup. If n_subsets is larger than the number of initially provided subsets, then
the extra subsets will be empty, but can be filled via manual selection. This can be useful
when a user wants to shift some data of special interest (e.g., outliers) into an extra set or
redefine parts of a clustering solution as shown in the case study in Section 4.2. All features in
the data are expected to be numeric, so categorical features should be converted prior to using
the GUI. If they are not, then the conversion will be automated in the data pre-processing,
for example, a variable called “fruit” with categories “banana”, “orange”, “peach” will be
recoded as 1, 2, 3, respectively. The plotting instructions for each display to be shown have
to be provided in form of a named list containing a type and an obj. The type element
specifies the type of display to generate, such as "scatter" for a scatterplot or "2d_tour"
for a 2D tour. The obj element further defines the properties of the chosen display. For
example, to create a 2D tour, the user must provide a ‘history_array’ object produced by
the tourr function save_history. For a scatterplot, the user needs to provide a character
vector specifying the names of the features to be displayed. In this article, the focus is on the
use of lionfish for exploring k-means clustering results in context of market segmentation, but
the package website contains examples of usage for other applications, animated examples
showing the interactivity, and details on function arguments.
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The GUI is divided into two main sections: a sidebar on the left, which contains a compre-
hensive set of interactive controls (Figure 4A), and the display area on the right (Figure 4B),
where the selected plots are shown. At the top of the sidebar, users can select and deselect
features using checkboxes (Figure 4C), thereby controlling which features are displayed in
the plots. Below this, a list of the currently loaded subsets of the data is displayed. The
subsets can be defined by the user when launching the GUI. In the context of the market
segmentation use cases discussed in Section 4, these subsets are clusters. However, depending
on the specific application subset labels from other sources may be used, which is why they
are referred to as subsets in this section. Each subset has its own checkbox to designate the
active subset (Figure 4D).
When datapoints are manually selected in the plots, they will be assigned to the active subset
and be colored accordingly. For scatterplots, datapoints can be selected by encircling them
directly on the plot while holding down the left mouse button. For barplots, clicking on a
specific bar selects the data represented by that bar. The colored boxes next to the subset
names indicate the assigned colors for the datapoints. Clicking on these boxes adjusts the
transparency of the points, which is helpful for highlighting and comparing subsets. Subsets
can also be renamed using the provided text boxes. The Reset original selection button
allows users to revert the subset selections to their initial state. All plots displayed in the
GUI are linked, meaning that changes in one plot will affect the other plots. For instance, if
observations are moved from one subset into another subset in one plot then the reassignment
will also occur in the other plots.
The frame selection interface (Figure 4E) shows the frames of the currently displayed tours.
We can see that “Plot #1” (top left) displays the eighth frame/projection of the displayed
tour and “Plot #3” (bottom left) the fifth frame/projection. The menu also enables users to
jump between frames/projections of displayed tours by manually typing the desired frame into
the respective textbox and pressing the Update frames button. One can also move through
the projections of tours by pressing the arrow keys.
Below this, there are three additional interfaces (Figure 4F). The “Number of bins of his-
tograms” can be used to adjust the number of bins of displayed histograms – more bins result
in higher resolution but slower display updates. The “Animate” interface allows users to
animate tours as slideshows. After checking the Animate checkbox the tour displays will au-
tomatically shift to the next frame/projection after the amount of time specified in the textbox
next to the Animate checkbox (interval specified as 1 second in Figure 4F). The “Blend out
projection threshold” interface offers the functionality to hide projection axes with a norm
smaller than a chosen threshold. In Figure 4F the checkbox is not checked, meaning that this
option is currently disabled. If it were to be checked, all projection axes would be blended
out since the value in the textbox is set to 1 and the norm of the projection axes cannot be
larger than 1. A sensible setting for the “Blend out projection threshold” is usually between
0.1 and 0.3. This functionality can be helpful as projection axes with a small norm have little
influence on the shown projection, and displaying all of them can be distracting.
Users can also save and load projections and subsets using the respective buttons (Figure 4G).
The Save projections and subsets button allows users to preserve the current state of
their analysis. This not only includes the displayed projections and active tours, but also
various minor settings, such as the highlighted subset or the value for the “Number of bins of
histograms”. These states can be recovered by pressing the Load projections and subsets
button, which spawns a file browser with which one can select a folder containing previously
saved files.
New tours can be started directly from within the GUI (Figure 4H). The options for new
tour paths are: a local tour around the currently shown projection and guided tours that
search for projections based on the holes, or the linear discriminant analysis (LDA) index.
The holes index is sensitive to projections with few points in the center of the projections
and the LDA index aims to maximize the distance between the centers of the selected subsets
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(Lee, Cook, Klinke, and Lumley 2005; Cook and Swayne 2007). To start new tours, users
first have to select the desired type of tour with the dropdown menu and then press the Run
tour button. The new tours will then be calculated and displayed. The titles of the tour
displays (Figure 4B top left and bottom left) will indicate which tours are currently shown.
We can see in the titles of the displays that both displays currently display the originally
loaded tours. If a user for instance were to initiate local tours, the display titles would
change to “Local tour”. The Reset original tour button can be pressed to return to the
originally loaded tours. Additionally, all tour displays allow users to perform a manual tour;
by right-clicking and dragging the arrowheads of projection axes, the respective projection is
recalculated accordingly. This allows for manual exploration of the data.
At the bottom of the interactive controls users can select different metrics for some plot types,
e.g., heatmaps (Figure 4I).

2.2. R/Python interface

The majority of package lionfish was written in Python. The R side of the package handles
setting up the Python environment where the interactive interface is being run, launching
the interactive tour, and generating new tours when initiated through the interface. To
incorporate the functionality of the tourr package without translating large portions of its
code from R to Python, the reticulate package was used. This approach allows lionfish to
automatically benefit from updates to tourr and avoids the necessity to re-implement code in
Python that was already written in R.
To minimize inefficiencies associated with cross-language communication and to simplify de-
bugging, tourr functions were accessed only when necessary and otherwise implemented di-
rectly in Python. For instance, the orthonormalization of projection axes via the Gram-
Schmidt process, linear transformations of the data with the projection matrices, or scaling
of the data with the half range parameter for visualization purposes, were implemented in
Python. Implementing these functions directly in lionfish improves its stability as future
updates of tourr or reticulate could affect proper interaction between the packages.

2.3. Structure of the Python code

The customTkinter class ‘InteractiveTourInterface’ represents the central component
of the Python code. This class centrally stores attributes related to all plots, such as the
dataset, sub-selections, feature selections, and other shared information. Plot-specific data
is organized in dictionaries (the Python equivalent of named lists in R), including the dis-
play type, construction instructions, tour projections (only in case of tour displays), color
schemes for the displayed data, and, where applicable, the selector classes (‘BarSelect’ and
‘LassoSelect’) and manual projection manipulation classes (‘DraggableAnnotation1d’ and
‘DraggableAnnotation2d’).
The selector classes handle the behavior when users manually select datapoints to move
them to the active subset. After a selection is made, the selector class updates the centrally
stored sub-selection attribute and ensures all other displays reflect these changes. The manual
projection manipulation classes construct the arrows representing the projection axes in the
displays and manage the manual adjustment of projections, thus enabling manual tours.
Users can right-click and drag the arrowheads to modify the projections, after which the class
orthonormalizes the projection axes and updates both the projection and the transformed
data accordingly.

2.4. Fast-drawing enhancements

The implementation of bit blitting was crucial to ensuring fast plot updates and providing a
smooth user experience. With bit blit, the static elements of the display, such as the outer
frames of the plots, are stored as a background image. When a plot is manipulated, only the
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affected plot is updated, and within that, only the interactive elements, such as the datapoints
and projection axes in a 2D tour, are rendered on top of the background image.
In practice, this means that the background, without the interactive elements, must be cap-
tured either during initialization or after major updates. The entire plot is first rendered
without the interactive elements, the background is then saved, and finally, the plot is re-
drawn with the interactive elements blended in. Since this process is relatively slow, full
updates are only triggered during initialization or after significant changes, such as modifica-
tions to the set of active features.

3. Workflow with the lionfish package

While package lionfish can be used with data subsets of any origin, or even without any
subsetting at all, we will focus on analyzing cluster solutions in this section. Before launching
the lionfish interface, the user should have performed a partitioning of their choice, and
provide the initial clustering solution to the interface. They can then launch the interface to
explore and potentially refine this solution.

3.1. Feature and cluster relationships

A first step is to assess which features are important for the cluster solution. The inter-
face provides different capabilities that support feature selection: tour view and summary
heatmaps.
The 1D and 2D tour views can be used to understand the sensitivity of the subsetting to
individual features or interactions thereof. Examples of these display types can be seen in
Figure 4 where a 2D tour projection is shown on the top left and a 1D tour projection on the
bottom left. The arrows shown in the plots indicate the loadings of the linear combination of
the projection vector (1D projection) or matrix (2D projection). Short arrows indicate that
the loading of a given feature is small, thus the influence of that feature on the projection
is small. On the other hand, long arrows indicate a large influence on the projected data.
Furthermore, we can identify relationships between the loadings and the data. Looking at
Figure 4, we can see in both projections that the blue observations are in the direction that
the “alpine skiing” axis points to. We can infer from this that the blue observations generally
had a large positive value of “alpine skiing”. By clicking and dragging an arrowhead with
the right mouse button we can interactively change the loadings of the displayed projections.
This functionality is referred to as a manual tour. It can be used to change the influence of
the features interactively by turning the data in multi-dimensional space and projecting it
into one or two dimensions. This is useful for examining the relationship between the features
and the separation between clusters. The ideal starting view is that obtained through a
projection pursuit guided tour (Cook, Buja, Cabrera, and Hurley 1995) that was optimized
for the separation between the labeled subsets (Lee et al. 2005).
The summary heatmaps provide an overview of the cluster compositions relative to the fea-
tures. An example can be seen in Figure 4 in the top right. Consider the matrix,

C =


c11 c12 . . . c1p

c21 c22 . . . c2p
...

... . . . ...
ck1 ck2 . . . ckp

 ,

where cij , i = 1, . . . , k (number of clusters); j = 1, . . . , p (number of features) contains a
summary statistic of each feature in each cluster.
Because our examples use binary features, cij is determined as the number of 1’s of feature j
in cluster i. There are several ways that these values can be normalized to examine different



80 Exploring Market Segmentation Using lionfish

aspects: fo
ij = cij

n , f c
ij = cij

ni
and ff

ij = cij

nj
, where ni, nj are the row and column totals.

The first, fo is the overall fraction, where counts are normalized by the overall number of
observations n. It gives a quick overview on the overall magnitude of the features. The second,
f c is normalized relative to the size of each cluster (row sum of C) and can be considered
the distribution of features in each cluster. It is useful for comparing the composition of each
cluster relative to the features. For example, for p = 4, f c

1j = (0.9, 0.2, 0.1, 0.1) suggests that
high values (1’s) of feature 1 distinguish cluster 1, and that the values of the other features
are low. In the context of the later examples, this would mean cluster 1 contains tourists that
especially engaged in activity 1, but not in activities 2, 3 and 4. This normalization produces
what is called the intra-cluster fraction. In the case of binary features, it equates to the
cluster means.
The last, ff , is normalized relative to each feature (column sum of C), which can be considered
to be the distribution of clusters on each feature. It is useful to examine how features are
related to a cluster. Considering the last metric, for example, if ff

i1 = (0.2, 0.7, 0, 0.1, 0)
(k = 5) would indicate that high values of feature 1 primarily are in cluster 2. In the context
of the later examples, this would mean activity 1 is most commonly listed in cluster 2. This
normalization produces what is called the intra-feature fraction. It also has to be noted
that this metric is heavily influenced by the cluster sizes. Consider a feature that is uniformly
distributed across all clusters, then the largest cluster would receive the highest intra-feature
fraction for that feature.
In this example, while the intra-cluster fraction for cluster 1 and feature 1 is notably high
at 0.9, the intra-feature fraction is comparatively low at 0.2. Applied to the subsequent
analysis, this indicates that 90% of tourists in cluster 1 participated in activity 1, yet only
20% of all tourists who engaged in activity 1 were part of cluster 1. The majority of individuals
participating in activity 1 were members of cluster 2. This discrepancy may be attributed
to cluster 1 representing a relatively small subset of tourists, characterized by a pronounced
preference for activity 1 and a lack of interest in other activities.
The metrics currently implemented in the heatmap interface, as described in this section,
are designed for binary data. To expand the heatmap interface to accommodate ordered
categories or numerical scores, one could indicate the cluster and feature means on the edges
of the heatmap, with the cluster-specific feature means displayed within each element. This,
however, has not been implemented yet.

3.2. Subset selection

The spin-and-brush approach suggests to cluster data manually when using a tour: we run
a tour animation, stop when we see a subset of points that are different from the rest of the
distribution, brush them, and then continue. Different projections will enable the separation
of different subsets, and for well-separated clusters we will be able to recover full cluster
solutions in this manner.
A similar approach can be used to refine a partitioning solution. In a visual analytics approach
we use interactive visualizations to integrate human judgment with statistical and machine
learning models (Keim, Kohlhammer, Ellis, and Mansmann 2010) to optimize knowledge
extraction from data. Here this is in particular useful to integrate prior knowledge or business
interests in a given cluster solution. In the interface we can keep the provided clustering,
but separate out new subsets via manual selection, for example after we found a subset of
particular interest via a manual tour.

3.3. Reproducibility

Ensuring the reproducibility of data analysis is a fundamental principle in scientific research
(see, for example, other contributions in this special issue provided in Peng 2025; Gentleman,
Rossini, and Carey 2025). It allows others to verify the validity of the findings and is key to
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the integrity of the scientific process. Reproducibility not only builds trust in the research
outcomes but also enables the scientific community to build upon existing work. When
analyses can be replicated, it can be validated whether the conclusions drawn from the data are
robust and not dependent on the specific conditions or idiosyncrasies of the original analyst.
Moreover, reproducible research can serve as a foundational building block for subsequent
studies, fostering incremental advancements in knowledge. Note that here the focus is on the
reproducibility of the interactive data analysis. Reproducibility of the cluster solution can be
evaluated using a bootstrap approach (Dolnicar and Leisch 2010).
One challenge in the context of interactive data analysis is that not all steps of the analysis
are precisely documented in the form of code, especially when using GUIs where user-driven
interactions might not leave a traceable history. This lack of documentation can hinder the
ability of others to reproduce the analysis or to understand how specific results were obtained.
To mitigate this challenge, it is essential to implement mechanisms that allow users to easily
save and share intermediate snapshots of their analyses.
One measure to combat this is to make saving intermediate snapshots of the analysis easy and
accessible. Specifically, the Save projections and subsets button enables users to take
snapshots of their analysis, including visual representations, selected data, and parameter
settings. Upon pressing this button, the user can first select, which of the following files they
want to save:

• a .png file containing the currently displayed graphics;

• .csv files that capture the feature and subset selection as well as projections of the
tours displayed at the time of the snapshot;

• two .pkl files that contain state features of the GUI, allowing for complete recovery of
the snapshot.

Then a file browser is triggered, allowing users to specify the destination for saving their
snapshot. The saved files provide dual utility.
First, they allow users to fully recover the state of the analysis within the GUI (which requires
saving the .csv and .pkl files). This can be achieved either by using the Load projections
and subsets button, or by launching a new GUI instance with the load_interactive_tour()
function. The latter approach, using load_interactive_tour(), has the added flexibility of
only requiring the original dataset and the directory containing the saved files. This func-
tion also allows users to modify display settings, such as adjusting the size of the interactive
plots or changing the arrangement of the display grid. In contrast, when loading the saved
state directly from within the GUI, it is crucial that the active session was initiated with the
same dataset and plot objects that were present at the time of saving. This ensures that the
analysis environment is accurately replicated.
Second, the saved .csv files provide a way to inspect and further analyze the data outside of
the original interface. This opens up opportunities for deeper analysis and extensions of the
work.
This level of interactivity and documentation is crucial for reproducibility, as it ensures that
even exploratory, interactive data analysis can be retraced and validated by others. Ulti-
mately, these features facilitate a reproducible workflow that balances the flexibility of inter-
active exploration with the rigor of reproducible research.

4. Applications

In this section, the Austrian Vacation Activities (Dolnicar and Leisch 2003), Australian Va-
cation Activities (Cliff 2009) and Tourist Risk Taking (Dolnicar 2017) datasets are analyzed
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with lionfish to illustrate the software’s capabilities. It has to be emphasized that these anal-
yses only serve as illustrative case studies and that the application of lionfish is not limited to
market segmentation. In each example a k-means clustering is used for illustration, primarily
because this is what was used in the cited work introducing the data. The examples are
either binary or ordinal data which can be considered to be numeric for clustering. Similarly,
the choice of number of clusters follows the cited work, and from our observations seems to
provide a reasonable partition of each dataset.

4.1. Austrian vacation activities dataset

The Austrian Vacation Activities dataset comprises responses from 2,961 adult tourists who
spent their holiday in Austria during the 1997/98 season. Participants were asked to eval-
uate the importance of 27 different activities during their vacation. The survey categorized
responses based on four levels of importance: “totally important”, “mostly important”, “a
bit important”, and “not important”. The original authors binarized the responses for their
analysis: a value of 1 was assigned if the activity was rated as “totally important”, and a
value of 0 if any of the other categories were selected. The survey was conducted by the Aus-
trian Society for Applied Research in Tourism (ASART) for the Austrian National Tourism
Organization (Österreich Werbung).
When working with projections involving binary data, distinct groupings emerge when two
features dominate the projection. Figure 5 illustrates this with a scatterplot of alpine skiing
and cross-country skiing (Figure 5A), alongside three projections from a grand tour of the
data (Figures 5B–D). In these projections, the influence of alpine skiing and cross-country
skiing decreases progressively from B to D. When only two binary features are plotted (Fig-
ure 5A), only four distinct points are visible. As additional features enter the projections, the
data becomes more spread and appears continuous in some projections with many features
contributing (Figure 5D).
To gain further insight into the dataset a k-means clustering following the approach described
in Dolnicar et al. (2018) has been performed. Therefore, the function stepcclust() of the
R package flexclust (Leisch 2006) with k = 6 and nrep = 20 was used.

Feature selection

The original dataset contains p = 27 features. Some of these features are more informative
than others, so it may be beneficial to drop some of them. Although this may result in a loss of
information, the projections can become difficult to interpret if too many features are plotted.
Also, interacting with the projection axes in the lionfish GUI can become cumbersome when
handling more than ~15 features at once. To counteract this, one can use the feature selection
capabilities of lionfish, which allow for quick on-the-fly removal and addition of features. An
effective and intuitive way to perform feature selection is to use the heatmap display within
lionfish.
In Figure 6A, where colors show normalized column counts, we can observe the general
interests of tourists within each cluster. Some activities are high on almost all clusters (e.g.,
relaxing, shopping), and some are low on all clusters (e.g., ski touring and horseback riding),
and ignoring these can be helpful when assessing the distribution of activities between clusters.
When comparing clusters 5 and 6 we can see that alpine skiing is high in both, but cluster 5
tourists also like going to the pool or sauna, but cluster 6 tourists prefer going for walks.
In Figure 6B, we can determine whether tourists selecting a particular feature are equally
distributed or if they primarily fall within one or a few clusters. For example, nearly all
tourists who visited museums are in cluster 2, and those who used health facilities are primarily
attributed to cluster 4. Some activities, such as relaxing, are popular across all clusters.
These heatmaps can help with selecting features to focus on using the tour. Unpopular
and universally popular activities can be removed. After performing the feature selection
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Figure 5: Scatterplot of the features alpine skiing and cross-country skiing (A) and three 2D
projections from a grand tour on the Austrian Vacation Activities dataset (B–D). Because
the 27 features are binary, one discerns distinct groupings when few features dominate the
projection (A–B) but with many binary features the data mostly looks continuous when the
loadings of the other features increase (C–D).

by unchecking the corresponding checkboxes in the GUI using this strategy, the following
12 activities remained: alpine skiing, going to a spa, using health facilities, hiking, going
for walks, excursions, going out in the evening, going to discos/bars, shopping, sightseeing,
museums, and pool/sauna.
We can now repeat the k-means clustering with stepcclust() on the reduced dataset. To
evaluate the similarity between the two cluster solutions, we can use the e1071 package’s
classAgreement() function (Meyer, Dimitriadou, Hornik, Weingessel, and Leisch 2024). This
function, among other metrics, calculates κ, the percentage of datapoints that are in the same
cluster adjusted for chance. The resulting κ value of 0.56 suggests that while there is some
overlap between the cluster solutions, they differ substantially. Silhouette plots of both cluster
solutions can be seen in Figure 7. By comparing both silhouette plots, we can see that the
cluster solution with the reduced dataset results in a clustering of higher quality. Thus, we
will continue with the analysis on the reduced dataset with the corresponding cluster solution.
We can also see in Figure 7B that cluster 3 is of comparatively low quality.
It is important to note that the silhouette scores were generally quite low, reflecting the lack
of clearly separable clusters in the data. This is common in market segmentation analysis,
where clusters are often not clearly separable. As a result, clustering and feature selection
algorithms may converge to a local optimum, and even if the global optimum is found, it may
not necessarily be useful. For instance, a feature selection algorithm might drop features to
find a better optimum according to an objective function. However, this can be problematic
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Figure 6: Traditional overview of clusters. Color represents (A) the intra-cluster fraction, and
(B) the intra-feature fraction. From A, we can see that cluster 3 tourists like alpine skiing,
going out in the evening and going to discos and bars. They also like relaxing, shopping and
sightseeing but these are popular among all tourists. From B, we can see the distribution of
activities across clusters, e.g., most tourists who use health facilities are found in cluster 4
while tourists going to a pool or sauna are primarily found in clusters 1 and 5.

if an analyst is interested in the influence of the dropped features. Consequently, a purely
data-driven analysis can become counterproductive. The primary aim of this analysis is to
gain insights into the data and understand the underlying patterns, rather than to identify
an objectively optimal clustering configuration.
We can further explore the similarities and differences between the clusters by initializing
an interactive_tour() with a 2D tour based on the LDA projection pursuit index. By
navigating through the tour, we can observe various projections, and when a projection that
separates the clusters is found, we highlight each cluster sequentially. The different highlighted
clusters can be seen in Figure 8.
This process allows us to visually assess the separation and similarities between the clusters,
providing insight into the structure of the dataset. By highlighting each cluster individually,
we can evaluate their distinctiveness in different projections. The most influential features
shown in Figure 8 are pool/sauna, alpine skiing, museums, going to the spa, going for walks
and sightseeing. The projection roughly separates clusters 1 (blue), 2 (orange), and 3 (green)
from each other and the other three clusters (red, violet and brown), which appear to be quite
similar in the selected projection.
By manually manipulating the projection axes or initiating a local tour, we can gain further
insight into the similarities between the different clusters. This interactive exploration allows
for a more nuanced understanding of the relationships between clusters and the influence of
key features on the separation of the data.

Redefining cluster assignments – learning more about museum goers

There are several reasons why we might want to manually modify a clustering solution. One
is to capture observations that do not fit well within their assigned clusters. Another reason
is to explore specific features in more detail. The advantage of manual cluster selection is
that it preserves most of the original clustering structure, allowing us to adjust specific parts
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Figure 7: Comparison of silhouette plots of two k-means cluster solutions of the Austrian
Vacation Activities dataset with k = 6. (A) shows the silhouette plot of the k-means solution
of the full dataset and (B) the silhouette plot of the k-means solution of the dataset after
manual feature selection. We can see that the cluster solution with the reduced dataset
achieved better silhouette scores and that clusters 1 and 3 contain observations with negative
silhouette scores.

of the solution without starting from scratch. This approach is particularly useful when we
already have a cluster solution that reveals interesting patterns in the data.
In Figure 7B, we observed that clusters 1 and 3 of the reduced dataset contained datapoints
that did not fit well into their respective clusters. To further investigate this, we can initialize
an interactive_tour() with the following components:

• a 2D tour using the LDA projection pursuit index;

• a heatmap showing the intra-cluster fraction;

• a 1D tour with the LDA projection pursuit index; and

• a mosaic plot.

This setup produces the display shown in Figure 9. In the heatmap (top right), it can be
seen that both clusters 1 and 3 contain tourists that did not go alpine skiing and that the
main difference between them is that tourists in cluster 3 enjoyed going to the spa and health
facilities as well as going to the pool, while the ones in cluster 1 did not. Other than that,
the clusters were mostly similar. Now we might be interested in the clusters of tourists that
enjoy going to museums. Therefore, we can adjust the projection axes so that these axes are
elongated and point into different directions. We can see that there is indeed overlap between
clusters 1 and 3, as shown in the 2D projection and heatmap in Figure 10. As a next step
we can reassign the overlapping section to a new cluster – cluster 7 (pink). By selecting the
checkbox for cluster 7 and manually selecting the region of overlap, we can form a new cluster,
which is visualized in Figure 11.
In Figure 11, we can observe slight behavioral differences between tourists in clusters 1 (blue)
and 7 (pink). Both the 2D projection and the heatmap indicate that, tourists in cluster
7 all enjoyed both museums and sightseeing, whereas most tourists in cluster 1 engaged in
sightseeing but showed no interest in museums. Instead, we can take from the heatmap in
Figure 11 that participants in cluster 1 exhibited a greater preference for hiking. Despite this,
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Figure 8: Display of a projection of the Austrian Vacation Activities dataset with the six
clusters of the k-means cluster solution highlighted in different colors. Projection axes with
a norm < 0.1 are not shown as these axes have little influence on the projection, but reduce
clarity of the plot. The colors indicate which clusters the highlighted observations belong to
with cluster 1 being blue (A), cluster 2 being orange (B), cluster 3 being green (C), cluster
4 being red (D), cluster 5 being violet (E) and cluster 6 being brown (F). Some datapoints
appear to be highlighted always, which occurs due to the overlap of many datapoints in one
spot. We can see that the projection separates some clusters well, however, also that there is
considerable overlap of clusters 4, 5 and 6.

tourists in both clusters generally shared similar interests. This insight could be valuable for
enhancing museum marketing strategies. While clusters 1 and 7 have overlapping interests,
it appears that current marketing efforts may not effectively reach tourists in cluster 1. By
increasing targeted marketing at hiking trails, popular excursion destinations, and shopping
centers, it may be possible to attract more interest in museums from tourists in cluster 1.

4.2. Australian vacation activities dataset

The second dataset, the Australian Vacation Activities dataset, includes responses from 1,003
adult Australians who were surveyed through a permission-based internet panel. The survey
was conducted in 2007. Participants were asked whether they engaged in 44 specific vacation
activities during their most recent vacation within Australia. Similar to the Austrian Vacation
Activities dataset, responses were binarized: a value of 1 indicates that the participant took
part in the activity, while a value of 0 signifies they did not. Surveys where participants
claimed they partook in more than 40 activities or no activity at all were removed as they
are considered faulty.

Feature selection

At first, hierarchical clustering using the Ward2 algorithm (Murtagh and Legendre 2014)
and the Jaccard index was applied to the features. The resulting dendrogram is shown in
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Figure 9: Interactive tour GUI loaded with multiple plots showing different aspects of the
k-means solution of the Austrian Vacation Activities dataset. Projection axes with a norm
< 0.1 are not shown as these axes have little influence on the projection, but reduce clarity
of the plot. Top left: 2D tour with the linear discriminant analysis projection pursuit index.
Top right: heatmap with the intra-cluster fraction. Bottom left: 1D tour with the linear
discriminant analysis projection pursuit index. Bottom right: mosaic plot. Tourists in both
clusters 1 and 3 did not participate in skiing a lot, but tourists in cluster 3 were much more
interested in going to the pool, spa and health facilities compared to cluster 1.

Figure 12. Based on this clustering, k = 15 clusters were identified, and generally, only one
representative feature from each cluster, which was considered informative, was selected for
further analysis. Clusters containing unpopular activities, such as “Adventure”, which only
had 42 participants, were discarded. The cluster containing popular features like “Beach”,
“Swimming”, “ScenicWalks”, “Markets”, “Sightseeing”, “Friends”, “Pubs”, “BBQ”, “Shop-
ping”, “Eating”, “EatingHigh”, “Movies”, and “Relaxing” was treated differently. Multiple
features from this cluster were retained to preserve as much information as possible. After
feature selection, the observations were clustered using k-means with k = 6.
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Figure 10: Interactive tour GUI loaded with multiple plots showing different aspects of the
k-means solution of the Austrian Vacation Activities dataset, with manually adjusted projec-
tions. Projection axes with a norm < 0.1 are not shown as these axes have little influence
on the projection, but reduce clarity of the plot. Top left: 2D tour with a manually adjusted
projection. Top right: heatmap with the intra-cluster fraction. Bottom left: 1D tour with a
manually adjusted projection. Bottom right: mosaic plot. Changing the projection axes of
“going to a spa”, “museums”, “sightseeing” and “using health facilities” reveals the prefer-
ences and overlap of clusters 1 and 3.

Segmentation of tourists traveling without friends

In the heatmap displaying the intra-cluster fraction shown in Figure 13 (bottom right), we
observe that clusters 1, 2, and 6 tend to prefer traveling without friends. We can assume
tourists in these clusters prefer traveling alone, as couples or with their family. Additional
features to further divide these clusters might be interesting for future surveys. As a tourist
agency, we might be interested in targeting these travelers more effectively. However, clusters
2 and 6 also include individuals who enjoy spending time with their friends. To further explore
the dataset, we can launch an interactive_tour() with the same configuration as in the
previous example. To achieve better separation between the clusters, we can skip to the last
frames of a 2D tour optimized for the LDA index.
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Figure 11: Interactive tour GUI loaded with multiple plots showing different aspects of the
k-means solution of the Austrian Vacation Activities dataset, after new clusters have been
selected manually. Projection axes with a norm < 0.1 are not shown as these axes have little
influence on the projection, but reduce clarity of the plot. Top left: 2D tour with a manually
adjusted projection. Top right: heatmap with the intra-cluster fraction. Bottom left: 1D tour
with a manually adjusted projection. Bottom right: mosaic plot. We can see that now almost
all museum-goers are in the new manually selected cluster 7 and what their preferences are
compared to the other clusters.

Since we are particularly interested in tourists who did not spend time with friends, we can
extend the projection axis “Friends” outward to separate the data based on that feature.
Datapoints in the opposite direction of the “Friends” axis are the tourists we are interested
in, which can be seen in Figure 13 on the left side of the top left plot. Subsequently, we
can pull all other projection axes in one direction to separate datapoints based on their
overall activity level. The resulting projection is shown in Figure 13 (top left). Tourists that
fall in the direction of the axes generally engage in more activities compared to those in the
opposite direction of the projection axes. This separation is evident, as observations in cluster
6 (brown) are located opposite the axes, and the heatmap (Figure 13, bottom right) shows
that they did not engage in many activities. Similarly, we can also see that cluster 3 (green),
which contains quite active tourists, is shifted towards the direction of the axes.
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Figure 12: Dendrogram of the features of the Australian Vacation Activities dataset using the
Ward2 algorithm with the Jaccard index. Features that were clustered together are marked
by the colored boxes. We can see, which activities had similar patterns in tourist interest.

Using this logic, we can manually partition the datapoints on the left into three new clusters:
active tourists (more upward – cluster 7), moderately active tourists (center – cluster 8), and
largely inactive tourists (bottom – cluster 9). The result of this segmentation can be seen in
Figure 14. Since all datapoints in cluster 1 (previously blue) had a value of 0 for “Friends” and
were therefore included in the subset of datapoints subject to manual re-selection, no data-
points remain in cluster 1 after the re-selection. As a result, cluster 1 disappears. Analyzing
the heatmap (Figure 14 bottom right), we can identify several interesting patterns.
By comparing cluster 3 (green), which contains active tourists who spent time with their
friends, with cluster 7 (pink), the active tourists who traveled without their friends, we notice
that cluster 7 showed less interest in visiting the casino, theater, and chartering a boat.
We also observe distinctive differences in the interests of the clusters that traveled without
friends. According to the heatmap on the bottom right of Figure 14, cluster 7 was interested
in relaxing, shopping, sightseeing, wildlife, going to the beach, visiting pubs, and exploring
farms. Given that cluster 7 showed a notable interest in going to pubs, we can assume that
the solo travelers and couples in this cluster are looking to meet new people. This insight
could be leveraged in a marketing campaign by bundling activities that appeal to cluster
7, creating packages tailored to these tourists. Such packages would provide opportunities
for them to connect with other travelers who share similar interests while enjoying their
preferred activities. Additionally, some solo travelers and couples might prefer experiences
or environments without children, allowing for the creation of adult-oriented packages. The
remaining subset within cluster 7 consists of families. To better cater to this subsetting,
packages can be refined for instance to consider that not all museums or festivals are equally
suitable for children, enabling more family-friendly customizations.
Although cluster 8 (gray) was generally less active, almost everyone still engaged in sightsee-
ing. We can see in the heatmap on the bottom right of Figure 14 that for them the focus
was on sightseeing, relaxing, shopping, and going to the beach, with much less interest in
other activities. It can be assumed that solo travelers in this subset value their time alone.
This subset could potentially be targeted more effectively by offering sightseeing options with
minimal interaction, such as using a phone app to provide information about interesting
locations, rather than relying on a tour guide. For couples in this cluster, the focus may
be on enjoying quality time together in a relaxed, low-key environment. Marketing strate-
gies could emphasize romantic sightseeing experiences, such as sunset tours or private beach
spots. Additionally, offering couples’ packages that include spa treatments, leisurely dining
experiences, and personalized itineraries could resonate well with this subset, allowing them
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Figure 13: Interactive tour GUI loaded with multiple plots showing different aspects of the
k-means solution of the Australian Vacation Activities dataset, with the projection axis of
the feature “Friends” being relatively long and pointing into one direction and all the other
ones being relatively short and pointing into another one. The projections (top left and right)
primarily separate the data based on the feature “Friends” and then based on their general
activity level. It is of note that only the relative orientation of the projection axes within the
individual displays matters. Top left: 2D tour. Top right: 1D tour. Bottom left: Mosaic
plot. Bottom right: Heatmap with the intra-cluster fraction.

to unwind and connect at their own pace. Families in cluster 8 might prioritize activities that
balance relaxation and light exploration, particularly in child-friendly settings. Sightseeing
tours tailored to families, with engaging and educational content for children, could be a
strong fit. Beach outings that offer safe, family-oriented areas or interactive experiences like
sandcastle-building competitions could also be appealing. By curating packages that cater to
both relaxation and gentle family activities, families can enjoy their vacation with minimal
stress.
Finally, since cluster 9 (olive green) was notably inactive, one might infer that they prefer
spending much of their time in their accommodation. Consequently, these tourists might be
most interested in accommodations that offer well-equipped, comfortable living spaces with
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Figure 14: Interactive tour GUI as seen in Figure 13, but after sub-selection of clusters 7
(pink), 8 (gray) and 9 (olive green). Top left: 2D tour. Top right: 1D tour. Bottom left:
Mosaic plot. Bottom right: Heatmap with the intra-cluster fraction. We can observe the
preferences of three new subsets, which can be interpreted as very active (pink), moderately
active (gray) and inactive (olive green) tourists traveling without their friends.

amenities that cater to relaxation and leisure.

4.3. Tourist risk taking dataset

The final dataset to be analyzed stems from a survey of 563 Australian residents who under-
took a holiday of at least four nights in 2015. The respondents were asked about the types
of risks they had taken in the past. Six different types of risk were screened: recreational
(e.g., rock-climbing, scuba diving), health (e.g., smoking, poor diet, high alcohol consump-
tion), career (e.g., quitting a job without another to go to), financial (e.g., gambling, risky
investments), safety (e.g., speeding), and social risks (e.g., standing for election, publicly chal-
lenging a rule or decision). The response options for each risk type were on an ordinal scale
ranging from 1 to 5: never (1), rarely (2), quite often (3), often (4), and very often (5).
To analyze the data, first a k-means clustering with k = 5 was performed. As the dataset
comprises only six features, no feature selection was conducted. Subsequently, a 2D tour with
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Figure 15: Final frame of a guided tour of the clustered risk data with the LDA index.
The color of the datapoints indicates which cluster they belong to with cluster 1 being blue,
cluster 2 being orange, cluster 3 being green, cluster 4 being red and cluster 5 being violet.
All projection axes have positive values on the displayed x-axis, which can be interpreted as
the projection primarily separating the clusters based on their general risk taking behavior.
Most clusters are separated nicely, but clusters 4 and 5 overlap.

the LDA index was conducted, and the results were visualized using the lionfish package.
The final projection of the tour can be seen in Figure 15. In this projection, all projection
axes have positive values for the displayed x-axis, indicating that the projection primarily
separates the data based on general risk taking behavior. Cluster 5 (violet) is identified as
the most risk averse, while cluster 3 (green) is the most risk taking. Individuals in cluster 1
(blue) are also inclined to taking risk, but less so than individuals in cluster 3. Additionally,
cluster 2 (orange) is oriented towards the health axis, suggesting that this cluster is more
inclined to take health risks. Cluster 4 (red) is generally less risk taking and seems to be
more inclined towards taking recreational risk. It can also be seen that there is some overlap
between clusters 4 and 5.
Given the overlap between clusters 4 and 5 in Figure 15, we are interested in exploring their
differences further. To achieve this, we generate a new tour with the LDA index from within
the GUI, utilizing the inbuilt function to redefine the subsets considered in the LDA. This
was done by selecting “Guided tour - LDA - regroup” from the dropdown menu and then
clicking the “Run tour” button, which spawns an interface for the regrouping. By activating
the switches for clusters 1, 2, and 3 in the “Ignore” column of the interface, the tour ignores
the data from these clusters, focusing on separating clusters 4 and 5. This interface is shown
in Figure 16. Alternatively, we could activate the switches for clusters 1, 2, and 3 not in
the “Ignore” column, but in another column, e.g., the one labeled “New subgroup 1”. This
would result in the tour considering these clusters as one cluster. This configuration would
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Figure 16: Interface of the “Guided Tour - LDA - regroup” function. The option highlighted
by the yellow box indicates which element of the dropdown menu to select to spawn the
displayed interface. Within the interface, the user can choose how they want the LDA metric
to be computed by activating switches. All clusters selected in one column will be considered
as a single cluster when computing the LDA metric. This affects only the calculation of the
metric and the resulting projection matrices, not the actual selections. If a switch in the
“Ignore” column is activated, the datapoints within that cluster will not be considered for
the generation of the guided tour.

essentially try to separate clusters 4 and 5 from each other and all other datapoints. The final
projection of the new tour can be seen in Figure 17. In this projection, it is evident that the
most defining features for differentiating between the two clusters are recreational and safety
risk, and social risk to a smaller extent. Career and financial risk are quite similar for both
clusters.

5. Discussion

One might question the necessity of manual exploratory data analysis, considering that it
is inherently subjective and relies heavily on intuition. However, in situations like those
presented here, where there is no clearly defined or optimal clustering solution or feature se-
lection, manual exploration becomes indispensable. While it is possible to optimize clustering
metrics to improve separation between clusters, this alone may not yield conclusions that are
useful for practical applications. The lack of clear boundaries and the overlapping nature of
clusters in the datasets underscore the limitations of purely automated methods in capturing
the complexity and nuance of real-world data.
In such cases, manual exploration allows analysts to interweave expert knowledge, intuition,
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Figure 17: Final frame of the guided tour generated based on the settings shown in Figure 16.
Clusters 4 (violet) and 5 (red) are now much better separated compared to the projection
shown in Figure 15. The most influential features within the data for differentiating between
the clusters were recreational risk and safety risk, with both being higher for cluster 4.

and specific objectives with the initial clustering solution, which serves as the backbone of
the analysis. This approach is particularly valuable when no single solution can be deemed
“correct”. For instance, in the Austrian Vacation Activities dataset, leveraging the interactive
GUI for feature selection enabled us to isolate the most informative activities and gain deeper
insights into the preferences of tourists who might be interested in visiting museums. This
understanding facilitated targeted recommendations for increasing museum attendance by
focusing on tourists frequenting hiking trails, excursion spots, and shopping centers. Such
insights are challenging to extract through automated optimization alone.
Similarly, in the Australian Vacation Activities dataset, manual exploration allowed us to
refine the understanding of tourists traveling without friends by dividing them into three
distinct subsets: highly active, moderately active, and largely inactive tourists. This nuanced
segmentation, derived from a blend of automated clustering and manual adjustments, offers
a deeper understanding of the varied needs and behaviors within this subset, enabling more
effective marketing strategies.
The Tourist Risk Taking dataset was used to show how the interactive selection, together
with the guided tour, can be used to fully understand the separation of all clusters in terms
of the features. There is no single linear projection that can visualize the separation between
all clusters, but we can use the interactivity of lionfish to understand the separation in two
steps. First, we find a projection that can separate most clusters, and in a second step we
select those clusters that were overlapping and ask for a projection that can best separate
those subsets.
While some plots supported by the lionfish package are specifically designed for analyzing
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binary survey data, it is important to emphasize that its capabilities extend far beyond this
data type. The versatility of tours has been demonstrated across various applications in the
past, showcasing their effectiveness in exploring complex, high-dimensional datasets. The
interactive GUI enables seamless exploration of both 1D and 2D tours, regardless of the data
being analyzed, providing a powerful tool for uncovering patterns and insights across diverse
domains.

6. Conclusion

Ultimately, manual data exploration serves as a useful complement to automated methods,
providing the flexibility to incorporate context, expert judgment, and specific analytical goals.
This approach enables analysts to refine initial results and adapt them to the complexities
of real-world scenarios, leading to more nuanced interpretations and actionable insights. The
lionfish package offers an organized and responsive interactive tool for conducting such anal-
yses, bridging the gap between automated clustering and exploration.
By integrating interactive visualization capabilities, the lionfish package empowers users to
dynamically engage with their data, making it possible to uncover subtle patterns and rela-
tionships that might otherwise remain hidden. This is especially valuable in tackling complex
datasets with the mindset that an automated solution needs to be validated. The package
has broad applicability across various data types and analytical contexts where clustering is
used. The flexibility of setting up the GUI elements from the command line allows it to be
tailored for different applications.
Future developments in lionfish might include expanding the range of visualization methods
and offering additional interactive features, such as enabling the generation of new cluster
solutions directly from the GUI. An obvious expansion will be to add support for numeric
data to the heatmap interface as described in Section 3. Leveraging the integration of both
R and Python, future enhancements could include a seamless combination of algorithms from
each language, which broadens the expansion potential of the software. For more complex
data shapes, such as those with concavities or non-linear boundaries, the implementation of
sliced tours (Laa et al. 2020) is recommended to improve exploratory analysis. Streamlining
the addition of new plot types could also further enhance the versatility of the package,
making it more adaptable for different data visualization needs. This ongoing integration
of R and Python exemplifies how the strengths of both languages can be harnessed for the
development of new software packages. A further expansion of this would be to develop a
shiny app (Chang et al. 2024) leveraging the package’s Python integration.
In summary, package lionfish represents a significant advancement in the toolkit of data
analysts, offering a novel way to balance automated analysis with human intuition and domain
expertise, thereby facilitating a deeper and more comprehensive understanding of complex
datasets. We have demonstrated its capabilities by analyzing three different datasets from
the domain of market segmentation.

Resources and supplementary materials

The source code and documentation of the software can be found on CRAN at https://
CRAN.R-project.org/package=lionfish and on Github at https://mmedl94.github.io/
lionfish/. The documentation features explanations and demonstrations of all implemented
plots types as well as additional use cases not shown in this article. Supplementary material
including:

• scripts to start the GUI and reproduce the graphics in the paper and

https://CRAN.R-project.org/package=lionfish
https://CRAN.R-project.org/package=lionfish
https://mmedl94.github.io/lionfish/
https://mmedl94.github.io/lionfish/
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• saved states for different parts of the interactive analyses, so that the results can be
reproduced,

can be found at https://github.com/mmedl94/lionfish_article/.
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