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Abstract

This article investigates inference in a competing risks model where failure causes are
partially observed, assuming latent failure times follow Weibull distributions. Inference
is derived under a generalized type-1I hybrid censoring scheme. The maximum likelihood
estimators for model parameters and their associated confidence intervals are discussed.
Also, we compute Bayes estimators under both informative and non-informative priors,
along with their credible intervals. The performance of all estimators is evaluated through
Monte Carlo simulations. Finally, for illustrative purposes, a real-world case is explored.

Keywords: competing risks, generalized type-II hybrid censoring scheme, Weibull distribution,
maximum likelihood estimation, Bayesian estimation.

1. Introduction

It is frequently noted in reliability or medical analysis that an item may fail due to multiple
causes. For instance, a medical study may reveal that mortality can result from various
diseases, while a reliability experiment may demonstrate that an automobile’s failure can be
attributed to different factors. In these situations, a researcher is often focused on assessing
a specific cause in the presence of other causes. In some manner, these causes (risk factors)
compete with each other, leading to the failure of the experimental units. These situations
are often represented in literature using the competing risks model. Thus, the competing risk
data typically consist of failure times along with an associated indicator variable denoting the
causes of failure. The failure causes may be considered either independent or dependent. In
most cases, the analysis of competing risk data is based on the assumption that the causes
of failure are independent. Competing risks models have garnered significant attention in
the literature, with numerous notable contributions. Kundu and Basu (2000) estimates the
parameters of the competing risks model when the data may be incomplete using exponential
and Weibull distributions. Pareek, Kundu, and Kumar (2009) developed inference methods
for competing risk models under a progressive censoring scheme, assuming Weibull distributed
latent failure times. Cramer and Schmiedt (2011) discussed progressively Type-II censored
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competing risks data from Lomax distributions. Dey, Jha, and Dey (2016) explored Bayesian
analysis of the modified Weibull distribution under progressively censored competing risk
models. Koley, Kundu, and Ganguly (2017) and Koley and Kundu (2017) conducted classical
and Bayesian inference of competing risks data, assuming exponential distributions for the
competing causes of failure, under Type-II hybrid and generalized progressive hybrid censoring
schemes. Chacko and Mohan (2019) analyzed competing risks data under progressive Type-II
censoring, assuming the number of units removed at each stage follows a binomial distribution.
Almarashi, Algarni, and Abd-Elmougod (2020) conducted statistical analysis of competing
risks lifetime data from the Nadarajah and Haghighi distribution under Type-II censoring. Du
and Gui (2022) investigated statistical inference of the Burr-XII distribution under adaptive
Type-II progressive censored schemes with competing risks. More recently, Zheng, Ye, and
Gui (2024) developed a competing risks model under progressive Type-II censored data using
the inverted exponentiated half-logistic distribution.

Most of the references mentioned above focus on analyzing models where the causes of fail-
ure are observed for each failed experimental unit. However, in real-world scenarios, the
causes of failure are often only observed for a portion of the failed units due to limitations in
cause detection methods, making it impossible to observe all failure causes. This situation,
where failure causes are missing for some units, is referred to as partially observed competing
risks (POCR). Conducting lifetime studies in such situations presents significant challenges,
as making inferences about failure causes is crucial for improving product quality and ad-
dressing safety concerns. For example, an industrial machine may fail due to wear and tear,
electrical faults, or overheating, but the exact cause may remain unknown due to lack of
diagnostic tools, or incomplete maintenance records. If a machine stops and the technician
cannot determine whether the failure was caused by an electrical short circuit or overheating,
the cause remains ambiguous. These scenarios of POCR require specialized statistical meth-
ods to ensure accurate reliability assessments. Several research articles have explored POCR,
including, Almuhayfith, Darwish, Alharbi, and Marin (2022) examines inference methods for
partially observed failure modes under the assumption that the data follows a Burr XII dis-
tribution. Abushal, Soliman, and Abd-Elmougod (2022) discussed a competing risks model
with partially observed failure causes and latent failure times following a Lomax distribution;
Dutta, Ng, and Kayal (2023) investigated statistical inference for a POCR model when la-
tent failure times follow a general family of inverted exponentiated distributions and Singh,
Kumar Mahto, and Mani Tripathi (2024) examines a POCR model for the Chen distribution.

Censoring is commonly applied when recording the failure times of all units is impractical
due to time and cost constraints. Type-I and Type-II censoring methods are well established
techniques for collecting lifetime data under resource constraints, where Type-I censoring
terminates data collection at a predetermined time point, and Type-II censoring concludes the
process after a specified number of failure events have been observed. However, these schemes
have drawbacks: a Type-I censoring scheme might result in no failure items, and a Type-II
censoring scheme can lead to prolonged experiment durations. To address the drawbacks
of Type-I and Type-II censoring schemes, Epstein (1954) introduced a combination of these
methods called the Type-I hybrid censoring scheme. In this censoring scheme, if X,,, denotes
the m!* failure time and 7T is the predetermined test termination time, then the test concludes
at the random time 7% = min(X,,,7"). Childs, Chandrasekar, Balakrishnan, and Kundu
(2003) proposed the Type-II hybrid censoring scheme, which terminates the experiment at
T* = max(X,,,T). It was later observed that Type-I hybrid and Type-II hybrid censoring
schemes also exhibit similar drawbacks to those of the original Type-I and Type-II censoring
schemes. The Type-I hybrid censoring scheme ensures that the total experimental duration
will not exceed T', however, it does not guarantee a sufficient number of failures. Conversely,
the Type-II hybrid censoring scheme guarantees that the total number of observed failures is
m, but it imposes no restriction on the experimental duration.

To overcome these drawbacks, Chandrasekar, Childs, and Balakrishnan (2004) introduced two
more comprehensive censoring schemes called generalized hybrid censoring schemes (GHCS).



Austrian Journal of Statistics

The experiments under GHCS ensure both proper control within a defined testing period and
the occurrence of at least a fixed number of failures. Statistical inference is more efficient
under GHCS because it provides a greater number of observed failures. The basic forms of
GHCS are categorized as type-I and type-II GHCS, are expressed as follows:

1. Generalized Type-I Hybrid Censoring Scheme - In the generalized Type-I hybrid
censoring scheme (GTIHCS), n experimental units are subjected to a life test. The experi-
menter pre-selects two numbers, s and m, such that s < m < n, as well as a time T within
the range (0, oo). If the s failure occurs before the specified time T, the experiment will
be terminated at 7% = min(X,,,T). If the s failure occurs after T, the experiment will
conclude at Ty, where T, is the failure time of the s unit.

2. Generalized Type-II Hybrid Censoring Scheme - In a generalized Type-II hybrid
censoring scheme (GTIIHCS), a predefined number m (where m < n) and thresholds time
Ty and T are set, with 77 < Ty. If the m!* failure happens prior to T}, the experiment will
conclude at Ty. If the m*" failure happens within the interval T} to Tb, then the experiment
will conclude at Tj,. If the m!" failure happens beyond T, then the experiment will conclude
at 1. In GTIIHCS, the experiment is ensured to conclude by time 7T5. Then, the following
cases are identified under GTIIHCS.

Case I:If 0 < Xp.n < Ty < Tb, then T = T7.
Case IT: If 0 < T < Xipnop < T, then T* = Xy,
Case III: If 0 < T1 < Ty < Xp:m, then T* = Ts.

The experiment is designed to ensure that it concludes within a predefined maximum du-
ration, with T5 serving as the upper limit for the experiment’s timeline. The GTIIHCS is
highly advantageous in applications like reliability testing, medical devices, and clinical trials.
By combining failure-based and time-based stopping rules, it ensures either a pre-specified
number of failures or termination within a fixed duration. This flexibility allows GTIIHCS to
overcome the limitations of traditional Type-I and Type-II censoring schemes. Type-I censor-
ing, which terminates experiments at a fixed time, may result in insufficient failure data and
low inference precision, while Type-II censoring ensures a fixed number of failures but often
requires excessively long testing periods. GTIIHCS resolves these challenges by balancing test
efficiency and data reliability. It provides better control over the testing process and improves
the accuracy of statistical inferences, making it an ideal choice for real-world applications with
strict time or resource constraints. Numerous researchers have investigated the estimation
problem for various statistical models, highlighting the importance of the GTIIHCS. Shafay
(2016) examined Bayesian estimation and prediction using GTIIHCS. Mahmoud and Ghazal
(2017) estimated the unknown parameters of the exponentiated rayleigh distribution using
generalized Type-II hybrid censored data. Rabie and Li (2019) derived maximum likelihood,
Bayesian, and E-Bayesian estimators for the unknown shape parameter of the Burr-X dis-
tribution under GTITHCS. Abushal and AL-Zaydi (2024) conducted inference on unknown
parameters using GTIIHCS for the inverse Nadarajah—Haghighi distribution in the context
of competing risks.

The Weibull distribution has gained popularity in life-testing analysis due to its ability to
accommodate various shapes of the probability density function and its flexibility in modeling
the hazard rate function (see Lee and Lee (1978), Yu, Tian, and Tang (2008)). Its versatility
makes it highly applicable in fields like engineering, medical research, and life testing. In
this study, we assume the presence of two distinct competing risk factors influencing the
failure of experimental units. The latent failure times are modeled using Weibull distributions
with a common shape parameter o and different scale parameters Ay and Ay, where \; #
A2. Let Xj; represent the ith latent failure time under the j** cause, where i = 1,2,...,n
following a Weibull distribution. Then the corresponding probability density function (PDF)
and cumulative distribution function (CDF) can be expressed as follows:

filx;a, X)) = aija_le_Ajma and Fj(z;a,\j) =1— e N >0, j=1,2. (1)
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Competing risk models are widely used in life testing experiments because they effectively
handle situations where failures can arise from multiple causes. Drawing conclusions about
unknown quantities is essential, especially when some failure causes are partially unobserved.
The Weibull distribution, known for its ability to exhibit decreasing, constant, or increasing
hazard rates, is highly adaptable for modeling various lifetime data and has become one of the
most commonly used distributions in lifetime analysis. In this study, we examine the Weibull
model within the POCR framework. Classical and Bayesian estimation methods are used to
obtain parameter estimates under the GTIITHC scheme. The performance of the estimators is
assessed using both simulated and real datasets, demonstrating their practical applicability
and effectiveness.

The structure of this paper is organized as follows: Section 2 outlines the model assump-
tions for POCR data under the GTIIHCS framework. Section 3 discusses the maximum
likelihood estimation (MLE) of unknown parameters, along with approximate confidence in-
tervals. Bayesian estimation techniques using the importance sampling method are explored
in Section 4. Section 5 provides a Monte Carlo simulation study, while Section 6 includes a
real-world example for illustration. Finally, a concluding remark for the paper is presented
in Section 7.

2. Model framework

Consider an experiment where n independent units are tested, with their respective lifetimes
denoted by random variables X1, Xo, ..., X,,. Under the POCR model, we consider two
independent causes of failure. Then, the latent failure times resulting from two independent
causes of failure for any unit are defined as,

X’i :min{Xu,Xgi} 1= 1,2,...,71. (2)

where X; represents the failure time of the i unit due to j* cause. Under GTIIHC, if T1,
Ty, and m denote the test duration time and the predetermined number of observed failures,
then the experiment concludes at time 7™, which can be expressed as follows for the three
scenarios:

Tl, 0<Xm;n<T1,
T* = Xm:n> Th < Xy < T2> (3)
T27 Tl < T2 < Xm:nv

where Xi., ..., Xp.n, are the generalized Type-II Hybrid censoring sample corresponding to
X1, Xo, ..., X,. Then the data on POCR under GTIIHCS can be described as follows:

Case I: (Xlzn7§1)7 S (Xm1:n7§m1)a if 0 < Xy < Ty and T" =17,
Case IT: (X1, 1), -+ oy (Xyums Em)s 1 Th < X < To and T* = Xooms (4)
Case T (X1 1), -+ s (Xomgors Ema )y i T1 < To < Xomon and T* = T,

where T represents the termination point of the experiment, while m; and mo are two positive

integers, with Zp,. < 11 < Tyy41m a0d Ty < T2 < Tppyt1:n- Assume that the causes of

failures are independent. Then, the observed failure times are (1., 1), (£2:n,&2), - - -, (D, ED)
and the corresponding cause of failure is represented by an indicator function &; such that

&L=g, j=1,2,3, i=1,2,...,D where,

—_

, if the failure occurs due to cause 1,
& = <2, if the failure occurs due to cause 2,

3, if the cause of the failure cannot be determined.
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Considering the POCR data in (4), then the likelihood function for the observed data x =
(1:n,&1), -+, (Tpm,€p) can be expressed as,

| D
n.

L(2) = =gy LI @) Se(@) 0 [fa(@) 1@l = [f @™ =P, (5)
Tai=1

where f(.) and S(.) are the density and survival functions of X; = min{X;, Xo;} and D
represents the total number of failures under the following cases,

mq, Casel,
D=1<{m, Casesll,

mg, Cases III .

Also, we define the indicator function

I@:ﬁ:{Lﬁ&‘?

0, otherwise.

Thus, D1 = Y2, 1(¢ = 1) and Dy = -2 | I(&; = 2) represent the total number of failures
due to cause 1 and cause 2. Also, D3 = S>2 | I(¢; = 3) represents the number of failures with
unobserved cause. Now, consider that the generalized type-II hybrid censoring competing
risks data (4) are derived from Weibull distributions with two independent failure causes such
that X1; ~W(a, A1) and Xo; ~W(a, A2) fori = 1,2, ..., n. Consequently, the observations
X; = min{Xy;, Xo;} for i=1, 2, ..., n are also independent and follow Weibull distribution
with parameters (a, A;1+A2).

Remark 1. If the failure times X1 and Xa are independent and identically distributed random
variables following Weibull distributions with parameters («, A1) and (o, o) respectively,
then the random variable X = min (X1, X3) follows a Weibull distribution with parameters
(a, \1+A2), where « represents the shape parameter and (A1 +Az2) denotes the scale parameter.
The reliability function of the random variable X, denoted as Fx(x), is provided as follows,

Fx(z) = P (min(X;,X2) > z)
= P(Xl >.%')P(X2>l')
e—()xl-‘y-)\z)xo"
Then, the corresponding distribution function Fx(x) and the probability density function
fx(x) are given by,

Fx(z) =1— e M22)2%4nd £v(2) = (Mg + Ao)z® Le~MatA2)a®, (6)

The likelihood functionof A1, A2 and « can be formulated based on equation (5) as:

D
L(g) x aDA1D1A2DQ ()\1 + )\2)D36*()\1+/\2)(T*)°‘(n7D) H x?—lef(AhL)\g)z?' (7)
=1

Thus, certain comments made on this model were considered as,

1. The proposed model indicates that the failure time is noted for certain units with an
unknown cause of failure. Then, the latent failure time follows a Weibull distribution
with the scale parameter A\ + A and shape parameter a.

2. The observed numbers of failures D; and D, for the first and second causes follow

binomial distributions with sample size (D-D3) and probability of success )\1>'\|‘1/\2 and

A2 :
Ve respectively.
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3. The discrete random variable D3 follows a Bernoulli distribution with a masking proba-
bility p, where 0 < p < 1. Therefore, the values 0 and 1 represent failures with unknown
and known causes, respectively.

3. Maximum likelihood estimation

According to Equation (7), the log-likelihood function is expressed as follows:

L()\l,)\g,a | @) = Dlna+DilnAi +Dyln )Xy + D3 11’1()\1 + )\2)
D
+ (a—1) Zlnxi — (M + M) Z(a), (8)
=1

where Z(a)= Y2, 2% + (n — D)(T*)~.

Theorem 1. Given that Dj > 1, the MLE of A\j, when « is known, can be represented as:

N Dj[D3

- D1+ Do

= 1,7 =1,2.
] Z(O[) +:|7] 9

Proof. By taking the derivatives of L = L(A1, A2, | ) in (8) with respect to A1 and Ag, and
then setting these derivatives to zero, we obtain the following equations,

D [ Ds
]_Z(Oé) Dy + Dy

—1—1},3':1,2.

To demonstrate that the MLEs of \; and Ay maximize L for a given «, we proceed as follows.
Let H (A1, A2) represent the Hessian matrix of L at (A1, A2). Given that,

_ 0L _ _ Dy D .
Hjj()‘lv)‘Q) = 87)\]2 = _/\75 - W,j =1,2.

Hig(A1, A2) = _()\127:;2)2‘

Thus, the determinant of the Hessian matrix at (3\1, 5\2) is,

Aet(1) = Hn (. Ao) (o, 3o) = oo, Ao)? = Rl il i > 0

Therefore, (5\1, :\2) represents a local maximum of L for a given a. As there is no singular
point of L and it possesses only one critical point, A\; and A2 emerge as the absolute maximum
of L. Thus, the assertion stands proven. ]

Remark 2. As noted in Theorem 1, at least one failure due to the ' cause is required for
the MLE of \j to be determined, where j = 1,2. If D;j = 0, meaning there are no failures
from the j™" cause or there is no information available about Aj from the observed competing
risks data. Therefore, if Dj =0, the MLE of \; does not exist. Also, the ordinary competing
risks model is achieved when D3 = 0.

Theorem 2. Assume that D; > 1 for j = 1,2, the MLE of o exists and is unique, which is
the solution of the following equation,

1 Y2 ey Z(a)
o« D T Za)y )

with Z' (o) = X2, 2% In(x;) + (n — D)T*" In(T™).

Proof. By substituting S\j for A; in (8), the profile log-likelihood function of « can be derived

as follows.
D

L(a) ochnoz—f—aZlnxi—Dan(a).
i=1
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Then, by differentiating L(a) with respect to a and setting it equal to zero, we obtain the
following:
1 Y2 mz Z(a)

«TT D T Za)

D /
Let Gi(a) =1 + w and Ga(a) = ZZ((S)).
1

Here G (a) = —% < 0, which implies that G («) is decreasing in the range (5 D Inz, oo).
In the case of Ga(a), we have the following:

/

D D
Gy(a) = ;2 Zx? + (n—D)T** Zaz?(ln(:ﬁl))2 + (n — D)T*" (In(T™))?
[Z()]* [\= i=1

D 2
— (Z & In(z;) + (n — D)T*" ln(T*)> 1
=1

Applying the Cauchy—Schwarz inequality, we obtain G;(a) > 0, indicating that Ga(a) is an
increasing function of o with,

a—0

D
lim Ga(ar) = % lz Inz; + (n — D) lnT*] ,
1=1

lim Ga(a) =InT".

a——+00

Also,

i G _ 1372 Ina

- 1.
3% Gyla) D WT*

We note that the curves Gi(«) and Ga(«) intersect at a unique point, indicating that the
MLE of « exists and is unique. O

Also, it is important to note that the MLE & for a does not have any closed-form expression. It
can be evaluated using the fixed-point iterative method derived from the non-linear equation
(9) as,

B(a®) = olstD),

Inz;

/ D
where |B(a) = ZZ((g)) — Ei:}) ] . Here, o) represents the s iteration of &. The process

is terminated when the difference | a(*) — a(5*1) | is sufficiently small. Thus, the MLEs of \;
denoted as S\j, j = 1,2 can be derived from Theorem 1 as,

>

_Dj[Dz

= 11,7=1,2.

3.1. Approximate confidence interval

In this section, we establish approximate confidence intervals (CIs) for the parameters by
exploiting the asymptotic normality property of MLEs. Let’s assume that § = (A1, A2, «),
where 81 = A\, 02 = X9, and 03 = «. In this case, the observed Fisher information matrix
can be expressed as:

62L(/\1, )\2, (0% | &)

b
0900 0;=0;,4,5=1,2,3

1(6) =
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with
9’L Dy Ds
VRS VI U A
O] AT (A1 + )
0’L D, Ds

_—= = —
N A (M +)?

82L D D «@ 2 ERYet *\ 2
90 T o + (A1 + A2) sz (Inz;)* + (n — D)(T*)*(In (T7))7| .
(6% v i—1
9L ®PL  Ds
010X N 09O - ()\1 +)\2)2'
0’L 0L

D
TOMOa 0adh ;x Inz; + (n — D)(T")" In (T7).

9°L PL o oy
~ade = " Badr = ;x Inz; + (n — D)(T*)*In (T%).

As established in Theorem 7.63 [pp. 421] of Schervish (2012), it can be directly verified
that the likelihood function (7) meets the regularity conditions, including the existence of
continuous second partial derivatives, the interchangeability of differentiation and integration,
and a finite mean for the Fisher information matrix, etc. Hence, using the asymptotic theory
of MLEs, the approximate distribution of the MLE @ is given by, § — 6 ~ N(0,17'(6)), where
I71(0) represents the inverse of the observed information matrix, which is defined as:

var(A1)  cov(Ai, A2) cov(Ai, @)
I/40) = cov(j\g,fq) Var(j\%) cov(Ag, &) (10)
cov(@, A1) cov(@,Ay)  var(@)

Therefore, for any 0 < v < 1, a 100(1-v)% asymptotic confidence interval (ACI) for 6; is

given by,
(éj — Z,,/Q\/Var(éj), éj + ZV/Q\/Var(éj)> 1 =1,2,3,

where Z, /5 is the upper § quantile of the standard normal distribution.

4. Bayesian estimation

The Bayesian estimation method serves as a strong alternative to the classical estimation ap-
proach by treating unknown parameters as random variables and combining prior knowledge
with sample data for inference. This section covers the Bayesian approach for obtaining point
and interval estimates of the unknown model parameters. In the Bayesian framework, prior
information about the unknown parameter is necessary before making any inferences using
the likelihood function. This information can be either complete or incomplete, depending
on the choice of the prior distribution. In a non-informative prior, little or no information
is available about the unknown parameter, whereas an informative prior provides sufficient
information to quantify the uncertainty associated with the parameter. Therefore, the prior
is chosen in such a way that it does not significantly alter the model estimates or influence the
model selection. It is worth noting that there is no well-established method for choosing an
appropriate prior in Bayesian analysis. The gamma distribution is highly adaptable, capable
of modeling various shapes of the density function. Its density function is log-concave over
the interval (0, oo). Jeffrey’s prior can be regarded as a specific case of the gamma prior.
The gamma distribution is commonly used as an informative prior in various lifetime models
due to its simplicity and ease of computation. Due to the relevance of gamma distributions,
several authors have recently employed gamma priors to obtain Bayesian estimates for the
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Weibull competing risk model (see Ashour and Nassar (2017), Chacko and Mohan (2019)
etc.). In a similar way, we also consider the gamma priors for the parameters A1, Ay and «.
Then, the joint prior density function of A1, A2, and « can be expressed as follows:

(A1, Ao, @) o AITTIN2 T % Laxp(—bi Ay — bodg — bza), for A, Ao, > 0,a4,b; >0, (11)
for i = 1, 2, 3. Then, the corresponding posterior distribution is formulated as follows:

7T(Ab)\2704)[/()\17)‘2a05 ’ i)
(AL, A - . 12
™ (A1 A2, 0| ) TS T 2w Mgy ) L(Ay, Mg, a | z)dAgdhada (12)

Then, the Bayes estimates of any function of Aj, A2 and «, represented as 7(A1, A2, ), under
the squared error loss function is given by,

fooo fooo fooo 77()\1, )\2, a)7r()\1, )\2, Oé)L()\l, )\2, « | g)d)\ld/\zda
f()oo fOOO fOOO 7T()\1,/\2,04)L(/\1,)\2,Oc ‘ g)d)‘ld/\%ia ’

NsE = (13)
From equation (13), it is evident that the Bayes estimates of n(A1, A2, @) with respect to
the squared error loss function cannot be obtained explicitly. Therefore, an approximation
technique like the MCMC technique is needed to compute the desired Bayes estimates. The
MCMC method can generate samples from the posterior density function (12), allowing us
to compute the Bayes estimates of the unknown parameters and the corresponding credible
intervals. This study employs MCMC with an importance sampling technique to compute
Bayes estimators under the squared error loss function. Based on equations (7) and (11), the
joint posterior density function of A1, A2, and « can be expressed as follows:

77*(>\17 )\2,a | i) x aD+a3—1>\1D1+a171)\§)2+a271(/\1 + )\2)D3

D
X exp <—51>\1 — by —bsa+ (e — 1) Zlnmi — (A1 + )\2)Z(O{)> [(14)

i=1

Then, the marginal posterior distributions of A1, Ay and « from equation (14) are expressed
as follows:

(A | o,z) < Gamma(Di + a1,b1 + Z(«)), (15)

ma(A2 | o, z) o« Gamma(D2 + az,bs + Z (), (16)
D

(o] z) o aPTe lexp (—bga + Z In xl> , (17)
i=1

with the associated weight,

(A1 + Ag) D3
b1 + Z ()] 7 by + Z(a)]P2Fe

W(Ala )\27 «, ’ E) -

Here, we present the importance sampling procedure for generating random samples from
posterior distribution and to compute the Bayes estimates. The procedure is outlined as
follows:

Stepl: Set k = 1 and start with an initial guess for 00 = (A1, Ag, &).

Step2: Generate )\gk) and )\ék) from the gamma distributions specified in equations (15) and
(16), respectively.

Step3: Cenerate a'¥) from equation (17) using the Metropolis-Hastings (MH) algorithm with
a normal proposal distribution with mean o*=1) and variance o2 , where o2 is derived from
a variance-covariance matrix, as follows:

(a): Generate o from the normal distribution N(a*~1), 52) as the proposal distribution.

125
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(b): Calculate the acceptance probability from equation (17) as
N OING
P(a*, o*=1)) = min |1, 723((3 1);?)\)(13)\ )\)(,0)7 |
(c): Generate Uy, from uniform(0, 1).
(d): If Uy, < P(a*, a*=1D), take al¥) = o*; Otherwise a¥) = ak—1),
Step4: Assign k = k+1.
Step5: Repeat steps 2 - 4 M times.
Step6: Considering that M™* represents the number of MCMC iterations needed to reach the
stationary distribution, the Bayes estimate of any function g(A;, A2, &) of the model parame-
ters under the squared error loss function is given by,

gB = M—lM* Zij\iM*-i-l g()‘gl)a )‘g)7 O‘(l))W()\gz)’ Ag)’ a(l) | Q) (18)
W Zi]\iM*—H W()‘gl)ﬂ /\g)’ O‘(i) | 1)

with the associated posterior variance is,

% ) i . \2 % % i
WZ%M*H( A, a) = g5) WAL, 0 | 2)
i Tl WO, a0 | 2)

V(AL Az, ) = (19)

4.1. Bayesian credible interval

As stated in Chen and Shao (1999), the credible interval or HPD credible intervals for any
function g(A1, A2, @) can be constructed as follows:
Stepl: Sort g()\gz), )\g), a(')) and the corresponding weighted function

W AD a0
Z?iM*-H W()‘( g )‘( , aWz)
obtained from the importance sampling technique.
Step2: The marginal posterior of g given in the ordered pairs (g;, w;) can be defined as follows.

9w, if’YZU
9(v) = w®
9y, if S <<y

Step3: The estimated 100(1—+)% credible interval for g(A1, A2, a) is represented as (g (3),9 (1 — 3)).
Step4: The estimated 100(1 — )% HPD credible interval for g(A1, A2, c) is given by

(g (M_LM*) g (LH“X])(AA;[*_M*)])), where L ranges from 1 to v(M — M*). This interval is

chosen for having the smallest width among all credible intervals.

w®) = are denoted as g(; and w;) fori= M*+1,M*+2,..., M,

5. Simulation

In this section, we carry out comprehensive Monte Carlo simulations to assess the effective-
ness of the proposed estimation methods under GTITHCS. The estimated mean squared errors
(MSEs) are used to compare the point estimators of the parameters in competing risks models.
Similarly, interval estimators are examined based on average lengths (AL) and their associ-
ated coverage probabilities (CP). The following algorithm illustrates the steps to generate
Generalized Type-II hybrid censored competing risks data from a Weibull distribution:

1. Generate Type-II censored data from W(a, Aj+A2).

2. For each Type-II data, allocate the cause of failure as either one or two, with probabilities

A1 A2 :
of YD and YD respectively.

3. By comparing T1, T» and X,,., with Type-II censored data, we obtain the Weibull
generalized type-II hybrid censored competing risks data with sample size D.
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4. Partially observed competing risks GTIIHC data can be obtained by generating a trial
of 0 and 1 of size D using a Bernoulli distribution with parameter p, where 0 < p < 1
represents the masking probability. If 0 appears, the associated failure cause is treated
as unknown, whereas if 1 appears, the failure cause is considered known.

The true values of the model parameters for the selected simulation study are (A1, A2, a) =
(0.4, 0.7, 1.5). Various censoring schemes are examined based on differing values of (n, m,
Ty, Ty, p). For each censoring criterion, m values are selected as (15, 20) for sample size n
= 30, (20, 30) for n = 40, and (30, 40) for n = 60, with masking probabilities p = 0.05 and
0.1. Also, we consider all results for prefixed time constraints (77, 72) = (0.4, 1) and (0.2,
1.3). Here, Bayes estimates are evaluated considering both an informative prior (IP) and a
non-informative prior (NIP). The results of simulations for each point and interval estimate,
are displayed in Tables 1 - 4. Interval estimates are computed using a nominal significance
level of 0.05. Based on Tables 1 - 4, the following conclusions have been drawn:

o The average MSE of both the maximum likelihood estimates (MLEs) and Bayes esti-
mates decline with increasing values of n and m.

e Also, the MSE of the MLE and Bayesian estimates increases as the masking probability
p is permitted to increase.

e The average MSE values decrease as the values of the prefixed time increase.

e In terms of MSEs, the Bayes estimates under IP outperform the MLEs and the Bayes
estimates under NIP.

e As the values of n amd m increase, the average length of the confidence intervals de-
creases.

o The average widths (AWs) of the intervals increase as the masking probability p in-
creases, while keeping n and m constant.

o Similarly, the coverage probabilities (CPs) of these intervals closely approximate the
nominal significance level in most instances. This behavior persists as p increases.

6. Data analysis

In this section, we explore a real data set for illustrative purposes, derived from an experiment
by Dr. H.E. Walburg Jr. at the Oak Ridge National Laboratory (refer to Hoel (1972)). A set
of male mice was administered a radiation dose of 300 roentgens at the age of 5-6 weeks. The
causes of death were categorized into three groups: (1) Thymic Lymphoma, (2) Reticulum
Cell Sarcoma, and (3) Other causes. For our analysis, we have designated Reticulum Cell
Sarcoma as Cause-1 and grouped all other causes together as Cause-2. The data is shown in
Table 6. For computational simplicity, we analyzed the data after dividing it by 1000. The
transformed data sets are assumed to follow a Weibull distribution with a scale parameter
A1 + A2 and a shape parameter a.

A goodness-of-fit test was conducted to evaluate whether the Weibull distribution is a suitable
model for the given datasets. Specifically, the Kolmogorov-Smirnov (KS) statistic, along
with the corresponding p-value, was used to assess the fit. The results of the goodness-
of-fit test were compared with those from the Lognormal, Chen, and inverted exponential
distributions. These datasets were previously analyzed in competing risks scenarios using the
Chen (Al-Bossly (2022)) and inverted exponential (Farghal, Badr, Abu-Zinadah, and Abd-
Elmougod (2023)) distributions under different censoring schemes. Table 5 demonstrates
that the proposed model exhibits greater flexibility than the other three distributions. We
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Table 1: Average estimates (AEs) and mean squared errors (MSEs) for the parameters (A1,
o, a) = (0.4, 0.7, 1.5) with (Ty, Tz) = (0.4, 1)

MLE 1P NIP

P n m A1 A2 o A1 A2 « A1 A2 a

0.05 30 15 0.5037 0.8989 1.7190 0.3967 0.6898 1.5761 0.3886 0.6849  1.5984
0.1061  0.3017 0.2092 0.0329 0.0598 0.0824 0.0340 0.0613 0.0898

20 0.4545 0.7983 1.6518 0.4083 0.7233 1.5168 0.4195 0.7295 1.5053

0.0389 0.0902 0.1305 0.0269 0.0483 0.0706 0.0287 0.0507 0.0779

0.1 30 15 0.5039 0.8987 1.7190 0.4020 0.7010 1.5717 0.3982 0.6856 1.6184
0.1079  0.3049 0.2092 0.0335 0.0631 0.0826 0.0345 0.0647 0.0924

20 0.4620 0.7897 1.6677 0.4163 0.7313 1.5185 0.4203 0.7365 1.5352

0.0405 0.0908 0.1401 0.0273 0.0493 0.0743 0.0290 0.0516  0.0806

0.05 40 20 0.4660 0.8097 1.6497 0.3823 0.6577 1.5587 0.3830 0.6586  1.5952
0.0513 0.1046  0.1355 0.0217 0.0396 0.0590 0.0224 0.0432 0.0652

30 0.4347 0.7618 1.6205 0.4119 0.7244 1.4315 0.4160 0.7163 1.4578

0.0220 0.0387 0.0865 0.0187 0.0329 0.0441 0.0193 0.0336  0.0449

0.1 40 20 04670 0.8087 1.6497 0.3815 0.6733 1.5814 0.3778 0.6728  1.5839
0.0520 0.1064 0.1355 0.0234 0.0404 0.0615 0.0236 0.0475 0.0669

30 04333 0.7632 1.6205 0.4190 0.7302 1.4375 0.4188 0.7267 1.4551

0.0226  0.0394 0.0865 0.0194 0.0336 0.0443 0.0198 0.0350 0.0469

0.05 60 30 0.4343 0.7672 1.5909 0.3762 0.6470 1.4011 0.3599 0.6521  1.3809
0.0229 0.0580 0.0782 0.0132 0.0217 0.0206 0.0139 0.0247 0.0337

40 0.4197 0.7336  1.5692 0.3964 0.6828 1.5052 0.4061 0.7049 1.5249

0.0129 0.0246 0.0558 0.0117 0.0199 0.0201 0.0125 0.0216 0.0234

0.1 60 30 04343 0.7672 1.5909 0.3691 0.6349 1.3956 0.3603 0.6179 1.3724
0.0249 0.0587 0.0782 0.0236 0.0230 0.0241 0.0286 0.0250 0.0345

40 04191 0.7343 1.5692 0.3915 0.7031 1.5096 0.3961 0.7062  1.5468

0.0133 0.0250 0.0558 0.0198 0.0212 0.0340 0.0231 0.0234 0.0357

Table 2: ALs and CPs for the parameters (A1, A2, o) = (0.4, 0.7, 1.5) with (71, T5) = (0.4,
1)

ACI IP HPD NIP HPD

P n m A1 A2 a A1 Ao o A1 A2 a

0.05 30 15 0.9878 1.4544 1.6142 0.5226 0.5918 1.0826 0.6415 0.8162 1.1727
0.95 0.97 0.95 0.93 0.93 0.92 0.92 0.93 0.93

20  0.7069 0.9680 1.3529 0.5113 0.5887 0.9354 0.5011 0.7056  1.0604

0.96 0.97 0.96 0.93 0.94 0.95 0.94 0.92 0.94

0.1 30 15 0.9995 1.4633 1.6142 0.5740 0.8212 1.1511 0.6548 0.8665 1.3794
0.94 0.96 0.95 0.93 0.92 0.91 0.93 0.94 0.95

20 0.7229 0.9706 1.3417 0.5297 0.6991 1.1130 0.5629 0.7929 1.3811

0.95 0.97 0.96 0.94 0.93 0.94 0.92 0.95 0.95

0.05 40 20 0.7605 1.0698 1.3397 0.4894 0.6586 1.0024 0.4939 0.7059 1.1663
0.95 0.97 0.96 0.91 0.92 0.93 0.93 0.95 0.95

30 0.5626 0.7548 1.1052 0.4871 0.6254 0.8388 0.4762 0.6273  1.1475

0.95 0.96 0.95 0.92 0.93 0.94 0.94 0.96 0.97

0.1 40 20 0.7717 1.0768 1.3397 0.5303 0.5643 1.0686 0.5311 0.6542 1.1822
0.95 0.97 0.96 0.96 0.95 0.96 0.97 0.95 0.96

30 0.5711 0.7626  1.1052 0.5284 0.6128 0.8880 0.5301 0.6648  0.8747

0.95 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.97

0.05 60 30 0.5683 0.8010 1.0549 0.4178 0.5420 0.8219 0.4235 0.5221 0.8662
0.95 0.96 0.96 0.94 0.95 0.97 0.93 0.94 0.95

40 04530 0.6071 0.8908 0.3318 0.5027 0.7334 0.3710 0.4938 0.7369

0.95 0.95 0.95 0.95 0.95 0.96 0.94 0.95 0.95

0.1 60 30 0.5769 0.8075 1.0549 0.4293 0.5689 1.0030 0.4305 0.5737 0.8716
0.96 0.96 0.96 0.96 0.95 0.94 0.95 0.97 0.93

40 04603 0.6133 0.8908 0.3594 0.5295 0.7362 0.3934 0.5862 0.7818

0.95 0.96 0.95 0.97 0.96 0.95 0.96 0.96 0.95




Table 3: Average estimates (AEs) and mean squared errors (MSEs) for the parameters (A1,

Austrian Journal of Statistics

A2, @) = (0.4, 0.7, 1.5) with (T3, To) = (0.2, 1.3)

1.3)

MLE P NIP

P n m A1 A2 o A1 A2 « A1 A2 a
005 30 15 04983 08736 17104 0.3904 0.7101 1.5092 0.4003 0.7283  1.4997
0.1027 0.2583 0.2196 0.0325 0.0632 0.0715 0.0334 0.0652 0.0734

20 04435  0.787 1.6461 0.3994 0.7292 1.5747 0.3999 0.7563 1.6326

0.0399 0.0968 0.1296 0.0248 0.0449 0.0725 0.0271 0.0535 0.0758

0.1 30 15 04988 0.8732 1.7100 0.3802 0.6944 15136 0.3841 0.7134 1.5559
0.1043 0.2597 02196 0.0338 0.0647 0.0754 0.0364 0.0694 0.0856

20 0.4447 0.7858 1.6461 0.4102 0.7428 1.5689 0.4169 0.7453 1.6126

0.0413 0.0979 0.1206 0.0249 0.0488 0.0817 0.0275 0.0542 0.0951

0.05 40 20 04644 08112 1.6494 0.3823 0.6577 15495 0.3923 0.6702 1.5645
0.0514 0.1060 0.1356 0.0217 0.0396 0.0550 0.0222 0.0397 0.0574

30 0.4180 0.7465 1.5922 0.3986 0.6969 1.4519 0.3953 0.7124 14813

0.0198 0.0351 0.0708 0.0160 0.0264 0.0420 0.0161 0.0300 0.0478

01 40 20 04632 08123 16494 03971 0.6859 1.5448 0.3909 0.6567 1.5974
0.0516 0.1094 0.1356 0.0230 0.0410 0.0561 0.0231 0.0417  0.0586

30 04173 07472  1.5922 0.4138 0.7199 1.4315 0.4155 0.7542  1.4961

0.0204 0.0357 0.0708 0.0170 0.0201 0.0441 0.0185 0.0334  0.0509

0.05 60 30 04377 0.7636 1.5906 0.3606 0.6597 1.3831 0.3535 0.6470 1.4107
0.0205 0.0489 0.0779 0.0131 0.0246 0.0332 0.0232 0.0480 0.0225

40 04172 07270 15594 0.4136 0.6957 1.5234 0.3971 0.7174  1.5086

0.0147 0.0251 0.0533 0.0115 0.0194 0.0203 0.0119 0.0216 0.0331

0.1 60 30 04376 0.7638 1.5906 0.3696 0.6582 1.3761 0.3555 0.6349 1.3516
0.0209 0.0495 0.0779 0.0136 0.0248 0.0346 0.0249  0.0507  0.0890

40 04176 0.7267 15594 04214 0.6873 1.5694 0.3987 0.7128 1.5251

0.0152 0.0255 0.0533 0.0130 0.0197 0.0206 0.0226 0.0379  0.0371

Table 4: ALs and CPs for the parameters (A1, A2, a) = (0.4, 0.7, 1.5) with (71, T2) = (0.2,
ACI IP HPD NIP HPD

P n m A1 A2 a A1 Ao o A1 A2 a
005 30 15 0.8914 13991 16049 0.5019 0.7000 1.0809 0.5610 0.7090  1.0840
094 097 095 094 093 095 094 092  0.93

20 0.6772 09301 1.2922 0.4756 0.6384 0.9512 0.4963 0.7028 1.0228

095 096 095 093 095 093 094 093  0.94

01 30 15 09703 1.3037 1.6049 0.7011 0.8945 1.7862 0.6236 0.9388 19115
093 098 097 092 093 094 093 092 095

20 0.6869 09323 12022 0.6682 0.8506 1.0655 0.5016 0.7262 1.0829

093 097 094 093 094 095 094 094  0.96

005 40 20 07582 10711 13391 04309 0.6003 0.7913 0.4401 0.6036  0.9484
095 096 096 096 094 095 094 093  0.96

30 05115 0.6877 1.0030 0.4200 0.5833 0.9790 0.4318 0.5874 0.8318

094 096 095 097 095 096 095 094  0.95

01 40 20 0.7670 1.0800 13391 0.4423 0.6061 0.8004 0.4434 0.6085 0.9761
094 096 096 093 095 095 094 096  0.94

30 0.5197 0.6946 1.0030 0.4323 0.5813 0.9286 0.4348 0.5939  0.8458

096 096 096 094 096 094 095 097  0.92

0.05 60 30 05725 0.7965 1.0546 0.4178 05027 0.8662 0.4200 0.4902  0.8668
094 097 097 095 094 096 094 093 092

40 04414 0.5898 0.8641 0.3576 04576 0.7681 0.3381 0.4933  0.7287

093 096 095 093 098 097 094 093  0.97

01 60 30 0.5810 08031 10546 0.4305 0.5731 1.0038 0.4499 0.5860 0.8721
095 097 097 096 095 096 093 096  0.93

40 04491 05953 0.8641 0.4067 0.5295 0.8327 0.4076 0.5352  0.8649

093 096 095 095 094 095 097 095  0.96
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Table 5: Goodness of fit of datsets

Dataset 1 Dataset 2
KS p value KS p value
Weibull 0.0733 0.9773 | 0.0817 0.8095
Lognormal 0.1701  0.1974 | 0.1086 0.4675
Inverted exponetial | 0.1006  0.7993 | 0.1507  0.1248
Chen 0.0759  0.9691 | 0.0848 0.7716

Empirical Quantile
Empirical Quantile

0.25 0.25

0.50
Fitted Quanti le

0.50
Fitted Quanti le

Figure 1: Q-Q plots for the dataset with two different causes

Profile Log-Likelihood

a

Figure 2: Plots of profile log-likelihood of « for the real data
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also provide quantile-quantile (Q-Q) plots in Figure 1. These graphs demonstrate that the
considered model offers a relatively good fit for the two data sets under examination.

With n = 99, m = 55, 177 = 0.45, T5 = 0.6 and p = 0.1 given, the competing risks for
GTITHCS are summarized in Table 7. Due to insufficient data, some randomly chosen failure
causes are marked as missing, indicated by 0. In this context, 1 represents the first cause, 2
the second, and 0 an unobserved cause. Based on the data, we note the values (D1, Dy, Ds,
D) as (7, 44, 4, 55). For the data provided, we compute the maximum likelihood estimates
for the unknown parameters, along with the corresponding 95% confidence intervals. Figure
2 presents the profile log-likelihood of . Upon visual examination, these plots reveal that
the profile likelihood is unimodal, suggesting a unique maximum. In the absence of prior
information for the unknown parameters, we utilize non-informative priors to compute Bayes
estimates and determine the associated Highest Posterior Density (HPD) credible intervals.
The results of the maximum likelihood estimates and approximate confidence intervals, as
well as the Bayes estimates and HPD intervals, are shown in Table 8. Moreover, we observe
that the Bayesian credible intervals for parameters, based on non-informative priors, have
shorter lengths compared to MLE based asymptotic confidence intervals. In order to assess
the convergence of the MCMC technique for the given datasets, the trace and density graphs
for the three parameters are provided in Figures 3.

Table 6: Autopsy Results for 99 RFM Conventional Male Mice Exposed to a radiation dose
of 300 Roentgens Dose at 5-6 Weeks of Age

Cause of Death Mice ID Numbers

Thymic Lymphoma 159, 189, 191, 198, 200, 207, 220, 235, 245, 250, 256, 261, 265, 266, 280, 343,
356, 383, 403, 414, 428, 432

Reticulum Cell Sarcoma | 317, 318, 399, 495, 525, 536, 549, 552, 554, 557, 558, 571, 586, 594, 596, 605,
612, 621, 628, 631, 636, 643, 647, 648, 649, 661, 663, 666, 670, 695, 697, 700,
705, 712, 713, 738, 748, 753

Other Causes 10, 42, 51, 62, 163, 179, 206, 222, 228, 252, 249, 282, 324, 333, 341, 366, 335,
407, 420, 431, 441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621,
622, 647, 651, 686, 761, 763

Table 7: Partial competing risk censored data with failure time and cause of failure for n =
99 and m = 55

(0.04, 2) (0.2,2) (0.252,0) (0.333,2) (0.414,2) (0.517, 2)
(0.042,2) (0.206,2) (0.256,2) (0.341,2) (0.42,2) (0.517, 2)
(0.051,2) (0.207,2) (0.261,2) (0.343,2) (0.428,2) (0.524, 2)
(0.062,2)  (0.22,2) (0.265,2) (0.356,2) (0.431,2) (0.525, 1)
(0.159, 1) (0.222,0) (0.266,2) (0.366,2) (0.432,2) (0.536, 1)
(0.163,2) (0.228,2)  (0.28,2) (0.383,2) (0.441, 2)
(0.179,0)  (0.235,2) (0.282,2) (0.385,2) (0.461, 0)
(0.189,2) (0.245,2) (0.317,1) (0.399, 1) (0.462, 2)
(0.191,2) (0.249,2) (0.318,1) (0.403,2) (0.482, 2)
(0.198,2)  (0.25,2) (0.324,2) (0.407,2) (0.495, 1)
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Table 8: Point and interval estimates (with interval lengths in brackets) of the unknown
parameters of the Weibull distribution for a real dataset under POCR data

A1 A2 «
MLE Estimates 0.3466 2.1790 1.8097
Bayesian Estimates 0.1862 1.1809 1.0851
ACI (0.0673, 0.6259)[0.5586]  (1.2357, 3.1222)[1.8864] (1.3729, 2.2466)[0.8737]
HPD (0.1112, 0.2548)[0.1436]  (0.9787,1.4297)[0.4510]  (0.9797, 1.2113)[0.2316]

7. Conclusion

This paper investigates a generalization of the competing risks problem, known as partially
observed competing risks, where data are obtained using generalized type-II hybrid censoring.
Various inferences for the unknown parameters of Weibull distributions are obtained using
both classical and Bayesian approaches. A comprehensive simulation study is conducted to
evaluate the proposed model, and an illustrative real data analysis is also provided. The
simulation results suggest that Bayesian methods outperform classical methods. A key obser-
vation is that higher masking probabilities degrade the performance of the estimators. This
implies that the presence or absence of failure causes significantly impacts the lifetime analysis
of units where multiple causes of failure are possible.
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