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Abstract

This paper proposes a new control chart based on the two-parameter standard two-
sided power distribution for monitoring rates and proportions, that is, when the quality
characteristic of interest belongs to the unit interval (0,1). Control charts based on the
well-known beta and Kumaraswamy distributions are usually considered to deal with this
kind of data. The standard two-sided power distribution has many similarities to the beta
and Kumaraswamy distributions and a number of advantages in terms of tractability. We
evaluate and compare the performance of the new control chart with the beta and Ku-
maraswamy control charts through Monte Carlo simulation experiments. The simulation
results reveal that the control chart based on the standard two-sided power distribution
outperforms the beta and Kumaraswamy control charts in terms of run length analysis.
An empirical application to a real data set is considered to illustrate the new control chart
in practice, and comparisons with the two most traditional control charts for rates and
proportions (beta and Kumaraswamy) are made.

Keywords: average run length, Beta distribution, Kumaraswamy distribution, statistical pro-
cess control.

1. Introduction

The time-honored two-parameter beta family of distributions has been utilized extensively in
statistical theory and practice, mainly when the interval used is the standard unit interval
(0,1), since the data can be interpreted as rates or proportions. Its probability density
function (PDF) is given by

A1 — 2)8 !

B¢ 7
where A > 0 and £ > 0 are shape parameters, B(a,b) = I'(a)['(b)/T'(a + b) is the beta
function, and I'(-) denotes the complete gamma function. Kumaraswamy (1980) has intro-

duced an alternative distribution to the beta distribution, which is known in the literature as
Kumaraswamy (‘Kw’ for short) distribution. Its PDF has the form

IB(z) = 0<z<l, (1)

frw(@) =027 1 — 277 0<a <1, (2)
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where v > 0 and 6 > 0 are shape parameters. The literature about the beta and Kw
distributions is vast, and these distributions have been extensively applied in several areas.
Here, we refer the reader to the interesting study regarding the genesis, similarities and
differences between the beta and Kw distributions provided by Jones (2009); see also the
references cited therein.

The two-parameter standard two-sided power (‘STSP’) family of distributions was introduced
in van Dorp and Kotz (2002), and its PDF is given by
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where 0 < 6 < 1 governs the location and skewness of the distribution (it is also called “turning
point”), and n > 0 corresponds to the shape parameter. For n = 1, the STSP distribution
simplifies to the standard uniform distribution on (0,1). For n = 2, it corresponds to a
triangular distribution, and for § = 1, we have the power function distribution. van Dorp and
Kotz (2002) derived various properties of the STSP distribution and discussed its flexibility
as compared with the beta distribution. They also provided a novel application in the area
of financial engineering. The STSP PDF can be unimodal, increasing, decreasing, U-shaped,
symmetric, and left skewed or right skewed depending on the values of its parameters. In
other words, the flexibility of the two-parameter STSP distribution is comparable to that
of the well-known beta and Kw distributions. The reader is referred to van Dorp and Kotz
(2002) and Kotz and van Dorp (2004, Cap. 3) for further details regarding the STSP family
of distributions. It is worth stressing that the STSP distribution does not seem to be very
familiar and has not received much attention in the statistical literature. In what follows,
for the first time, we shall consider this distribution in a control chart framework to monitor
rates and proportions.

An interesting area of research corresponds to Statistical Process Control, which is commonly
used in monitoring and detecting shifts in the production processes through control charts.
In particular, in many practical situations of control chart applications, there is a great
interest in monitoring rates and proportions of the quality characteristic. It is well-known
that the most used control chart when the data of interest correspond to fractions of integer
values is the p control chart (Montgomery 2019), which assumes that the distribution of
the nonconforming fraction has a binomial distribution and, hence, the control limits are
computed by using the normal approximation (see, for example, Wang 2009). According
to Wang (2009), the conventional p control chart constructed by the normal approximation
for the binomial distribution may perform poorly, mainly when the characteristic of interest
presents a proportion close to zero or one. In addition, another important disadvantage of the
p chart is that the control limits computed from the normal approximation may not belong to
the unit interval (0, 1), and so the p chart analysis is compromised. To overcome the p chart
flaws, some alternative control charts have been proposed in the literature. To mention a few,
but not limited to, the reader is referred to Winterbottom (1993), Chen (1998), Sim and Lim
(2008), Wang (2009), Chen (2013), Joekes and Barbosa (2013), Mukherjee and Chakraborti
(2012) and Graham, Mukherjee, and Chakraborti (2017), but their control limits are still not
restricted to the double bounded interval (0,1), and so the analysis based on these control
charts is also compromised.

It is worth mentioning that there exist situations where rates or proportions are not results
from Bernoulli experiments although the values belong to the unit interval (0,1). In addition,
variables described as rates and proportions belong to the unit interval (0, 1), which means
that the usual assumption of normal approximation to obtain the control limits becomes
inadequate for its modeling and monitoring. Consequently, the p chart is not suitable for
such a situation. In this case, the quality characteristic has to be necessarily modeled using
continuous distributions defined in the standard unit interval (0,1). The first step in this
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direction was provided by Sant’Anna and ten Caten (2012), who proposed a control chart
to monitor rates and proportions based on the two-parameter beta distribution in (1). More
recently, Lima-Filho and Bayer (2021) introduced a control chart for monitoring rates and
proportions based on the two-parameter Kw distribution in (2). Obviously, due to the great
flexibility and applicability of the beta and Kw distributions in several areas, the construction
of control charts using these distributions becomes natural. It is worth stressing that the
control limits obtained from the beta and Kw distributions will always belong to the unit
interval (0, 1), once these distributions are defined in this interval.

It is evident that the beta and Kw control charts have their merits and, hence, can be
applied for monitoring rates and proportions in several areas. As we will later, the use of
these charts depends on estimates of the unknown parameters, that is, their control limits
depend on unknown parameters and they have to be replaced by estimates obtained from the
data in practical applications. The maximum likelihood (ML) procedure is widely used in
estimating these control charts, mainly due to the good properties of the ML estimates, such
as consistency, asymptotic efficiency, and invariance principle. The ML estimates of the beta
and Kw model parameters are obtained by solving nonlinear equations, which means that the
ML estimates cannot be expressed in closed form, and so numerical methods need to be used
to obtain them numerically as, for example, the Newton-Raphson algorithm. In this paper,
similar to the works of Sant’Anna and ten Caten (2012) and Lima-Filho and Bayer (2021),
we shall propose a new control chart for monitoring rates and proportions based on the two-
parameter STSP distribution in (3). Besides the great flexibility of the STSP distribution
mentioned earlier, the ML estimates of the STSP model parameters have closed form and,
consequently, no numerical method is need to obtain them in practice.

It is worth emphasizing that there exist several real-world applications where the STSP, beta,
and Kw control charts can be considered: (i) in a manufacturing process of frozen orange
juice concentrate, where the percentage of nonconforming units is monitored (Montgomery
2019); (ii) in the study of contaminated peanuts by toxic substances, where the proportion
of non-contaminated peanuts is monitored (Draper and Smith 1998); (iii) in a manufacturing
process of nitric acid by ammonia oxidation collected, where the proportion of ammonia
unconverted is monitored (Brownlee 1965); (iv) in the monitoring of the relative humidity
given in terms of percentage, being the ratio of the partial pressure of water to the equilibrium
vapor pressure of water (Lima-Filho and Bayer 2021); and (v) in a radial tire manufacturing
process of a multinational company of rubber products, where the proportion of unconverted
mass is monitored, being defined by the rate between the volume of raw material that was
not converted into product and the total volume (Bayer, Tondolo, and Muller 2018); among
others. The existence of real-world applications where these control charts can be applied
enhances the practical significance of this paper.

The remaining of the paper is organized as follows. Section 2 presents a review of the beta
and Kw control charts, and the estimation of the corresponding control limits of these charts
is also briefly reviewed. We introduce the STSP control chart and its control limits estima-
tion procedure considering individual measurements in Section 3. Monte Carlo simulation
experiments to evaluate and compare the performance of the STSP control chart with the
beta and Kw control charts are presented in Section 4. An empirical application to real data
is presented and discussed in Section 5 for illustrative purposes. The paper closes up with
some concluding remarks in Section 6.
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2. Beta and Kw control charts

Here, we briefly review the beta and Kw control charts. Detailed descriptions of these charts
are provided in Sant’Anna and ten Caten (2012) and Lima-Filho and Bayer (2021).

2.1. Beta control chart

Let Xp be a random variable beta-distributed, i.e. Xp ~ Beta(\,£). The mean and variance
of Xp are

A 9 B AE
At o5 = VAR(Xp) = CTePO et D)

Let Qp(w; A, §) denote the quantile function of the beta distribution, where w € (0,1). Given
an in-control process and a false alarm probability, say a € (0,1), the lower control limit
(LCL), central line (CL) and upper control limit (UCL) of the beta control chart can be
expressed as LCLg = Qp(a/2;\,§), CLg = A/(A + &) and UCLg = Qp(l — a/2; ), ),
respectively, where Pro(LCLg < Xp < UCLp) = 1 — « and, for simplicity, we consider
Pro(Xg < LCLp) = a/2 and Pro(Xp > UCLp) = «/2; see Lima-Filho and Bayer (2021).
Also, Pro(-) means that the probability is calculated under the in-control process parameters,
and CL represents the mean value of the quality characteristic based on the in-control state.

=E(Xp) =

In practical applications, the parameters A and £ are unknown and have to be estimated from
the data at hand. The ML estimates A and 5 of A and &, respectively, are widely used in this
case. Thus, we have the corresponding ML estimates

L/C\LB = QB(OZ/Q;X7§>7
GEB == %\,
A+§

[ﬁB = QB(l - a/Q;X,g).

Let z1,22,...,zy, be an observed sample of size n from Xp ~ Beta(\,£). The ML estimates
A and £ are obtained as solutions of the following nonlinear system of equations:

{Z?l In(z;) = n[p(A) = YA+ )],

P In(1 — 27) = n[(&) — (3 + ),
where (+) is the digamma function. The ML estimates X and € have no closed form and,
hence, a numerical method needs to be used to obtain them numerically, such as the Newton-
Raphson algorithm. There are several functions in the R programming language (R Core
Team 2023) to compute the ML estimates of the beta distribution parameters. However, the
R functions consider the above nonlinear system of equations to obtain A and £ numerically.
Evidently, there is no guarantee of converge of the iteration process to compute A and £ in
practice.

2.2. Kw control chart

The mean and variance of Xky, ~ Kw(7,d) are

1
HKw = E(XKW) = ’}/B (1 + 5, (5) ,

1 2
0%, = VAR(Xky) = 7B (1 + 35) - [7B (1 + 7,5)} .

Let Qgw(w;7,0) be the Kw quantile function, for w € (0,1). From Lima-Filho and Bayer
(2021), the LCL, CL and UCL of the Kw control chart are LCLky, = Qxw(a/2;7,6), CLkyw =
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vB(1+ 1/v,6) and UCLky = Qkw(l — a/2;7,0), respectively, where Pro(LCLKkyw < Xkw <
UCLKW) =1- «, PI"()(XKW < LCLKW) = 05/2 and PI"()(XKW > UCLKW) = 04/2.

In practice, after obtaining the ML estimates 4 and 5 of ~ and 4, respectively, by using the
ML procedure, we obtain the following ML estimates

LCLky = QKW(Oé/2

(/jIKW = ( = >
A
UCLKW - QKW( Oé

Let x1,x9,...,x, denote an observed sample of size n from Xgy ~ Kw(y,0). The ML
estimates 4 and § are obtained as solutions of the following nonlinear system of equations:

o~
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From the above equations, we have that 5 = —n/> " In(1 — ] ), and the ML estimate 7
comes from the solution of the nonlinear equation

(%)

% 1+T1(7) +

where Ty(7) = (1/m) 20y In(u)/(1 = wi), To(y) = (1/n) Sy wi In(a) /(1 — wi), Ta(7) =
(1/n) > In(1—y;), and y; = 2] for i = 1,2,...,n. The ML estimate J cannot be expressed
in closed form and, hence, it has to be computed numerically via iterative techniques such
as the Newton-Raphson algorithm. The R programming language also has some functions to
find numerically the ML estimates of the Kw distribution parameters. In practice, similar to
the beta distribution, there is no guarantee that the iteration process to compute 7 and 5
numerically will converge.

3. STSP control chart

In the following, we introduce a new control chart to monitor rates and proportions based
on the STSP distribution. Let X,pk be a random variable STSP-distributed, say Xypx ~
STSP(6,n). Its cumulative distribution function has the form

n
9(?) , 0<z<9,
1—z\"

Forel) = 1—(1—0)(1_9), <ax<l.

The corresponding quantile function can be expressed in the form

9(77—1)/77&}1/77’ 0 < w S 97
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where w € (0,1). It is evident that the cumulative distribution function as well as the quantile
function are very simple and need no special functions, which compares extremely favorably
in terms of simplicity with the two-parameter beta distribution. For example, the cumulative
distribution function of the beta distribution corresponds to an incomplete beta function
ratio, while its quantile function the inverse thereof. We have that

(n—1f+1 ._ _ =2 =1 —9)
?, U\QfDK = VAR(XVDK) - (,'7 + 2)(,'7 + 1)2

ok = E(Xypk) =
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We can express the mean in the form

L, =1, 1

= + +
HvDK n+1 n+1 n+1

Y

which corresponds to a weighted average of the lower bound 0, the parameter 6, and upper
bound 1. Also, the parameter 1 determines the weights of the above weighted average. van
Dorp and Kotz (2002, § 2.1) also provided interesting relationships between the mean and the
parameters 6 and 7, which renders the STSP distribution of intuitive transparency. In short,
the two-parameter STSP family of distributions is fairly tractable and, hence, it becomes an
interesting alternative to the well-known beta and Kw distributions for modeling rates and
proportions. Consequently, the use of this distribution in a control chart setup to monitor
rates and proportions becomes natural.

The control limits of the STSP control chart are obtained in a similar way as the control
limits of the beta and Kw control charts. Given an in-control process and a false alarm
probability «, we have that Pro(LCLypx < Xypx < UCLypk) = 1 — a. We also consider
for simplicity that PrO(XvDK < LCLVDK) = a/2 and PrO(XvDK > UCLVDK) = a/2. Hence,
the LCL, CL and UCL of the STSP control chart are given by LCLypx = Qvpx(a/2;6,n),
CLypk = [(n—1)0+1]/(n+1) and UCLypk = Qvpk(1—a/2;6,n), respectively. It is clear that
the control limits depend also on the unknown parameters 6 and 7, and the ML procedure
will be considered to estimate these parameters in practice. Let z() < z(g) < -+ < 2y
be the corresponding order statistics of a sample x1,xa,...,x, of size n from a STSP(6,n)
distribution. The ML estimates 6 and 7 of 8 and 7, respectively, were obtained by van Dorp
and Kotz (2002) and are given by

f=ux 7 L
IR O]
where 7 = argmax ey 5, 3 M(s), and
e gy
i1 T(s) s 1 — Z(s

van Dorp and Kotz (2002, § 3) provided a simple procedure to compute 9 and 7. It is evident
that the ML estimate 0 is given by a specific order statistic, and the ML estimate 77 has a simple
analytical expression. Consequently, it is not necessary to consider nonlinear optimization
algorithms to obtain these ML estimates in practice, as well as to estimate the corresponding
control limits. Evidently, this tractability advantage of the STSP distribution regarding
the ML estimates of the parameters 6 and 7 is indeed of immense practical significance in
statistics. The ML estimates of the control limits are

LCLypk = Quox (@/2;0,7),
H—1)0+1
n+1
UCLypk = Qo (1 — a/2;0,7).

éiVDK =

)

If the points z; (for all ¢ = 1,2,...,n) are within the two control limits (L/C\LVDK and

UCLypk), the process is considered to be in-control and so no action is needed in such a
case. On the other hand, a point that is outside of the control limits revals out-of-control
conditions and, therefore, it is necessary to consider corrective actions in the process.

4. Control chart performance

Here, we consider Monte Carlo simulation experiments to evaluate and compare the perfor-
mance the STSP control chart for individual observations with the beta and Kw control charts.

27
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To do so, we consider the average run length (ARL), which provides information on the aver-
age number of events until a detection of an out-of-control condition (Montgomery 2019). The
ARL can be used from two perspectives (Montgomery 2019), namely: ARLy and ARL;, where
ARLg is considered to evaluate processes under control, and ARLj is considered to evaluate
processes out-of-control. We have that ARLy = 1/a, where & = 1 — Pro(LCL < X < UCL)
is the probability of an out-of-control point be detected, given that the process is under
control (i.e. the probability of a false alarm occurring). Also, ARL; = 1/(1 — /), where
B = Pri(LCL < X < UCL) is the probability of an out-of-control point be detected, once the
process is, indeed, out-of-control, and Prq(-) means that the probability is calculated under
the out-of-control process. The numerical evaluation of the STSP, beta and Kw charts was
carried out by considering a = 0.01, and so for a process in-control we expect ARLy = 100.
It is worth mentioning that other values for a are also commonly considered in the literature
for evaluating control charts. The choice of « is related directly to the interval length given
by the control limits of the chart; that is, the smaller the value of o, the greater the interval
length. There is no standard value for «, but a = 0.01 and o = 0.005 are commonly con-
sidered in the literature; see, for example, Lima-Filho, Bayer, and da Silva (2021), Hossain
and Riaz (2021) and Sagrillo, Guerra, Machado, and Bayer (2023), among others. In what
follows, we evaluate and compare the performance of the STSP, beta and Kw control charts
in terms of ARL (ARLgp and ARL;).

For the data-generating process, we investigate three different scenarios: the STSP distribu-
tion as the true data-generating process, the beta distribution as the true data-generating
process, and the Kw distribution as the true data-generating process. Under these scenar-
ios, different degrees of variability and kurtosis are considered, as well as symmetric and
asymmetric PDFs. We consider 15000 Monte Carlo replications with 1000 occurrences of
the STSP(6,n), Beta(), &) and Kw(v,d) distributions in each Monte Carlo replication. All
simulations were performed considering the R programming language (R Core Team 2023).
We consider the ML procedure to estimate the unknown parameters of the STSP, beta and
Kw distributions in each Monte Carlo replication. Comparisons among the STSP, beta, and
Kw control charts were carried out considering in-control and out-of-control simulations. A
control chart with better performance corresponds to the one that most closely approximates
to the nominal level in terms of ARLg, but in a case of out-of-control low values of ARL; is
preferable. To evaluate the ARL;, we introduce an e change in the process (u1 = uo + €),
on what po is the in-control mean of the random variable considered (STSP, beta or Kw)
and p1 = po + € is the out-of-control mean of the random variable considered (STSP, beta or
Kw). Since ¢ is the induced change in the process, when £ = 0, the process is in-control. The
control charts limits were adjusted to obtain ARLg equals to the specified nominal value of
100. The calibration of the control charts with the aim of equating the ARLg is suggested in
the literature; see, for example, Moraes, Oliveira, Quinino, and Duczmal (2014).

Table 1 lists the simulation results for the in-control process. Under the STSP true data-
generating process, it is evident that the best performance corresponds to the STSP control
chart, since the empirical values of ARLg are very close to the respective nominal value 100
in all cases, while the beta and Kw control charts presented poor results. For example, when
the true data-generating process is given by STSP(0 = 0.5, = 4.0), the relative distortion of
the empirical ARLg to the nominal value are 47.8% and 42.8% for the beta and Kw control
charts, respectively; that is, the beta and Kw control charts obtained (approximately) averages
of false alarms every 52 and 57 samples, respectively, thus compromising the performance of
these control charts when the true data-generating process comes from the STSP distribution.
On the other hand, under the beta and Kw true data-generating processes, the STSP control
chart does not deliver good results. Interestingly, the beta and Kw control charts presented
a similar performance in terms of ARLg in some cases considered, regardless of the true
data-generating process. The similarity between the beta and Kw control charts was briefly
reported in Lima-Filho and Bayer (2021) and confirmed by the simulations in Table 1.

Figure 1 displays the results of ARL; for the STSP, beta, and Kw control charts under the
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Table 1: Performance of the STSP, beta and Kw control charts: ARL

STSP true data-generating process

Scenario STSP  Beta Kw
STSP(# =0.25,7=2.0) 98.54 78.60 82.29
STSP(6 = 0.5,n = 4.0) 98.66 52.23  57.15
STSP(6 = 0.25,n =1.5) 98.28 89.20 91.11
STSP(6 = 0.75,n =2.5) 98.63 72.74  74.97
STSP(6 = 0.3,n = 4.0) 98.78 56.55  59.23
Beta true data-generating process

Scenario STSP  Beta Kw
Beta(A = 3.0,£ = 3.0) 182.3 100.29 103.95
Beta(A = 5.2, = 2.0) 63.45 98.73 103.23
Beta(A = 2.2, =5.0) 63.45 98.73 101.96
Beta(A = 7.5, = 2.5) 71.05 97.74 104.15
Beta(A = 3.2, =7.0) 71.05  97.74  99.29
Kw true data-generating process

Scenario STSP  Beta Kw

Kw(y = 22,0 = 3.0) 1302 9390 98.75
Kw(y = 2.0,6 = 5.0) 7750 9226 98.52
Kw(y =5.2,6 = 3.0) 70.66 90.84 98.75
Kw(y=1.5,6 = 2.5) 86.82 9577  98.74
Kw(y =2.5,6 = 2.5) 1454  93.37  98.74

STSP true data-generating process. Note that there is no uniform superiority of a control
chart in relation to another one in terms of ARLj; that is, in some cases the ARL; is smaller
for the STSP control chart, smaller for the beta control chart, or smaller for the Kw control
chart. (ARL; curves for the STSP, beta, and Kw control charts under the beta and Kw
true data-generating processes showed a similar pattern. To save space, the results are not
shown.) Basically, the numerical results regarding ARL; reveal that there is no uniform
superiority of one control chart with respect to the others, thus providing to practitioners
the importance of considering an appropriated distribution for monitoring variables that are
rates and proportions to reduce false alarms and to ensure the power of the control chart.

In summary, the Monte Carlo simulation results provide important information. The perfor-
mance of the beta and Kw control charts can be very poor when the data-generating process
comes from the two-parameter STSP family of distributions. These results also reveal the
importance of considering adequate distributions for rates and proportions to reduce false
alarms and to ensure the chart’s power to detect changes when the quality characteristic of
interest belongs to the unit interval (0,1). In practice, however, the true data-generating
process is unknown. Consequently, it is quite important to select a distribution that produces
the best fit for the real data at hand before applying a control chart based on the chosen dis-
tribution. Assuming that the process is in control, the practitioner can proceed as follows: (i)
Select the possible candidate distributions for rates and proportions as, for instance, the beta,
Kw and STSP distributions; (ii) By using the ML method, estimate the unknown parame-
ters of the distributions; (iii) Compute, for example, the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), and the nonparametric Kolmogorov—Smirnov (KS)
statistic of all fitted distributions to the real data at hand; (iv) Select the distribution that
delivered the lowest values of AIC, BIC and KS; (v) Assuming that the choice was adequate,
compute the control limits and start monitoring the process.
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Figure 1: ARL; curves to evaluate the STSP, beta and Kw control charts for ARLy = 100.
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5. Real data illustration

In the following, we consider the STSP control chart in a real data application for illustrative
purposes. We also consider the beta and Kw control charts for the sake of comparison.
The real data used here correspond to a study of contaminated peanut by toxic substances
in 34 batches of 120 pounds (Sant’Anna and ten Caten 2012). We have that the quality
characteristic monitored corresponds to the proportion of non-contaminated peanuts, which
is defined by the ratio between the volume of non-conforming raw material and the total
volume produced; that is, the variable monitored is the ratio between continuous numbers.
The data are listed in Table 2. For the STSP, beta and Kw control charts application, the
real dataset was split into two groups, namely: the first 20 observations were considered only
for control limits estimation (phase I), and the remaining 14 observations were used in phase
IT (monitoring phase).

Table 2: Proportion of non-contaminated peanuts

0971 0979 0.982 0.971 0.957 0.961 0.956 0.972 0.889
0.961 0.982 0.975 0.942 0.932 0.908 0.970 0.985 0.933
0.858 0.987 0.958 0.909 0.859 0.863 0.811 0.877 0.798
0.855 0.788 0.821 0.830 0.718 0.642

It is evident that the STSP(6,n), Beta(\, §) and Kw(y, d) distributions can be used to model
the variable monitored. The ML estimates of the unknown parameters based on the first 20
observations (phase I) are listed in Table 3. The values of AIC, BIC and KS of the fitted dis-
tributions are also presented in this table. According to the values of the selection criteria, the
STSP distribution outperforms the beta and Kw distributions and, hence, should be chosen
to model these data. The p-values of the KS test statistic are 0.986 (STSP distribution), 0.681
(beta distribution) and 0.681 (Kw distribution), which unquestionably favors the STSP dis-
tribution. Note also that the AIC, BIC and KS (p-value) of the beta and Kw distributions are
quite near, which means that these two distributions are equivalent to model these data. The
STSP distribution, on the other hand, provides a clear improvement over these distributions
in the modeling of these data according to these selection criteria. Following the procedure
described at the end of Section 4, the STSP distribution was the most appropriate (smaller
AIC, BIC and KS values), and so the corresponding STSP control chart seems adequate to
monitor these data. In addition, the histogram of the data and the estimated STSP, beta
and Kw PDFs are displayed in Figure 2, which indicates that the STSP distribution yields a
good fit to the data.

Table 3: ML estimates, and selection criteria

Distribution ML estimates AIC BIC KS (p-value
STSP(6,n7) 6 =0.987, 1 =28472 —-91.362 —89.371 0.102(0.986
Beta(\, €) X =46.656, £ = 2.280 —85.456 —83.464 0.161 (0.681
Kw(~,d) 4 =37.078,0 =2.765 —86.103 —84.111 0.160 (0.681

~— — — [~~—

The STSP, beta and Kw control charts are displayed in Figure 3. We consider a type I error
probability of & = 0.01 to yield an ARLg = 100. Note that the control limits of the beta and
Kw control charts are near. Also, the control charts do not trigger an alarm in phase I, and so
any contradictions against the models are not obtained in this phase. In phase II (monitoring
phase), the beta and Kw control charts indicated an out-of-control point at sample 5. On
the other hand, the STSP control chart indicated an out-of-control point at sample 12. It is
noteworthy that these results are in agreement with the Monte Carlo results presented in the
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Figure 2: Histogram and estimated STSP, beta and Kw PDF’s

previous section, where was verified that the beta and Kw control charts trigger a false alarm
much earlier than the STSP control chart when the true data-generating process comes from
the STSP distribution, that is, a lower ARLg indicates accruing more false alarms. Finally,
since the STSP distribution is superior to the beta and Kw distributions in terms of model
fitting, the beta and Kw control charts have to be used with some care by practitioners

to avoid identifying an out-of-control point earlier, i.e. to prevent using equivocated control
limits.

o
©
Il

o
©
Il

phase | : phase Il

proportion of non-contaminated peanuts

0.7 +

—— STSP control limits
- - - beta control limits
Kw control limits ;
T T T T I T T
0 5 10 15 20 25 30 35

Figure 3: STSP, beta and Kw control charts for the proportion of non-contaminated peanuts

6. Concluding remarks

In this paper, we formally propose a new control chart for rates and proportions (not obtained
from Bernoulli experiments) restricted to the range (0, 1) based on the two-parameter standard
two-sided power distribution. This distribution, besides being very flexible in modeling rates
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and proportions, is fairly tractable. The performance of the new control chart was evaluated
and compared with the two most traditional control charts using Monte Carlo simulation
experiments, namely: beta and Kumaraswamy control charts. The numerical results were
quite promising and revealed that the proposed control chart is superior to the beta and
Kumaraswamy control charts in terms of ARL, indicating that the use of equivocated control
limits may provoke anticipation of false alarms based on the beta and Kumaraswamy control
charts when the true data-generating process comes from the two-parameter standard two-
sided power distribution. A real data application was also considered to show the flexibility
of the new control chart in practice. Based on the results found, we verified that is quite
important to identify which distribution fits the data better, and so to use its respective
control limits in monitoring the quality characteristic of interest.

Finally, an anonymous reviewer has indicated an interesting topic of future research, namely:
control charts for monitoring fractions and proportions if control variables (covariates) affect
the process; that is, regression control charts to monitor variables of interest that are related
to control variables. There are interesting proposals in the literature and the reader is referred
to Bayer et al. (2018) and Ali, Asghar, and Shah (2024), among others. So, one can introduce
a regression control chart based on the two-parameter standard two-sided power distribution.
An in-depth investigation of this is beyond the scope of the current paper but certainly
corresponds to a very interesting topic for future research.
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