
AJS

Austrian Journal of Statistics
2025, Volume 54, 43–49.
http://www.ajs.or.at/
doi:10.17713/ajs.v54i3.2057

Contributions of Fritz Leisch to Vignettes and
Reproducible Research

Robert Gentleman
Dana Farber Cancer Institute

Anthony Rossini
UCB and

University of Washington

Vincent Carey
Channing Division of

Network Medicine
Mass General Brigham
Harvard Medical School

Abstract

In this paper we review the contributions of Dr. Fritz Leisch to the areas of reproducible
research and software documentation. We first review three emergent use cases for these
contributions and then describe the computational tools and methods needed to support
them. We then discuss some of the risks that exist for each of the use cases and consider
developments that might help to mitigate those risks. And we end by considering how
they may evolve in the coming years.

Keywords: dynamic document, Sweave, vignette, reproducible research, containerization, R.

1. Introduction
In a pair of papers (Leisch 2002, 2003), Fritz Leisch introduced and described Sweave, a novel
synthesis of efforts to document the practice of data science in a transparent and reproducible
way. Building on the literate programming proposals of Knuth (1984) and others, an Sweave
document explains software usage and includes the source code which carries out computa-
tions. The novel aspect of Fritz’s contribution was an extension to literate programming in
which code segments are executed and the output of the code, potentially tables, graphics, or
dynamic content, is embedded in a rendered document along with narration and optionally
source code. See Figure 1 for an example. This transforms the idea of literate programming
from a method of documenting code to a method of documenting what the code did when
applied to a specific problem. A wide range of applications to statistics and data science was
originally described by Rossini (2001) and Rossini and Leisch (2003). These ideas can be
applied to documentation, verification, explanation, application, and teaching.
Discussions of the opportunities such a system could enable for statistical and data science
practice include Rossini (2001), Gentleman and Temple Lang (2007), and Sawitzki (2002).
Fritz’s great insight was to see that a transformation of the document which inserted arti-
facts produced by the code, e.g., tables or figures, would lead to improved documentation of
software packages and workflows and would simultaneously enable a form of reproducibility
of papers, whether for research or teaching. More importantly, he implemented his vision

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v54i3.2057
www.osg.or.at
https://orcid.org/0000-0003-4505-9893
https://orcid.org/0009-0007-6613-3470
https://orcid.org/0000-0003-4046-0063


44 Contributions of Fritz Leisch to Vignettes and Reproducible Research

a) The untransformed document, written in R Mark-
down

b) Shows the rendered version

Figure 1: The two versions of a dynamic document

in a way which enabled others to build on it, thus creating a community of supporters and
extenders. As in Gentleman and Temple Lang (2007), we refer to a document that mixes text
with computer code in ways that support both extracting the code (tangling) and replacing
or augmenting the code with its outputs in a finished form (weaving) as a dynamic document.
At approximately the same time that Sweave was being developed, the authors of this paper
were engaged in the creation and development of the Bioconductor Project (Gentleman et al.
2004). Bioconductor was formed to coordinate and curate software, annotation, and data
resources for computational genomic data science, first for the DNA microarray paradigm
that emerged at the start of the 21st century, continuing on to single-cell and spatial tran-
scriptomics of intense interest today. Software and workflows in genome-scale biology are
inherently complex and documenting them is essential both for ensuring scientific integrity
of usage and results, and for building an efficient and reliable workforce. Early in the Bio-
conductor project it was recognized that Sweave documents could collect and drive execution
of examples and demonstrations to efficiently instruct scientists, including those with non-
quantitative training, to apply advanced quantitative and informatics methods to the analysis
and interpretation of their own work. The requirement that Bioconductor software packages
include runable Sweave vignettes was a key factor in the rapid adoption and expansion of
the Bioconductor Project. As a by-product, Sweave increased the possibility for reproduction
and exploration of experimental data, enabling transparency in a previously opaque analysis
setting.
From an informatics and data science perspective, further developments extended and simpli-
fied these ideas and tools, ultimately focusing on Markdown (e.g., Xie, Allaire, and Grolemund
2023) as a vehicle for authoring vignettes. The processing steps were modified to support dif-
ferent outputs, such as books, interactive web pages (Shiny; Wickham 2021) and Quarto
(Allaire, Teague, Scheidegger, Xie, and Dervieux 2024) thereby creating a very flexible but
inherently simple framework which is very popular.

2. Three emergent use cases
The concepts of dynamic documents support three interrelated use cases: 1) documentation
of a software package, 2) production and sharing of How To manuals and 3) reproducible
research papers. Examples of these different approaches are found in many different com-
puting ecosystems. We will use the term descriptive version to refer to the document in the
form where code chunks are visible and unevaluated and the term rendered version to refer
to the form where the code chunks have been evaluated and used according to the authors’
directives.



Austrian Journal of Statistics 45

2.1. Documentation of software packages

It has become common in biology, epidemiology and a number of other disciplines to create
software packages that support specific analytic approaches or workflows. In these settings
the packages often have a number of different software components that need to work in
concert to achieve the desired analysis. It is standard practice in software documentation
to provide manual pages for each function describing the inputs, outputs and often optional
variations on the standard analysis. Many languages provide ways to document and test each
function to ensure its inputs and outputs align with the current documentation. However,
this approach may not ensure that the functions work together in the intended fashion.
In this setting a dynamic document can be used to describe the intended workflow, and as such
it will function as a How To document. In R these documents are called vignettes and they
can be checked for validity using tools similar to those used for testing individual functions.
Hence a vignette can be both informative and diagnostic. The Bioconductor Project makes
substantial use of vignettes for both of these purposes and is a good source of examples.

2.2. How To documents

As described above one of the uses of vignettes in R packages is to function as How To
documents. However, tools like Jupyter and Google Colab notebooks are much more widely
used (based on GitHub repository data such as forks, likes and downloads) and play a similar
role. Donoho (2024) argues that the ease of use and widespread dissemination of these
notebooks has greatly sped up the adoption of new analysis tools. Our own experience
with protein folding tools strongly agrees with that observation.

2.3. Reproducible research

There are many different use cases that fit under this heading. One use case is to ensure
that all research projects that lead to publications, conference presentations, white papers
etc. are reproducible in the sense that there is some documented way of starting with specific
data and producing the exact set of figures and tables used in the presentation or paper.
Many labs use these methods to ensure that graduate student and post-doc projects are
both reproducible and extensible. By extensible we are considering the common situation
where a new analyst will extend a previously published study by developing new methods,
or alternative approaches. Having access to the actual data, code and workflow that was
initially used is of substantial educational benefit and can greatly reduce the time needed to
develop new methods.

3. Methods
To make use of dynamic documents in practice there are three technological hurdles that
need to be overcome. There needs to be a software development process that will support
the code that performs the data manipulations and produces the figures. There needs to
be an authoring infrastructure that supports integrating text and code in order to create
the descriptive version of the paper and finally there needs to be an infrastructure that can
process the document, evaluate the code chunks and appropriately insert the results consisting
of tables, figures and other outputs into the final rendered version of the paper. We also note
that a number of programming languages have developed tools to create and render such
documents, see Table 1. In this section we will outline strategies to address these issues.

3.1. Writing software

The use of web-based platforms such as GitHub (https://github.com/) for version control
and collaboration has become a standard for software development. Many programming lan-

https://github.com/


46 Contributions of Fritz Leisch to Vignettes and Reproducible Research

Table 1: Sweave-inspired extensions for a variety of programming languages

Language Tool GitHub stars
Python Sphinx 6,500
R R Markdown 2,400
Multiple Quarto 3,700
Julia Literate.jl 500

guages have support built in for using these tools and programmers are typically familiar
with the tools. These tools are useful for dynamic documents, and provide a well documented
resource. It is good practice to consider writing a software package as a way to both encap-
sulate all the code needed for a dynamic document. This also provides more explicit control
of using version numbers to ensure that all authors are using the most recent versions of the
code and other components.
These platforms also provide tools for identifying authorship contributions, as well as orga-
nizing code and supporting documentation. Recent developments also include methods to
execute certain tasks whenever the repository is updated.

3.2. Dynamic documents

Most widely used programming languages support dynamic documents in some form. Perhaps
most widely used are notebooks such as those provided by Jupyter. For example, Google’s
Colaboratory (https://colab.google/) uses Jupyter notebooks which can be provisioned
with compute resources, including GPUs.

3.3. Processing documents

In order to support the transformations of dynamic documents into different outputs some
additional tools are needed. The range of opportunities is quite broad. There can be code
written in different languages, data accessed from a variety of sources, computation carried
out locally (e.g., on a laptop) or in the cloud or other special GPU based hardware and an
author might also want to create a variety of different artifacts rather than a single document.
There are also tools for caching outputs to support convenient processing in the presence of
long-running computations or data access restrictions.
These challenges can be solved in many different ways. Browser-based or graphical user
interfaces employ connections to remote servers that contain the necessary computational
engines. Jupyter and Google Colab notebooks as well as Posit’s “R Markdown notebook”
take this approach.

3.4. Containerization

Tools such as Docker (www.docker.com) can address the challenge of accurately describing
and sharing the computing environment required to perform the computations. An author
can specify a specific operating system, the installed packages and any other resources, such
as databases, that might be needed. This recipe is then used to create an image, which
is essentially a self-contained piece of software that can be instantiated to create a running
machine according to the recipe. The running instance is then called a container. Containers
provide a comprehensive method for collaborating, as using a specific container ensures that
all collaborators have identical computing environments. Containers are also arguably the
most straightforward way to achieve reproducibility, as anyone with access to the container can
re-run any analysis that has been documented, relying only on the contents of the container.

https://colab.google/
www.docker.com


Austrian Journal of Statistics 47

3.5. Data access for reproducibility

When authoring a vignette it is common to refer to the data that are needed within the
software package that is being documented. In some cases a representative subset of the data
may be more appropriate. For How To documents it is important to choose data resources
that are well supported and easily accessed. Examples include scientific data repositories
or public data sets such as NHANES (https://www.cdc.gov/nchs/nhanes/index.html) to
ensure that users can replicate the examples provided. For published papers it would be
helpful to have the data that is used available from a scientific data repository such as GEO
(https://www.ncbi.nlm.nih.gov/geo/).

4. Risks and mitigations
The primary challenge for reproducible research is the lack of sustainable infrastructure and
funding. Scientific journals have not taken the lead in supporting reproducibility, likely due
to increased costs without corresponding revenue. Both public and private funders have yet
to fully support the necessary computational infrastructure, while professional societies have
made limited progress in changing behaviors. Further discussion and examples are provided
in a recent commentary on Donoho’s manifesto on “frictionless reproducibility” (Barba 2024).

4.1. Functionality risks of dynamic documents

The main concern is that literate or dynamic documents may cease to function as intended over
time. While traditional literate programming faced few issues, modern dynamic documents
and notebook interfaces present more complex challenges:

• Processing tools may become obsolete.

• Programming languages may evolve, breaking existing code.

• Dynamic documents require specific software versions, hardware, and operating systems.

Currently, there is no comprehensive solution to maintain long-term functionality across all
platforms. Mitigation strategies of interest include

Version control: Systems supporting active research languages often include mechanisms
for specifying package versions.

Containerization: Using tools like Docker can encapsulate computational needs, allowing
for complete specification of the operating system and components.

Cloud infrastructure: Some platforms, like Google Colab, offer tools to create containers
that can run on cloud infrastructure.

4.2. Quality assurance in reproducible research

Reproducibility alone does not guarantee quality analysis. While most laboratory sciences
have established practices for experimental replication, computational sciences often lack
sufficient detail for result replication. This highlights the need for:

• Improved documentation of software and methods.

• Standardized practices for sharing computational workflows.

• Peer review processes that assess both reproducibility and scientific quality.

https://www.cdc.gov/nchs/nhanes/index.html
https://www.ncbi.nlm.nih.gov/geo/


48 Contributions of Fritz Leisch to Vignettes and Reproducible Research

Addressing these challenges is critical to advance the field of reproducible research and ensure
its stability, long-term viability, and credibility.

5. Discussion
The basic ideas of dynamic documents have evolved substantially since Fritz’s initial papers.
Many important use cases have been developed and some ideas, especially those incorporated
in Jupyter notebooks have been widely adopted. Most programming languages used for
scientific computing (namely R, Python and Julia) can be used to create and compute with
dynamic documents, although it seems that only R has really engaged with the notion of
vignettes as critical components of software packages.
Substantial challenges remain for their use in reproducible research. We are not aware of
widespread use of these tools or ideas in this context. Software languages evolve over time as
does computer hardware. What ran at one point in time may not at a later date, although we
believe that principled use of source code repositories and container systems, such as Docker,
may ultimately address these concerns. Data is also a concern as not all data can be shared
openly due to privacy and other legal constraints, and internet resources have not proven to
be particularly stable.
Other hurdles involve the publishing process itself. There is no real evidence that referees
can or would make use of anything besides the transformed output and few journals have any
mechanism for storing and sharing the necessary files and infrastructure needed.
There are potential solutions to these challenges. Specifically the use of software containers
including stable virtual machine infrastructure such as Docker appears to be a reasonably
robust way to specify computational environments which can be stored and shared. The
wide-spread use of code repositories such as GitHub provides good solutions to software and
document development processes. Data sharing or integrity may be helped by ensuring that
post publication data are deposited in stable on-line repositories.
There has been true success in the use of vignettes. The Bioconductor Project has many
examples of how they are used for teaching, training and as tools to help ensure that internal
consistency is maintained in user contributed packages. The use of Jupyter and Google Colab
notebooks is widespread, especially in the machine learning community. The ideas Fritz put
forth have helped us move forward in meaningful ways. The precise sharing of implementa-
tions for for statistical methods and data science, which Fritz’s work championed, has made
a huge impact in the dissemination of data science techniques and methods, especially in
appropriate utilization of those methods for scientific knowledge generation.

References

Allaire JJ, Teague C, Scheidegger C, Xie Y, Dervieux C (2024). “Quarto.” doi:10.5281/
zenodo.5960048.

Barba L (2024). “The Path to Frictionless Reproducibility Is Still under Construction.”
Harvard Data Science Review, 6(1). doi:10.1162/99608f92.d73c0559.

Donoho D (2024). “Data Science at the Singularity.” Harvard Data Science Review, 6(1).
doi:10.1162/99608f92.b91339ef.

Gentleman R, Temple Lang D (2007). “Statistical Analyses and Reproducible Re-
search.” Journal of Computational and Graphical Statistics, 16(1), 1–23. doi:10.1198/
106186007x178663.

http://dx.doi.org/10.5281/zenodo.5960048
http://dx.doi.org/10.5281/zenodo.5960048
http://dx.doi.org/10.1162/99608f92.d73c0559
http://dx.doi.org/10.1162/99608f92.b91339ef
http://dx.doi.org/10.1198/106186007x178663
http://dx.doi.org/10.1198/106186007x178663


Austrian Journal of Statistics 49

Gentleman RC, et al. (2004). “Bioconductor: Open Software Development for Compu-
tational Biology and Bioinformatics.” Genome Biology, 5(10), R80. doi:10.1186/
gb-2004-5-10-r80.

Knuth DE (1984). “Literate Programming.” Computer Journal, 27(2), 97–111. doi:10.
1093/comjnl/27.2.97.

Leisch F (2002). “Sweave, Part I: Mixing R and LATEX.” R News, 2(3), 28–31. URL https:
//journal.R-project.org/news/RN-2002-3-sweave-part-i-mixing-r-and-l/.

Leisch F (2003). “Sweave, Part II: Package Vignettes.” R News, 3(2), 21–24. URL https:
//journal.R-project.org/articles/RN-2003-013/.

Rossini A (2001). “Literate Statistical Analysis.” In K Hornik, F Leisch (eds.), Proceedings
of the 2nd International Workshop on Distributed Statistical Computing, March 15–17,
2001. Technische Universität Wien, Vienna, Austria. URL https://www.R-project.org/
conferences/DSC-2001/Proceedings/Rossini.pdf.

Rossini A, Leisch F (2003). “Literate Statistical Practice.” UW Biostatistics Working Paper
Series. URL https://biostats.bepress.com/uwbiostat/paper194.

Sawitzki G (2002). “Keeping Statistics Alive in Documents.” Computational Statistics, 17(1),
65–88. doi:10.1007/s001800200091.

Wickham H (2021). Mastering Shiny: Build Interactive Apps, Reports, and Dashboards Pow-
ered by R. 1st edition. O’Reilly Media, Beijing Boston Farnham Sebastopol Tokyo. URL
https://mastering-shiny.org/.

Xie Y, Allaire JJ, Grolemund G (2023). R Markdown: The Definitive Guide. Chapman &
Hall/CRC. URL https://bookdown.org/yihui/rmarkdown/.

Affiliation:
Robert Gentleman
Department of Data Science
Dana Farber Cancer Institute
Boston, MA, USA

Austrian Journal of Statistics http://www.ajs.or.at/
published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 54 Submitted: 2024-10-03
2025 Accepted: 2025-03-07

http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
https://journal.R-project.org/news/RN-2002-3-sweave-part-i-mixing-r-and-l/
https://journal.R-project.org/news/RN-2002-3-sweave-part-i-mixing-r-and-l/
https://journal.R-project.org/articles/RN-2003-013/
https://journal.R-project.org/articles/RN-2003-013/
https://www.R-project.org/conferences/DSC-2001/Proceedings/Rossini.pdf
https://www.R-project.org/conferences/DSC-2001/Proceedings/Rossini.pdf
https://biostats.bepress.com/uwbiostat/paper194
http://dx.doi.org/10.1007/s001800200091
https://mastering-shiny.org/
https://bookdown.org/yihui/rmarkdown/
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Three emergent use cases
	Documentation of software packages
	How To documents
	Reproducible research

	Methods
	Writing software
	Dynamic documents
	Processing documents
	Containerization
	Data access for reproducibility

	Risks and mitigations
	Functionality risks of dynamic documents
	Quality assurance in reproducible research

	Discussion

