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Abstract

In this study, we introduce a new estimator named the Stochastic Restricted Modified
Mixed Logistic Estimator (SRMMLE), which is specifically designed to handle multi-
collinearity within the framework of stochastic linear restrictions. Further, we enhance
the SRMMLE by modifying its coefficients, resulting in four distinct variants: Stochas-
tic Restricted Modified Mixed Logistic Estimator 1 (SRMMLE1), Stochastic Restricted
Modified Mixed Logistic Estimator 2 (SRMMLE2), Stochastic Restricted Modified Mixed
Logistic Estimator 3 (SRMMLE3), and Stochastic Restricted Modified Mixed Logistic
Estimator 4 (SRMMLE4). Based on the mean square error matrix criterion, we establish
conditions for the superiority of SRMMLE over existing estimators, such as the Stochastic
Restricted Maximum Likelihood Estimator (SRMLE), Stochastic Restricted Ridge Max-
imum Likelihood Estimator (SRRMLE), Stochastic Restricted Logistic Liu Estimator
(SRLLE), and Stochastic Restricted Mixed Liu-Type Estimator (SRMLTE). In the sim-
ulation study, we determined the scalar mean square error and the K-fold cross-validated
balanced accuracy of the estimators. Further, we present an empirical study and a real
data application illustrating the superior performance of the proposed estimator. In par-
ticular, the SRMMLE4 outperforms others in terms of scalar mean square error and
balanced accuracy.

Keywords: balanced accuracy, logistic regression, multicollinearity, predictive performance, R.

1. Introduction

A statistical modeling technique called logistic regression is used to predict the probability of
a binary outcome based on one or more predictor variables. It is commonly used in various
fields, including economics, healthcare, and social sciences. Let us consider a general form of
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the logistic regression model

yi = πi + ϵi, i = 1, 2, ...n. (1)

which follows the Bernoulli distribution with parameter πi and is given by,

πi = exp(x′
iβ)

1 + exp(x′
iβ)

(2)

where, xi is the ith row of X, which is an n× (p+ 1) data matrix with p predictor variables
and β is a (p + 1) × 1 vector of coefficients, ϵi is independent with mean zero and variance
πi(1 − πi) of the response yi.
The maximum likelihood estimation technique is a commonly used method to estimate the
parameter (β), and the Maximum Likelihood Estimator (MLE) of β, which is given by:

β̂MLE = C−1X
′
ŴZ. (3)

where, C = X
′
ŴX; Z is the column vector with ith element equals logit (π̂i) + yi − π̂i

π̂i(1 − π̂i)
and Ŵ = diag [π̂i(1 − π̂i)], which is an unbiased estimate of β.
The covariance matrix of β̂MLE is

Cov(β̂MLE) = (X ′
ŴX)−1 = C−1 (4)

When multicollinearity occurs, it can lead to unstable and unreliable estimates of the regres-
sion coefficients, making it difficult to interpret the relationship between the predictor vari-
ables and the outcome variable accurately. To reduce this issue several alternative estimators
have been proposed in literature. In this study, we considered estimators based on the sample
information and stochastic linear restrictions. The stochastic restricted methods are a flexible
and effective approach to handle multicollinearity in logistic regression by incorporating prior
information in a probabilistic manner. This results in more stable and reliable parameter
estimates, which improves the overall performance of the model (Nagarajah and Wijekoon
(2015), Li, Asar, and Wu (2020), Varathan and Wijekoon (2021)). Arashi, Kibria, and Val-
izadeh (2017) considered several stochastic restricted estimators in linear regression, while
Nagarajah and Wijekoon (2015) introduced the Stochastic Restricted Maximum Likelihood
Estimator (SRMLE) for logistic regression. Later, the same authors proposed, the Stochastic
Restricted Ridge Maximum Likelihood Estimator (SRRMLE) Varathan and Wijekoon (2016),
Stochastic Restricted Ridge Likelihood Estimator (SRRLE) Varathan and Wijekoon (2019a),
Stochastic Restricted Liu Maximum Likelihood Estimator (SRLMLE) Varathan and Wi-
jekoon (2019b), Stochastic Restricted Liu-Type Logistic Estimator (SRLTLE) Varathan and
Wijekoon (2018), Stochastic Restricted Almost Unbiased Ridge Logistic Estimator (SRAU-
RLE) Varathan and Wijekoon (2017b), Stochastic Restricted Almost Unbiased Liu Logistic
Estimator (SRAULLE) Varathan and Wijekoon (2017a). Moreover, the Stochastic Restricted
Logistic Liu Estimator (SRLLE), and the Stochastic Restricted Mixed Liu-Type estimator
(SRMLTE) have been proposed by Li et al. (2020), and Yehia (2020), respectively, in the
literature.

Further, Varathan and Wijekoon (2021) have introduced a stochastic restricted optimal lo-
gistic estimator (SROLE) for the logistic regression based on sample information and the
prior information in the form of stochastic linear restrictions. Their study, the performance
of the SROLE was compared with some existing logistic estimators such as SRMLE, SRRLE,
SRLMLE, SRAULLE, SRAURLE, and SRLTLE in the scalar mean square error (SMSE)
criterion.

The aforementioned literature primarily compares the performance of estimators in terms
of SMSE. However, Logistic regression outputs probabilities, which are subsequently used
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to classify instances into categories. To evaluate how well these probabilities translate into
correct classifications, it is essential to use classification-specific metrics such as balanced ac-
curacy, F1 score, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC).
High values across these metrics collectively suggest robust model performance, with bal-
anced accuracy emphasizing correct classifications, the F1 score focusing on precision and
recall, and the AUC-ROC curve reflecting overall discriminative power. These metrics pro-
vide a meaningful assessment of the classification performance of the model. In contrast, the
SMSE evaluates the average squared difference between predicted and actual values, making
it appropriate for continuous outputs. Applying SMSE to logistic regression can be mislead-
ing because it does not account for the categorical nature of the predictions. Consequently, a
model might exhibit a low SMSE while performing poorly in terms of classification accuracy
or other relevant classification metrics. Thus, it is crucial to use appropriate classification
metrics to accurately assess the performance of logistic regression models.

In this study, we propose a novel estimator, the Stochastic Restricted Modified Mixed Logistic
Estimator (SRMMLE) for logistic regression. We evaluate the performance of the proposed
estimator with existing estimators: SRMLE, SRRMLE, SRLLE, SRMLTE, and SROLE in
terms of SMSE and classification metrics.

The paper is organized as follows: Section 2 presents the existing estimators, the construction
of the new estimators, and their properties. Section 3 provides a theoretical and numerical
discussion of the conditions under which the proposed estimators are superior to the existing
estimators. Section 4 discusses the real data application and validates the theoretical condi-
tions. Some concluding remarks are given in Section 5. Finally, the references are presented
at the end of the paper.

2. The existing estimators and asymptotic properties
Suppose that the linear stochastic restriction is available in addition to the logistic regression
model (1) of the form

h = Hβ + υ; E(υ) = 0, Cov(υ) = ψ (5)

where h is an (q×1) stochastic known vector, H is a (q×(p+1)) of full rank q ≤ (p+1) known
elements and υ is an (q × 1) random vector of errors with mean 0 and dispersion matrix ψ,
and ψ is assumed to be known (q × q) positive definite matrix. Further, it is assumed that υ
is stochastically independent of ϵ, i.e) E(ϵυ′) = 0.

2.1. The existing estimators based on sample information
In this section, we considered some biased estimators based on sample information, including
the Logistic Ridge Estimator (LRE) ( Schaefer, Roi, and Wolfe (1984)), Logistic Liu Esti-
mator (LLE) (Månsson, Kibria, and Shukur (2012)), and Liu-type logistic Estimator (LTLE)
(Inan and Erdogan (2013)). The definitions of these estimators are shown respectively as
follows:

β̂LRE = Zkβ̂MLE , where Zk = (C + kI)−1C, k > 0.
β̂LLE = Zdβ̂MLE , where Zd = (C + I)−1(C + dI), 0 < d < 1.
β̂LT LE = Zk,dβ̂MLE , where Zk,d = (C + kI)−1(C − dI), 0 < d < 1, k > 0. (6)

Note that the three alternative estimators that we have given above are a function of β̂MLE ,
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and we can present them in general form as,

β̂GLE = L(i)β̂MLE , (7)

where L(i) is a positive definite matrix.

β̂GLE =


β̂MLE if L(i) = I;
β̂LRE if L(i) = Zk;
β̂LLE if L(i) = Zd;
β̂LT LE if L(i) = Zk,d.

(8)

2.2. The existing stochastic restricted mixed estimators
Nagarajah and Wijekoon (2015), introduced the Stochastic Restricted Maximum Likelihood
Estimator (SRMLE)

β̂SRMLE = β̂MLE + C−1H
′(ψ +HC−1H

′)−1(h−Hβ̂MLE) (9)

By substituting β̂MLE , we obtain

β̂SRMLE = C−1X
′
Ŵz + C−1H

′(ψ +HC−1H
′)−1(h−HC−1X

′
Ŵz)

= (C−1 − C−1H
′(ψ +HC−1H

′)−1HC−1)(X ′
Ŵz +H

′
ψ−1h) (10)

Lemma 1 (Rao and Statistiker (1973)). Let A be an n × n matrix, B an n × m matrix, C
an m×m matrix, and D an m× n matrix, where the necessary inverse exists. Then,

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

By lemma 1, we can write the β̂SRMLE as,

β̂SRMLE = (C +H
′
ψ−1H)−1(X ′

Ŵz +H
′
ψ−1h)

= A(X ′
Ŵz +H

′
ψ−1h). (11)

where A = (C +H
′
ψ−1H)−1.

The asymptotic properties of SRMLE are

E(β̂SRMLE) = β, (12)

and
Cov(β̂SRMLE) = (C +H

′
ψ−1H)−1 = A. (13)

As a result, the mean square error matrix is produced as

MSEM(β̂SRMLE) = (C +H
′
ψ−1H)−1 = A. (14)

Varathan and Wijekoon (2016), introduced the Stochastic Restricted Ridge Logistic Estimator
(SRRMLE) by replacing β̂MLE by β̂LRE in equation (9), which is defined as

β̂SRRMLE = β̂LRE + C−1H
′(ψ +HC−1H

′)−1(h−Hβ̂LRE)
= Zkβ̂MLE + C−1H

′(ψ +HC−1H
′)−1(h−HZkβ̂MLE)

= ZkC
−1X

′
Ŵz + C−1H

′(ψ +HC−1H
′)−1(h−HZkC

−1X
′
Ŵz)
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Since C is non singular matrix,

ZkC
−1 = (C + kI)−1CC−1

= (C + kI)−1I

= C−1(I + kC−1)−1

= C−1(C + kI)−1C

= C−1Zk

β̂SRRMLE = C−1ZkX
′
Ŵz + C−1H

′(ψ +HC−1H
′)−1(h−HC−1ZkX

′
Ŵz)

= (C−1 − C−1H
′(ψ +HC−1H

′)−1HC−1)(ZkX
′
Ŵz +H

′
ψ−1h)

= (C +H
′
ψ−1H)−1(ZkX

′
Ŵz +H

′
ψ−1h)

= A(ZkX
′
Ŵz +H

′
ψ−1h). (15)

Li et al. (2020) introduced the Stochastic Restricted Logistic Liu Estimator (SRLLE) by
replacing β̂MLE by β̂LLE in equation (9), which is defined as

β̂SRLLE = β̂LLE + C−1H
′(ψ +HC−1H

′)−1(h−Hβ̂LLE)
= Zdβ̂MLE + C−1H

′(ψ +HC−1H
′)−1(h−HZdβ̂MLE)

= A(ZdX
′
Ŵz +H

′
ψ−1h). (16)

By replacing β̂MLE by β̂LT LE in equation (9), Yehia (2020), developed the Stochastic Re-
stricted Mixed Liu-Type estimator (SRMLTE).

β̂SRMLT E = β̂LT LE + C−1H
′(ψ +HC−1H

′)−1(h−Hβ̂LT LE)
= Zk,dβ̂MLE + C−1H

′(ψ +HC−1H
′)−1(h−HZk,dβ̂MLE).

= A(Zk,dX
′
Ŵz +H

′
ψ−1h). (17)

2.3. The general form of existing stochastic restricted mixed logistic esti-
mators

The general form of the SRMLE, SRRMLE, SRLLE, and SRMLTE can be written as

β̂SRGMLE = β̂GLE + C−1H
′(ψ +HC−1H

′)−1(h−Hβ̂GLE)
= L(i)β̂MLE + C−1H

′(ψ +HC−1H
′)−1(h−HL(i)β̂MLE)

= (C +H
′
ψ−1H)−1(L(i)X

′
Ŵz +H

′
ψ−1h)

= A(L(i)X
′
Ŵz +H

′
ψ−1h). (18)

where L(i) is a non negative definite matrix,

β̂SRGMLE =


β̂SRMLE if L(i) = I;
β̂SRRMLE if L(i) = Zk;
β̂SRLLE if L(i) = Zd;
β̂SRMLT E if L(i) = Zk,d.

(19)
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The asymptotic properties of the general form of stochastic restricted mixed logistic estimators
are

E[β̂SRGMLE ] = E[(C +H
′
ψ−1H)−1(L(i)X

′
Ŵz +H

′
ψ−1h)]

= (C +H
′
ψ−1H)−1(L(i)C +H

′
ψ−1H)β

= A(L(i)C +H
′
ψ−1H)β. (20)

and the dispersion matrix;

D[β̂SRGMLE ] = Cov[β̂SRGMLE ]
= (C +H

′
ψ−1H)−1(L(i)CL

′

(i) +H
′
ψ−1H)(C +H

′
ψ−1H)−1

= A(L(i)CL
′

(i) +H
′
ψ−1H)A. (21)

The bias vector and Mean square error matrix (MSE) are

B[β̂SRGMLE ] = E[β̂SRGMLE ] − β

= (C +H
′
ψ−1H)−1(L(i) − I)Cβ

= A(L(i) − I)Cβ. (22)

and

MSE[β̂SRGMLE ] = D[β̂SRGMLE ] +B[β̂SRGMLE ]B′ [β̂SRGMLE ]
= A(L(i)CL(i) +H

′
ψ−1H)A+A(L(i) − I)Cββ′

C(L(i) − I)′
A. (23)

The scalar mean square error (SMSE) can be obtained as,

SMSE[β̂SRGMLE ]
= tr[MSE(β̂SRGMLE)]
= tr(A(L(i)CL(i) +H

′
ψ−1H)A) + β

′
C(L(i) − I)′

AA(L(i) − I)Cβ. (24)

2.4. The stochastic restricted optimal logistic estimator (SROLE) and its
properties

Varathan and Wijekoon (2021) introduced the SROLE, as the optimal estimator of SRMLE,
SRRLE, SRLMLE, SRAULLE, SRAURLE, and SRLTLE. It is defined as,

β̂SROLE = F̂optβ̂SRMLE

where, F̂opt = ββ
′(A+ ββ

′)−1.

The expectation, bias, covariance, MSE, and SMSE of SROLE are defined as:

E[β̂SROLE ] = F̂optβ. (25)

B[β̂SROLE ] = (F̂opt − I)β (26)

D[β̂SROLE ] = Cov[β̂SROLE ] = F̂optAF̂
′
opt. (27)

MSE[β̂SROLE ] = D[β̂SROLE ] +B[β̂SROLE ]B′ [β̂SROLE ]
= F̂optAF̂

′
opt + (F̂opt − I)ββ′(F̂opt − I)′

. (28)
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SMSE[β̂SROLE ]
= tr(F̂optAF̂

′
opt) + β

′(F̂opt − I)′(F̂opt − I)β. (29)

2.5. The proposed estimators

The general form of stochastic restricted mixed Logistic estimator (equation (18)) consists
of the matrix L(i), which takes different choices depending on different estimators. Now, we
minimize the SMSE of SRGMLE with respect to L(i) to identify the most suitab.

∂SMSE(β̂SRGMLE)
L(i)

=
∂tr[A(L(i)CL(i) +H

′
ψ−1H)A]

∂L(i)
+
∂β

′
C(L(i) − I)′

AA(L(i) − I)Cβ
∂L(i)

=
∂tr(AL(i)CL(i)A)

∂L(i)
+
∂β

′
CL(i)AAL(i)Cβ − 2β′

CAAL(i)Cβ + β
′
CAACβ

∂L(i)

=
∂tr(L(i)AAL(i)C)

∂L(i)
+
∂β

′
CL(i)AAL(i)Cβ

∂L(i)
− 2

∂β
′
CAAL(i)Cβ

∂L(i)

(30)

We consider the following lemmas to further simplify the above equation.

Lemma 2 (Rao and Toutenburg (1995)). Let a be a n×1 vector, N a symmetric t×t matrix,
and M a t× n matrix, then

∂(a′
M

′
NMa)

∂M
= 2NMaa

′

Lemma 3 (Rao and Toutenburg (1995)). Let a is a vector of order n× 1, b is another vector
of order m× 1, and M is an n×m matrix, then

∂(a′
Mb)

∂M
= ab

′

Lemma 4 (Rao and Toutenburg (1995)). For the differentials of the trace we have

∂tr(X ′
AXB)

∂X
= AXB +A

′
XB

′

by applying Lemmas 2,3, and 4 in equation (30), we obtain

∂SMSE(β̂SRGMLE)
∂L(i)

= AAL(i)C +AAL(i)C + 2AAL(i)Cββ
′
C − 2AACββ′

C

= 2AAL(i)C + 2AAL(i)Cββ
′
C − 2AACββ′

C (31)

∂SMSE(β̂SRGMLE)
∂L(i)

|L(i)=L̂ = 0 (32)

Lemma 5 (Rao and Toutenburg (1995)). Let A : n× n and B : n× n such that A > 0 and
B : n× n ≥ 0. Then C = A+B > 0.
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According to lemma 5, (I+Cββ
′) is a nonsingular matrix. By equating (32) to a null matrix,

we obtain the L̂,

2AAL̂C + 2AAL̂Cββ′
C − 2AACββ′

C = 0
2AA(L̂+ L̂Cββ

′)C = 2AACββ′
C

L̂+ L̂Cββ
′ = Cββ

′

L̂(I + Cββ
′) = Cββ

′

L̂ = Cββ
′(I + Cββ

′)−1
. (33)

By replacing β̂GLE with L̂β̂GLE in equation (18), now we propose a new estimator called a
Stochastic Restricted Modified Mixed Logistic Estimator (SRMMLE),

β̂SRMMLE = L̂β̂GLE + C−1H
′(ψ +HC−1H

′)−1(h−HL̂β̂GLE)
= L̂L(i)β̂MLE + C−1H

′(ψ +HC−1H
′)−1(h−HL̂L(i)β̂MLE)

= (C +H
′
ψ−1H)−1(L̂L(i)X

′
Ŵz +H

′
ψ−1h)

= (C +H
′
ψ−1H)−1(J(i)X

′
Ŵz +H

′
ψ−1h). (34)

where, J(i) = L̂L(i).
The proposed estimator, SRMMLE involves an unknown parameter β within its term L̂, so it
becomes essential to look for a vector with known β values. As such, following Varathan and
Wijekoon (2021), we replace β with the normalized eigenvector corresponding to the largest
eigenvalue of the matrix C, subject to the constraint β′

β = 1.

By adopting β̂MLE , β̂LRE , β̂LLE , and β̂LT LE in place of β̂GLE in equation (34), we pro-
pose four new estimators namely, Stochastic Restricted Modified Mixed Logistic Estimator
1 (SRMMLE 1), Stochastic Restricted Modified Mixed Logistic Estimator 2 (SRMMLE 2),
Stochastic Restricted Modified Mixed Logistic Estimator 3 (SRMMLE 3), and Stochastic
Restricted Modified Mixed Logistic Estimator 4 (SRMMLE 4), respectively, and defined as,

β̂SRMMLE =


β̂SRMMLE1 if J(i) = L̂I;
β̂SRMMLE2 if J(i) = L̂Zk;
β̂SRMMLE3 if J(i) = L̂Zd;
β̂SRMMLE4 if J(i) = L̂Zk,d.

(35)

2.6. Asymptotic properties of the proposed estimators

In this section, we defined the asymptotic properties of the proposed estimator, SRMMLE.
Since the present estimator (SRMMLE) is in a similar form of the estimator SRGMLE, it can
be obtained by replacing L(i) with J(i) in equations (20) - (24).
The expected value of SRMMLE can be written as,

E[β̂SRMMLE ] = A(J(i)C +H
′
ψ−1H)β. (36)

and the dispersion matrix;

D[β̂SRMMLE ] = Cov[β̂SRMMLE ] = A(J(i)CJ(i) +H
′
ψ−1H)A. (37)

The bias vector and MSE can be

B[β̂SRMMLE ] = A(J(i) − I)Cβ (38)
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and

MSE[β̂SRMMLE ] = D[β̂SRMMLE ] +B[β̂SRMMLE ]B′ [β̂SRMMLE ]
= A(J(i)CJ(i) +H

′
ψ−1H)A+A(J(i) − I)Cββ′

C(J(i) − I)′
A. (39)

The SMSE can be obtained as,

SMSE[β̂SRMMLE ]
= tr(A(J(i)CJ(i) +H

′
ψ−1H)A) + β

′
C(J(i) − I)′

AA(J(i) − I)Cβ. (40)

3. Comparison among the estimators

3.1. Theoretical comparison
In this section, we compare the performance of the proposed estimator SRMMLE with the
existing estimators SRGMLE in terms of the mean square error matrix criterion by following
lemmas.
Lemma 6 (Rao and Toutenburg (1995)). Let A be positive definite and B be a regular ma-
trix, then B

′
AB > 0.

Lemma 7 (Rao, Shalabh, Toutenburg, and Heumann (2008)). Let the two n × n matrices
M > 0, N ≥ 0, then M > N if and only if λmax(NM−1) < 1.

Lemma 8 (Trenkler and Toutenburg (1990)). Let β̂j = Ajy, j = 1, 2 be two competing
homogenous linear estimators of β. Suppose that D = Cov(β̂1) − Cov(β̂2) > 0; where
Cov(β̂j), j = 1, 2 denotes the covaraince matrix of β̂j. Then ∆(β̂1, β̂2) = MSEM(β̂1) −
MSEM(β̂2) ≥ 0 if and only if d′

2(D+d
′
1d1)d2 ≤ 1, where MSEM(β̂j), dj ; j = 1, 2 denote the

Mean Square Error Matrix and bias vector of β̂j, respectively.

Theorem 3.1. When λmax[AJ(i)CJ(i)
′
A(AL(i)CL

′

(i)A)−1] < 1, the estimator SRMMLE is
superior to SRGMLE if and only if δ′

new(D1 + δ
′
GδG)−1δnew ≤ 1.

Proof. Consider,

MSEM(β̂SRGMLE) −MSEM(β̂SRMMLE)
= A(L(i)CL(i) +H

′
ψ−1H)A+A(L(i) − I)Cββ′

C(L(i) − I)′
A

−A(J(i)CJ(i) +H
′
ψ−1H)A+A(J(i) − I)Cββ′

C(J(i) − I)′
A

= A(L(i)CL(i) − J(i)CJ(i))A+A[(L(i) − I)Cββ′
C(L(i) − I)′)

− (J(i) − I)Cββ′
C(J(i) − I)′ ]A. (41)

Now consider,

D(β̂SRGMLE) −D(β̂SRMMLE) = A(L(i)CL
′

(i) − J(i)CJ(i)
′)A

= D1. (42)

Note that, AL(i)CL
′

(i)A and AJ(i)CJ(i)
′
A are positive definite matrices (by lemma 6) since C is

a positive definite matrix. Consequently, by lemma 7, if λmax[AJ(i)CJ
′

(i)A(AL(i)CL
′

(i)A)−1] <
1 then D1 is a positive definite matrix, where λmax[AJ(i)CJ

′

(i)A(AL(i)CL
′

(i)A)−1] is the largest
eigenvalue of [AJ(i)CJ

′

(i)A(AL(i)CL
′

(i)A)−1]. Further by lemma 8, MSEM(β̂SRGMLE), MSEM(β̂SRMMLE)
is non negative definite if δ′

new(D1 + δ
′
GδG)−1δnew ≤ 1, where δnew = A(J(i) − I)Cβ and

δG = A(L(i) − I)Cβ.
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Note that the above theorem outlines the necessary and sufficient conditions for the superi-
ority of the proposed estimator (SRMMLE) over the general existing estimator (SRGMLE).
By substituting L(i) with an appropriate matrix, we can derive the following conditions for
the superiority of SRMMLE over the existing estimators SRMLE, SRRMLE, SRLLE, and
SRMLTE with respect to mean square error matrix (MSEM).

• If L(i) = I; SRMMLE is superior than SRMLE when λmax[AJ(i)CJ(i)
′
A(ACA)−1] <1.

• If L(i) = Zk; SRMMLE is superior than SRRMLE when λmax[AJ(i)CJ(i)
′
A(AZkCZ

′
kA)−1] <1.

• If L(i) = Zd; SRMMLE is superior than SRLLE when λmax[AJ(i)CJ(i)
′
A(AZdCZ

′
dA)−1] <1.

• If L(i) = Zk,d; SRMMLE is superior than SRMLTE when λmax[J(i)CJ(i)
′
A(AZk,dCZ

′
k,dA)−1] <1.

3.2. Numerical illustration

The proposed estimators, SRMMLE1, SRMMLE2, SRMMLE3, and SRMMLE4, are com-
pared with the existing estimators SRMLE, SRRMLE, SRLLE, SRMLTE, and SROLE using
the following classification metrics.

The confusion matrix offers a clear understanding of how effectively the model distinguishes
between positive and negative instances. Table 1 provides the components of the confusion
matrix.
The evaluation metrics are,

Table 1: Confusion Matrix
Predicted Outcome

P N

A
ct

ua
l

P True Positive (TP) False Negative (FN)

N False Positive (FP) True Negative (TN)

Sensitivity / Recall: This measures how effectively the model identifies true positive cases.

Sensitivity/Recall = TP

(TP + FN) (43)

Specificity: Specificity measures the true negative rate, indicating how accurately the model
identifies negative cases.

Specificity = TN

(TN + FP ) (44)

Precision: Precision measures the proportion of true positive predictions among all positive
predictions.

Precision = TP

(TP + FP ) (45)
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Balanced accuracy: This metric averages sensitivity and specificity to give a more balanced
view of performance of the model.

Balanced accuracy = (Sensitivity + Specificity)
2 (46)

F1 Score: The F1 Score is the harmonic mean of precision and recall, balancing the two.

F1score = 2 ∗ (Precision ∗Recall)
Precision+Recall

(47)

AUC Value (Area Under the Curve): AUC measures the overall ability of the model to dis-
tinguish between positive and negative cases.

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC): This is a widely
used metric for evaluating the performance of binary classifiers. It measures the likelihood
that a model will correctly rank a randomly chosen positive instance higher than a randomly
chosen negative one.

Simulation study

Following McDonald and Galarneau (1975), and Alheety, Månsson, and Kibria (2021), we
generate the predictor variables using following equation (48).

xi,j =
√

(1 − ρ2)zi,j + ρzi,p+1 ; i = 1, 2, ..., n. j = 1, 2, ..., p. (48)

where zij are pseudo-random numbers from a standard normal distribution and ρ represent the
correlation between any two predictor variables. Four predictor variables are generated, and
we choose ρ = (0.7, 0.9, 0.99, 0.995, 0.999) from moderate to severe multicollinearity. Further,
in this study, we considered five different sample sizes: 30, 50, 100, 200, and 1000. The
output was unreliable when we chose sample sizes of 30 and 50 for cross-validated balanced
accuracy. Therefore, we chose 100 as the small sample for balanced accuracy calculation. The

dependent variable yi is obtained from the Bernoulli distribution with πi = exp(x′
iβ)

1 + exp(x′
iβ)

. The

parameter values of β1, β2, ...βp are chosen so that β′
β = 1 and β1 = β2 = ...βp.

Following Varathan and Wijekoon (2021), we take the restriction as follows:

H =

1 −1 0 1
1 1 −1 0
0 0 1 −1

 , h =

0
0
0

 and ψ =

1 0 0
0 1 0
0 0 1

 (49)

The simulation is repeated 2000 times by generating new pseudo-random numbers, and we
estimate the SMSE of each estimator for different (k, d). The initial values of k and d are set
at 0.01, and are incrementally increased by 0.1. For k > 0, 0 < d < 1.

ˆ
SMSE( ˆ )β∗ = 1

2000

2000∑
r=1

(β̂r − β)′(β̂r − β) (50)

where β̂r denotes any estimator considered in the rth simulation.

Further, a 5-fold cross-validation was implemented to compute the average cross-validated
balanced accuracy for each estimator. The results of the simulations are presented in Tables
(2) - (5), showing the minimum SMSE values and the highest balanced accuracy along with
their respective shrinkage parameters. Additionally, these findings are depicted in Figure (1)
- (2).
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According to the tables 2 - 5, our proposed estimators exhibit enhanced performance rela-
tive to the existing methods. In particular, SRMMLE1 outperforms SRMLE, whereas SR-
MMLE2 demonstrates superiority over SRMLE, SRLLE, SROLE, and SRRMLE. Similarly,
SRMMLE3 achieves better results than SRLLE and SROLE. Notably, SRMMLE4 surpasses
all the considered estimators across various sample sizes and ρ values.

From Tables 3 - 5, SRMLTE exhibits comparatively better balanced accuracy for ρ = 0.7
and 0.9 when n = 100 , for ρ = 0.9, 0.995, and 0.999 when n = 200, and ρ = 0.7, 0.99 and
0.999 when n = 1000. Meanwhile, SRMMLE4 achieves better balanced accuracy compared
to other estimators for ρ = 0.99, 0.995, and 0.999 when n = 100 , for ρ = 0.99 when n = 200,
and ρ = 0.9, 0.99 and 0.995 when n = 1000.

Further, we identified the parameter combination that minimizes SMSE and the combina-
tion that maximizes average cross-validated balanced accuracy. Based on Table 3 - 5, the
minimum SMSE and maximum balanced accuracy for each estimator are shown for different
shrinkage values.

From Figure (1), the performance of the estimators in terms of SMSE for each sample size
and correlation can be ranked as follows: SRMMLE4, SRMLTE, SRMMLE2, SRRMLE,
SRMMLE3, SROLE, SRLLE, SRMMLE1, and SRMLE. Moreover, an increase in both the
sample size and the correlation between the two predictor variables (ρ) resulted in a decrease
in the SMSE of SRMLE, demonstrating enhanced performance. Conversely, the performance
of other estimators declined as the sample size and correlation increased.
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Table 2: The SMSE of the simulation study when n=30 and 50

ρ Estimators n = 30 n = 50

ρ = 0.7 SRMLE 5.44984 5.48675
SRLLE 1.60335 (d = 0.01) 1.74686 (d = 0.01)
SROLE 1.59354 1.73397
SRRMLE 1.11852 (k = 4.91) 1.14744 (k = 4.91)
SRMLTE 0.85906 (k = 2.91, d = 0.99) 0.86632 (k = 2.51, d = 0.99)
SRMMLE1 1.84187 1.87487
SRMMLE2 1.03409 (k = 4.91) 1.04527 (k = 4.91)
SRMMLE3 1.14574 (d = 0.01) 1.19038 (d = 0.01)
SRMMLE4 0.82459 (k = 0.81, d = 0.99) 0.82457 (k = 0.51, d = 0.99)

ρ = 0.9 SRMLE 4.56791 4.73790
SRLLE 1.69309 (d = 0.01) 1.87863 (d = 0.01)
SROLE 1.68225 1.86559
SRRMLE 1.14488 (k = 4.91) 1.18847 (k = 4.91)
SRMLTE 0.89289 (k = 2.31, d = 0.99) 0.89706 (k = 1.91, d = 0.99)
SRMMLE1 1.92399 2.02651
SRMMLE2 1.04908 (k = 4.91) 1.06897 (k = 4.91)
SRMMLE3 1.19796 (d = 0.01) 1.27216 (d = 0.01)
SRMMLE4 0.85085 (k = 0.71, d = 0.99) 0.84083 (k = 0.51, d = 0.99)

ρ = 0.99 SRMLE 4.35108 4.40716
SRLLE 1.76694 (d = 0.01) 1.93341 (d = 0.01)
SROLE 1.75057 1.91655
SRRMLE 1.16777 (k = 4.91) 1.20752 (k = 4.91)
SRMLTE 0.88659 (k = 1.81, d = 0.99) 0.91407 (k = 1.21, d = 0.99)
SRMMLE1 2.02324 2.08420
SRMMLE2 1.06082 (k = 4.91) 1.08168 (k = 4.91)
SRMMLE3 1.23639 (d = 0.01) 1.31219 (d = 0.01)
SRMMLE4 0.84491 (k = 0.71, d = 0.99) 0.86988 (k = 0.51, d = 0.99)

ρ = 0.995 SRMLE 4.21095 4.39081
SRLLE 1.73206 (d = 0.01) 1.93321 (d = 0.01)
SROLE 1.71624 1.91604
SRRMLE 1.15866 (k = 4.91) 1.20736 (k = 4.91)
SRMLTE 0.91913 (k = 2.11, d = 0.99) 0.90347 (k = 1.01, d = 0.99)
SRMMLE1 1.99014 2.09026
SRMMLE2 1.05818 (k = 4.91) 1.08160 (k = 4.91)
SRMMLE3 1.22620 (d = 0.01) 1.31206 (d = 0.01)
SRMMLE4 0.85898 (k = 0.71, d = 0.99) 0.85498 (k = 0.41, d = 0.99)

ρ = 0.999 SRMLE 4.21423 4.38388
SRLLE 1.74376 (d = 0.01) 1.93586 (d = 0.01)
SROLE 1.72744 1.91839
SRRMLE 1.16212 (k = 4.91) 1.20760 (k = 4.91)
SRMLTE 0.90851 (k = 1.91, d = 0.99) 0.89331 (k = 0.91, d = 0.99)
SRMMLE1 1.99998 2.08873
SRMMLE2 1.05947 (k = 4.91) 1.08137 (k = 4.91)
SRMMLE3 1.23081 (d = 0.01) 1.31222 (d = 0.01)
SRMMLE4 0.85896 (k = 0.71, d = 0.99) 0.85651 (k = 0.41, d = 0.99)
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Table 3: The results of simulation study when n=100

ρ Estimators SMSE Balanced Accuracy

ρ = 0.7 SRMLE 5.54738 0.51734
SRLLE 1.86034 (d = 0.01) 0.51775 (d = 0.31)
SROLE 1.84213 0.51701
SRRMLE 1.17075 (k = 4.91) 0.51785 (k = 0.31)
SRMLTE 0.86858 (k = 2.31, d = 0.99) 0.51789 (k = 0.21, d = 0.01)
SRMMLE1 1.91839 0.51723
SRMMLE2 1.05467 (k = 4.91) 0.51735 (k = 0.01)
SRMMLE3 1.22791 (d = 0.01) 0.51733 (d = 0.61)
SRMMLE4 0.80917 (k = 0.31, d = 0.99) 0.51736 (k = 0.11, d = 0.01)

ρ = 0.9 SRMLE 4.86889 0.52242
SRLLE 2.01943 (d = 0.01) 0.52298 (d = 0.11)
SROLE 2.00329 0.52274
SRRMLE 1.22126 (k = 4.91) 0.52307 (k = 0.11)
SRMLTE 0.91406 (k = 1.81, d = 0.99) 0.52389 (k = 0.51, d = 0.21)
SRMMLE1 2.09087 0.52269
SRMMLE2 1.08500 (k = 4.91) 0.52271 (k = 1.61)
SRMMLE3 1.33229 (d = 0.01) 0.52283 (d = 0.41)
SRMMLE4 0.82909 (k = 0.21, d = 0.99) 0.52292 (k = 0.51, d = 0.11)

ρ = 0.99 SRMLE 4.50125 0.52541
SRLLE 2.06244 (d = 0.01) 0.52542 (d = 0.71)
SROLE 2.04493 0.52546
SRRMLE 1.23941 (k = 4.91) 0.52546 (k = 0.41)
SRMLTE 0.93352 (k = 0.99, d = 0.99) 0.52564 (k = 0.01, d = 0.11)
SRMMLE1 2.13653 0.52553
SRMMLE2 1.09883 (k = 4.91) 0.52548 (k = 0.01)
SRMMLE3 1.37484 (d = 0.01) 0.52560 (d = 0.51)
SRMMLE4 0.87144 (k = 0.21, d = 0.99) 0.52576 (k = 4.51, d = 0.21)

ρ = 0.995 SRMLE 4.46385 0.52584
SRLLE 2.05931 (d = 0.01) 0.52598 (d = 0.01)
SROLE 2.04181 0.52598
SRRMLE 1.23908 (k = 4.91) 0.52605 (k = 0.01)
SRMLTE 0.93906 (k = 0.81, d = 0.99) 0.52607 (k = 0.11, d = 0.31)
SRMMLE1 2.13242 0.52566
SRMMLE2 1.09939 (k = 4.91) 0.52598 (k = 0.21)
SRMMLE3 1.37589 (d = 0.01) 0.52612 (d = 0.31)
SRMMLE4 0.88362 (k = 0.21, d = 0.99) 0.52623 (k = 2.71, d = 0.11)

ρ = 0.999 SRMLE 4.47801 0.52630
SRLLE 2.07160 (d = 0.01) 0.52635 (d = 0.21)
SROLE 2.05381 0.52630
SRRMLE 1.24261 (k = 4.91) 0.52631 (k = 0.01)
SRMLTE 0.92097 (k = 0.51, d = 0.99) 0.52635 (k = 0.11, d = 0.31)
SRMMLE1 2.14853 0.52578
SRMMLE2 1.10089 (k = 4.91) 0.52630 (k = 0.11)
SRMMLE3 1.38124 (d = 0.01) 0.52626 (d = 0.01)
SRMMLE4 0.86249 (k = 0.21, d = 0.99) 0.52636 (k = 1.11, d = 0.21)
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Table 4: The results of the simulation study when n=200

ρ Estimators SMSE Balanced Accuracy

ρ = 0.7 SRMLE 5.42375 0.51196
SRLLE 1.90213 (d = 0.01) 0.51205 (d = 0.11)
SROLE 1.88081 0.51236
SRRMLE 1.17966 (k = 4.91) 0.51201 (k = 4.91)
SRMLTE 0.88296 (k = 2.21, d = 0.99) 0.51232 (k = 4.81, d = 0.21)
SRMMLE1 1.91855 0.51221
SRMMLE2 1.05930 (k = 4.91) 0.51217 (k = 0.01)
SRMMLE3 1.24572 (d = 0.01) 0.51221 (d = 0.99)
SRMMLE4 0.82075 (k = 0.21, d = 0.99) 0.51229 (k = 0.31, d = 0.41)

ρ = 0.9 SRMLE 4.64176 0.51604
SRLLE 2.02783 (d = 0.01) 0.51647 (d = 0.11)
SROLE 2.01111 0.51643
SRRMLE 1.22611 (k = 4.91) 0.51649 (k = 0.31)
SRMLTE 0.94615 (k = 2.01, d = 0.99) 0.51693 (k = 0.41, d = 0.41)
SRMMLE1 2.05288 0.51667
SRMMLE2 1.09014 (k = 4.91) 0.51663 (k = 0.01)
SRMMLE3 1.34892 (d = 0.01) 0.51675 (d = 0.81)
SRMMLE4 0.85735 (k = 0.11, d = 0.99) 0.51656 (k = 0.01, d = 0.01)

ρ = 0.99 SRMLE 4.27511 0.51830
SRLLE 2.05689 (d = 0.01) 0.51838 (d = 0.21)
SROLE 2.04049 0.51833
SRRMLE 1.24056 (k = 4.91) 0.51835 (k = 0.01)
SRMLTE 0.96910 (k = 1.21, d = 0.99) 0.51833 (k = 0.11, d = 0.01)
SRMMLE1 2.08495 0.51801
SRMMLE2 1.10251 (k = 4.91) 0.51834 (k = 0.11)
SRMMLE3 1.38696 (d = 0.01) 0.51834 (d = 0.01)
SRMMLE4 0.87942 (k = 0.11, d = 0.99) 0.51841 (k = 1.21, d = 0.21)

ρ = 0.995 SRMLE 4.29871 0.51818
SRLLE 2.08073 (d = 0.01) 0.51833 (d = 0.01)
SROLE 2.06410 0.51833
SRRMLE 1.24878 (k = 4.91) 0.51833 (k = 0.41)
SRMLTE 0.96669 (k = 0.91, d = 0.99) 0.51878 (k = 0.01, d = 0.11)
SRMMLE1 2.10871 0.51784
SRMMLE2 1.10691(k = 4.91) 0.51833 (k = 3.21)
SRMMLE3 1.40017 (d = 0.01) 0.51832 (d = 0.01)
SRMMLE4 0.87508 (k = 0.11, d = 0.99) 0.51854 (k = 1.91, d = 0.31)

ρ = 0.999 SRMLE 4.28388 0.51870
SRLLE 2.08583 (d = 0.01) 0.51873 (d = 0.51)
SROLE 2.06918 0.51870
SRRMLE 1.25122 (k = 4.91) 0.51871 (k = 0.11)
SRMLTE 0.96073 (k = 0.51, d = 0.99) 0.51887 (k = 0.01, d = 0.21)
SRMMLE1 2.11258 0.51808
SRMMLE2 1.10853 (k = 4.91) 0.51870 (k = 0.01)
SRMMLE3 1.40460 (d = 0.01) 0.51868 (d = 0.01)
SRMMLE4 0.88825 (k = 0.11, d = 0.99) 0.51882 (k = 2.61, d = 0.31)
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Table 5: The results of the simulation study when n=1000

ρ Estimators SMSE Balanced Accuracy

ρ = 0.7 SRMLE 5.42790 0.50561
SRLLE 1.95269 (d = 0.21) 0.50572 (d = 0.01)
SROLE 1.92775 0.50573
SRRMLE 1.19100 (k = 4.91) 0.50576 (k = 3.31)
SRMLTE 0.89547 (k = 2.21, d = 0.99) 0.50582 (k = 1.01, d = 0.31)
SRMMLE1 1.93633 0.50573
SRMMLE2 1.06466 (k = 4.91) 0.50575 (k = 2.11)
SRMMLE3 1.26606 (d = 0.01) 0.50574 (d = 0.01)
SRMMLE4 0.81290 (k = 0.01, d = 0.99) 0.50578 (k = 0.11, d = 0.21)

ρ = 0.9 SRMLE 4.65941 0.50754
SRLLE 2.07462 (d = 0.01) 0.50774 (d = 0.01)
SROLE 2.05651 0.50773
SRRMLE 1.23671 (k = 4.91) 0.50778 (k = 3.01)
SRMLTE 0.96645 (k = 2.51, d = 0.99) 0.50778 (k = 0.71, d = 0.01)
SRMMLE1 2.06604 0.50769
SRMMLE2 1.09649 (k = 4.91) 0.50773 (k = 2.01)
SRMMLE3 1.37312 (d = 0.01) 0.50772 (d = 0.01)
SRMMLE4 0.87739 (k = 0.01, d = 0.99) 0.50787 (k = 1.51, d = 0.51)

ρ = 0.99 SRMLE 4.38372 0.50860
SRLLE 2.15837 (d = 0.01) 0.50866 (d = 0.31)
SROLE 2.14144 0.50865
SRRMLE 1.27132 (k = 4.91) 0.50866 (k = 0.11)
SRMLTE 0.99530 (k = 2.41, d = 0.99) 0.50872 (k = 0.11, d = 0.41)
SRMMLE1 2.15153 0.50862
SRMMLE2 1.11965 (k = 4.91) 0.50865 (k = 1.71)
SRMMLE3 1.44307 (d = 0.01) 0.50865 (d = 0.31)
SRMMLE4 0.86959 (k = 0.01, d = 0.99) 0.50872 (k = 1.41, d = 0.41)

ρ = 0.995 SRMLE 4.35272 0.50865
SRLLE 2.15492 (d = 0.01) 0.50868 (d = 0.71)
SROLE 2.13809 0.50866
SRRMLE 1.27055 (k = 4.91) 0.50865 (k = 4.31)
SRMLTE 0.99663 (k = 2.11, d = 0.99) 0.50875 (k = 0.01, d = 0.21)
SRMMLE1 2.14810 0.50864
SRMMLE2 1.11962 (k = 4.91 0.50867 (k = 0.01)
SRMMLE3 1.44296 (d = 0.01) 0.50866 (d = 0.21)
SRMMLE4 0.89384 (k = 0.01, d = 0.99) 0.50878 (k = 0.11, d = 0.41)

ρ = 0.999 SRMLE 4.33609 0.50876
SRLLE 2.15626 (d = 0.01) 0.50877 (d = 0.71)
SROLE 2.13949 0.50876
SRRMLE 1.27131 (k = 4.91) 0.50876 (k = 0.01)
SRMLTE 0.99767 (k = 1.31, d = 0.99) 0.50897 (k = 0.01, d = 0.21)
SRMMLE1 2.14969 0.50866
SRMMLE2 1.12032 (k = 4.91) 0.50876 (k = 0.11)
SRMMLE3 1.44498 (d = 0.01) 0.50876 (d = 0.01)
SRMMLE4 0.90888 (k = 0.01, d = 0.91) 0.50882 (k = 1.61, d = 0.51)
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Figure 1: The minimum SMSE of the estimators with correlation (ρ)
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Figure 2: The maximum balanced accuracy of the estimators when n=100, 200 and 1000

Figure 2 illustrates that the balanced accuracy of each estimator improves with increasing
correlation (ρ) but declines as the sample size (n) increases.

Empirical study
To check the prediction performance of the existing stochastic restricted estimators, we gen-
erate one data set using equations (2) and (48) when n = 600, p = 4 and ρ = 0.998. We used
set.seed(67) in R Program.
Since unknown real values of the parameter vector β, we used the maximum likelihood es-
timator of β when calculating matrix C. The eigenvalues of the matrix C are computed as
0.78290, 0.00082, 0.00078, 0.00073. To test the multicollinearity among the explanatory vari-
ables, we use condition index (CI), computed as CI =

√
max(λj)
min(λj) = 32.74852. There was

severe multicollinearity when the condition index exceeded 30. Thus, the result provides evi-
dence of severe multicollinearity among the explanatory variables.
We applied the same restriction as in the simulation study, and the shrinkage parameters were
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obtained to minimize the SMSE and maximize the average cross-validated balanced accuracy.
The results of an empirical application are presented in Table 6.

Table 6: The results of an empirical study

Estimators SMSE Balanced Accuracy

SRMLE 7.03624 0.52897
SRLLE 3.33357 (d=0.01) 0.52897 (d=0.01)
SROLE 3.30318 0.52897
SRRMLE 1.62500 (k=4.91) 0.52897 (k=0.01)
SRMLTE 0.98502 (k=0.81, d=0.99) 0.52940 (k=0.11, d=0.11)
SRMMLE1 3.33030 0.52897
SRMMLE2 1.29040 (k=4.91) 0.52897 (k=0.01)
SRMMLE3 1.98447 (d=0.01) 0.52897 (d=0.01)
SRMMLE4 0.10068 (k=0.01, d=0.99) 0.53230 (k=0.31, d=0.71)

From Table 6, we notice that our proposed estimator, SRMMLE4, shows superior perfor-
mance. Next, SRMLTE demonstrates better performance than the other estimators in both
SMSE and balanced accuracy. Moreover, we can observe the consequences associated with
the outcomes of the simulation study.

4. Real data application
Myopia data was used to check the performance of the proposed estimators SRMMLE1, SR-
MMLE2, SRMMLE3, and SRMMLE4 with existing estimators, such as SRMLE, SRRMLE,
SRLLE, SRMLTE, and SRGLE. This dataset is about a study of myopia taken from Hos-
mer Jr, Lemeshow, and Sturdivant (2013) and also studied by Asar, Arashi, and Wu (2017).
In this data, 618 subjects who were not myopic when they entered the study were followed
up for at least five years, and observations were made on 17 parameters. However, following
Asar et al. (2017), we focused our analysis on four explanatory variables: spherical equivalent
refraction (SPHEQ), axial length (AL), anterior chamber depth (ACD), and vitreous cham-
ber depth (VCD). These variables are continuous and measured on the same scale (mm). We
limited our analysis to the first 300 observations. The dependent variable indicates whether a
subject has myopia (coded as 1) or not (coded as 0). In this dataset, the dependent variable
consists of 263 cases of ’0’ and 37 cases of ’1’, indicating an imbalanced dataset.

The imbalance in our dataset, with the dominance of class 0, poses challenges for classifi-
cation models, leading to biased predictions and poor identification of the minority class.
This imbalance can also result in misleading performance metrics, such as an artificially high
accuracy that fails to reflect the model’s true predictive ability. Furthermore, insufficient rep-
resentation of the minority class may hinder the model’s ability to generalize effectively. To
mitigate these issues, we use performance measurement adjustments that emphasize precision,
recall, and F1-score to improve the evaluation of minority class predictions. Additionally, we
utilize ROC-AUC which provides more robust estimates in imbalanced data scenarios.

The condition number, a measure of multicollinearity, is obtained as 10.4571. This result
provides evidence of moderate multicollinearity among the predictor variables in the dataset.
We examined the predictor variables with positive and negative correlations to one another
and discovered that the correlation between the variables AL and VCD is very strong (0.9402).
To evaluate the classification metrics of the estimators, we split the dataset into two so that
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seventy percent of the data belongs to the training set and thirty percent of the data belongs
to the test set. We trained the model using the training set and then evaluated the classifi-
cation metrics using the testing set. Additionally, we applied the same restriction as in the
simulation study, as referenced in Equation (49). Furthermore, during the model fitting pro-
cess, we used shrinkage parameters optimized to minimize the SMSE in the empirical study
discussed above. The results of the real data application are summarized in Table (7).

Table 7: The results of real data application

Estimators SMSE Sensitivity/Recall Specificity Balanced Accuracy Precision F1 Score AUC value

SRMLE 8.1319 0.9512 0.1429 0.5470 0.4815 0.6393 0.6351
SRLLE 1.7785 0.8605 0.0638 0.4622 0.4568 0.5968 0.6063
SROLE 2.0741 0.8837 0.0851 0.4844 0.4691 0.6129 0.4650
SRRMLE 1.2031 0.8667 0.0667 0.4667 0.4815 0.6191 0.6241
SRMLTE 1.4127 0.8043 0.0000 0.4022 0.4568 0.5827 0.8957
SRMMLE1 3.4610 0.8723 0.0698 0.4711 0.5062 0.6406 0.6680
SRMMLE2 1.1077 0.8723 0.0698 0.4711 0.5062 0.6406 0.6680
SRMMLE3 1.4661 0.8723 0.0698 0.4711 0.5062 0.6406 0.6680
SRMMLE4 0.8392 0.9302 0.1277 0.5289 0.4938 0.6452 0.6680

From Table 7, it is evident that SRMLTE exhibits the highest AUC value (0.8957), indi-
cating superior overall discriminative ability. Additionally, SRMMLE4 demonstrates superior
overall performance by achieving the lowest SMSE, the highest F1 Score, and a slightly better-
balanced accuracy.

Next, we validate the theoretical condition under Theorem 3.2 using the Myopia dataset.
The corresponding results are presented in Table 8.

Based on Table 8, our proposed estimators, SRMMLE1 and SRMMLE3, outperform both

Table 8: Validation of the theoretical conditions for the myopia data

Existing Proposed Condition Decision
Estimators Estimators λmax[AJ(i)CJ(i)

′
A(AL(i)CL

′

(i)A)−1]

SRMLE SRMMLE1 J(i) = L̂ 0.10772 < 1
L(i) = I SRMMLE2 J(i) = L̂Zk 0.00089 < 1 SRMMLE1, SRMMLE2,

SRMMLE3 J(i) = L̂Zd 0.01215 < 1 SRMMLE3, and SRMMLE4
SRMMLE4 J(i) = L̂Zkd 0.00092 < 1 are superior than SRMLE.

SRRMLE SRMMLE1 J(i) = L̂ 13.31009 > 1
L(i) = Zk SRMMLE2 J(i) = L̂Zk 0.11000 < 1

SRMMLE3 J(i) = L̂Zd 1.50198 > 1 SRMMLE2 and SRMMLE4
SRMMLE4 J(i) = L̂Zkd 0.11400 <1 are superior than SRRMLE.

SRLLE SRMMLE1 J(i) = L̂ 0.96512 < 1
L(i) = Zd SRMMLE2 J(i) = L̂Zk 0.00798 < 1 SRMMLE1, SRMMLE2,

SRMMLE3 J(i) = L̂Zd 0.10891 < 1 SRMMLE3, and SRMMLE4
SRMMLE4 J(i) = L̂Zkd 0.00827 < 1 are superior than SRLLE.

SRMLTE SRMMLE1 J(i) = L̂ 12.63360 > 1
L(i) = Zkd SRMMLE2 J(i) = L̂Zk 0.10441 <1

SRMMLE3 J(i) = L̂Zd 1.42564 > 1 SRMMLE2 and SRMMLE4
SRMMLE4 J(i) = L̂Zkd 0.10821 < 1 are superior than SRMLTE.
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SRMLE and SRLLE, whereas SRMMLE2 and SRMMLE4 demonstrate superiority over SRMLE,
SRRMLE, SRLLE, and SRMLTE. These results align with the simulation study findings in
Tables 2 - 5, except for SRMMLE1 versus SRLLE and SRMMLE2 versus SRMLTE. When
compared to the real data application results in Table 7, the validation of theoretical condi-
tions holds, except for SRMMLE1 versus SRLLE.
The AUC-ROC of the myopia application is presented in the Figure 3.

Figure 3 shows that the SROLE performs poorly, as indicated by an AUC of 0.465, which
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Figure 3: The ROC curve of real data application

is worse than random guessing (AUC = 0.50). This suggests that the model may be mis-
classifying a significant number of instances. On the other hand, the SRMLE, SRLLE, and
SRRMLE models, with AUC values ranging from 0.60 to 0.64, demonstrate only moderate
effectiveness. These models perform slightly better than random guessing but do not exhibit
strong discriminative power. The SRMMLE1, SRMMLE2, SRMMLE3, and SRMMLE4 mod-
els each have same pattern with an AUC of 0.668, indicating they are better classifiers than
those in the moderate range. Finally, the SRMLTE model stands out with an AUC of 0.896,
reflecting a strong ability to distinguish between positive and negative classes.
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5. Concluding remarks
In this study, we introduced the Stochastic Restricted Modified Mixed Logistic Estimator
(SRMMLE) for the logistic regression models with stochastic linear restrictions. By mod-
ifying its coefficients, we derived four variants: SRMMLE1, SRMMLE2, SRMMLE3, and
SRMMLE4. Our findings demonstrate that SRMMLE4 achieved superior performance in
both SMSE and predictive accuracy compared to other estimators. Additionally, SRMLTE
also exhibited better performance in both SMSE and prediction. Notably, SRMMLE4 and
SRMLTE are both based on the Z(k,d) function, suggesting that the inclusion of the two pa-
rameters, k and d, contributes to improved results. Furthermore, SRMMLE2 and SRMMLE3
outperformed the existing estimators SRMLE, SRRMLE, SRLLE, and SROLE in terms of
SMSE. However, they did not exhibit superior performance in prediction. Therefore, when
comparing logistic regression estimators, it is essential to use classification metrics.
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