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Abstract

Analysis of continuous non-negative time series data using multiplicative models is
a growing area of research. When the variable of interest is non-negative, often some
methodology based on transformation was followed in the literature. Even though a useful
class of models known as product autoregressive models was appeared in the literature long
back, the further advancements happened only in the last decade. Through subsequent
developments, it was shown that the product form of an additive autoregressive model is
preferable to its linear counterpart when non-negativity has to be taken care. This paper
aims to provide an exhaustive review of theoretical and empirical works conducted on
product autoregressive models in the context of non-linear and non-Gaussian time series
modelling. The notable properties, estimation methods and applications of these models
are discussed followed by a description of some possible future research avenues on this
area.

Keywords: autoregressive models, non-Gaussian time series, non-linear time series, product
autoregressive models.

1. Introduction
Time series analysis is one of the most widely used methodology in many applied fields of study
such as finance, economics, medicine, public health, environmental studies etc. The celebrated
Box-Jenkins methodology (Box and Jenkins (1976)) paved the modern theory and methods
for analysing time series data. This methodology mainly focused on developing time series
models suitable for real valued processes. In particular, it is based on the assumption that
such series are realisations of linear Gaussian processes. However, most of the time series that
occur in real situations have the tendency to follow non-linearity and the series are generated
by non-Gaussian processes. As a result, a large number of non-Gaussian autoregressive (AR)
type time series models are introduced in the literature. These models have played a significant
role in modelling the dependence structure in the study of Gaussian and non-Gaussian real-
valued time series (Balakrishna (2021)). One speciality of these models is that they assume
an additive structure of the form Xt = µt + εt, where Xt is the time series observed at time
point t, µt is the conditional mean of Xt conditional on the past values of Xt and εt is the
error term which satisfies some conditions such as zero mean and uncorrelatedness (Box and
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Jenkins (1976)).
Time series of non-negative random variables arise in various applications and various ap-
proaches are available to deal with such dependent outcomes. Autoregressive models based
on non-negative marginal distributions were developed and studied. For example, several non-
Gaussian additive AR models have been introduced by different researchers over the last four
decades, including Gaver and Lewis (1980) and Lawrance and Lewis (1982). The properties
of other Markov sequences with non-Gaussian positive marginals such as mixed exponen-
tial (Lawrance (1980)), gamma (Sim (1990); Adke and Balakrishna (1992)), Mittag-Leffler
(Jayakumar and Pillai (1993); Jayakumar (2003)), inverse Gaussian (Abraham and Balakr-
ishna (1999)), approximated beta distribution (Popović (2010); Popović, Pogány, and Nadara-
jah (2010)), Lindley distribution (Bakouch and Popović (2016)) and Birnbaum-Sunders dis-
tribution (Rahul, Balakrishnan, and Balakrishna (2018)) have also been discussed in the
literature. For a comprehensive review of non-Gaussian additive autoregressive time series
models and their applications, see Balakrishna (2021) and the references cited therein.
As discussed by Engle (2002), the availability of financial data at a very fine time scale such as
durations between trades or quotes, number of trades and volumes, number of buys and sells
within (possibly fine) intervals, volatility measures derived from ultra–high frequency data
etc., motivated researchers to delve with non-negative time series. Moreover, while modelling
point processes with dependent inter-arrival times, Markov sequences on non-negative support
play an important role. Recently, attention has been devoted to develop models which are
able to directly describe the dynamics of the non-negative time series. An important class
of models namely multiplicative error models (MEM) of the form Xt = µtεt, where Xt and
µt are as mentioned before, and εt is the independent and identically distributed (i.i.d) error
term which satisfies E(εt) = 1, was introduced and widely used in literature (Brownlees,
Cipollini, and Gallo (2012); Cipollini and Gallo (2022)). Different specifications for µt results
in different multiplicative error models. Even though this type of models encompasses many of
the volatility and duration models, they are not specifically intended to be useful for analysing
the autocorrelation structure of the non-negative time series.
In the context of exponential smoothing, Akram, Hyndman, and Ord (2009) studied the im-
portance of developing smoothing methods exclusively for non-negative data. They demon-
strated the advantages of using the non-Gaussian error model for the positive random variable
in a multiplicative model over the methods using the log-transformed model. In a search for
direct approach of using ARMA models for non-negative data, Tsai and Chan (2007) discussed
the non-negative ARMA process. Recently, Svetunkov and Boylan (2024) demonstrated the
need for designing pure multiplicative Exponential Smoothing (ETS) models for non-negative
time series. They showed how the appropriate pure multiplicative ETS model with the most
fitting non negative distribution can improve the forecasting ability compared to its additive
model.
Despite of all these recent developments for modelling non negative time series, an earlier
study of Mckenzie (1982) was not gained much attention. He introduced a class of models,
referred to as product autoregressive (PAR) models, with a product structure similar to MEM
expression that generates a Markov sequence of non-negative random variables with gamma
marginal distribution. Specifically, Mckenzie (1982) introduced a MEM model with

µt = Xα
t−1; 0 < α < 1.

This study examined the autocorrelation structure of both the linear AR and PAR models
with gamma marginal and found that both have the same autocorrelation structure. The
novelty of Mckenzie (1982) sets out new avenues to pursuit research on models for non-negative
time series data. That is, when the time series variables of interest are non-negative, one can
prefer the product form of an autoregressive model to its linear counterpart. Naturally one
could follow an approach which is to model the logarithm of the non-negative variable and then
revert back by applying exponential transformation. Such transformations sometimes make
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little difference to the point forecasts but have a large effect on prediction intervals (Hyndman
and Athanasopoulos (2018)). Mckenzie (1982) was the first such attempt to develop direct
(without using transformation) time series model exclusively for analysing autocorrelation
structure of a non-negative time series data.
The novelty of Mckenzie (1982) sets out new problems and lines of research. After a long
period, Balakrishna and Shiji (2010) further developed and discussed the properties of a new
Markovian Weibull sequence generated using PAR models. Furthermore, Balakrishna and
Lawrance (2012) and Abraham and Balakrishna (2012) discussed the theoretical development
of general PAR models to describe non-negative random variables with various marginal dis-
tributions, including exponential, Weibull, gamma and log-normal. Jose and Thomas (2012)
proposed a first-order PAR model having log-Laplace marginal and discussed its correlation
structure. Bakouch, Ristić, Sandhya, and Satheesh (2013) discussed the operation of ran-
dom products of random variables and the notions of infinite divisibility and stability of
distributions under this operation. This description enabled Bakouch et al. (2013) to discuss
first-order PAR models with random coefficients based on this operation. We discuss such
models in Section 4.
As a by-product of the research on PAR models, Balakrishna and Shiji (2014) obtained a class
of absolutely continuous bivariate exponential distributions using the product form of a first-
order AR model. More theoretical results are then appeared on PAR models, for instance,
Moriña, Puig, and Valero (2015) characterised the distribution of innovations in an AR(1)
model according to the autocorrelation function of its exponentiated series. Balakrishna
and Muhammed (2017) proposed the combined estimating function approach to estimate the
parameters of PAR(1) models with Weibull and gamma marginal distributions. In a recent
study, Muhammed Anvar, Balakrishna, and Abraham (2019) proposed a stationary PAR
model with generalised gamma marginal distribution to generate the volatility series in the
analysis of stochastic volatility process.
Similar to the multiplicative structure in the PAR models but different from MEM type
models, another class of models were also appeared in the literature. We briefly discuss such
models. We call this model as Type -II Product autoregressive models. The dynamics in this
type of PAR model is given by

Xt = Xt−1
γ εt,

where this type of models was used to describe the time evolution of the latent rate process
in a Poisson process (Soyer, Aktekin, and Kim (2016)). Here, the error term εt is assumed to
satisfy the condition

εt|Ft−1 ∼ β (γαt−1, (1 − γ) αt−1) ; αt−1 > 0, 0 < γ < 1,

where Ft−1 is the information set available up to the time t − 1 and β (a, b) denotes the beta
distribution with parameters a and b . The statistical properties of this PAR models are
discussed in Section 4.
The objective of this study is to briefly introduce PAR models in the context of non-linear
and non-Gaussian time series modelling and review the theoretical and empirical work that
has been done on PAR models since Mckenzie (1982). This study aims to combine a variety
of such PAR models to analyse non-negative time series data. The plan is to present an
exhaustive review of PAR models and provide their notable properties, estimation methods
and applications. The remainder of this paper is organised as follows: Section 2 discusses the
construction of PAR model and its basic properties. Section 3 provides a systematic review
of PAR models with specified marginal distributions and functional forms of their innovation
random variables. The random coefficient PAR model and Type –II PAR models and their
properties are presented in Section 4. The methods for estimating the model parameters are
discussed in Section 5. The applications of PAR models are discussed in Section 6. Section



4 Review of Product Autoregressive Models

7 provides the numerical illustration of the relevance and applications of the PAR models.
Finally, Section 8 concludes the study.

2. Construction and general properties of PAR models
A classical linear autoregressive model of order one (denoted by AR(1)) states that the process
{Xt} is defined by the difference equation

Xt = φXt−1 + εt, (1)

where |φ| < 1 and the innovation process {εt} are white noise with mean zero and variance σ2.
If {εt} is a sequence of uncorrelated normal random variables, then {Xt} will be a Gaussian
process. Granger and Newbold (1976) studied in detail the transformation T (x) = ex, because
a large range of time series of econometric indicators are analysed in the logarithmic scale,
although inference on the original series is the main concern. The study of the time series of
non-negative random variables of the form Zt = eXt , where Xt is a general additive AR(1)
with non-Gaussian innovations, was first discussed by Mckenzie (1982).
In this section, we study a class of models proposed by Mckenzie (1982) as a multiplicative
version of an additive autoregressive model to generate a sequence of non-negative random
variables. Let {ηt} be a sequence of independent and identically distributed positive random
variables, and assume that Z0 is independent of ηt for t = 1, 2, .... For 0 ≤ α < 1, define

Zt = Zα
t−1ηt ; t = 1, 2, ..., (2)

where {Zt} is a stationary Markov sequence, and the model is referred to as the PAR model
of order one (PAR(1)). For a detailed analysis of (2), one needs to study the distributional
aspects of {ηt} for a specified marginal distribution of Zt and vice versa.
We obtain the innovation distributions for the specified marginal of Zt using the transforma-
tion method. The logarithmic transformation of (2) yields the following equation

log Zt = α log Zt−1 + log ηt , 0 ≤ α < 1, (3)

which is the linear AR(1) model in log Zt. In terms of the moment generating function (MGF),
we can express equation (3) as

ϕlog η (s) = ϕlog Z (s)/ϕlog Z (αs), (4)

where ϕZ (s) = E (exp (sZ)) is the MGF of Z, which is assumed to exist. Thus, model (2)
defines a stationary sequence {Zt} if the right-hand side of (4) is a proper MGF for every
α ∈ (0, 1). This occurs if log Zt is a self-decomposable random variable. The MGF of log Zt

can be expressed as the Mellin transform (MT) of Zt, defined by MZ (s) = E (Zs
t ) , s ≥ 0.

Thus, we can use MT to identify the innovation distribution for PAR(1) models. Equation
(4) now can be written in terms of MT as

Mη (s) = MZ (s)/MZ (αs). (5)

If ηt admits a probability density function fη (.), then its one-step transition density of {Zt}
can be expressed as

f (zt|zt−1) = 1
zα

t−1
fη
(
zt/zα

t−1
)

. (6)

Conditional on past observations, the mean and variance of Zt in (2) are given by
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E (Zt|Zt−1) = µηZα
t−1 , V (Zt|Zt−1) = σ2

ηZ2α
t−1, (7)

where µη and σ2
η are respectively denote the mean and variance of ηt.

The autocorrelation function (ACF) of PAR(1) sequence {Zt} is given by (cf; Mckenzie (1982))

ρZt (k) =
E (Zt)

{
E
(
Zαk+1

t−k

)
− E

(
Zαk

t−k

)
E (Zt−k)

}
E
(
Zαk

t−k

)
V (Zt)

. (8)

From (8), ACF depends only on the moments of the stationary marginal distribution of Zt.
Moriña et al. (2015) further showed that the ACF of PAR(1) model characterizes the innova-
tion random variable of an additive AR(1) model. That is, under some regularity conditions,
ACF of the PAR(1) model can be expressed as a function of MGF of innovation of linear
AR(1) model and it uniquely determines. Specifically, suppose that the distribution of the
innovations εt in (1) are such that the MGF of Xt exists and the marginal distribution of its
exponentiated series exists, with the ACF ρx (k) satisfying

lim
k→∞

g (k + 1) − g (k) = c ≥ 0,

where g (x) = log
(

ϕx(2)−ϕx(1)2

ϕx(1) ρx (k) + ϕx (1)
)
, and ϕx(t) is the MGF of Xt, then the distribu-

tion of εt is the unique one having the ACF structure same as that of Xt. This characterization
can be thought of as a generalization of Mckenzie (1982) result. As Mckenzie (1982) has es-
tablished the unique relationship between ACF of additive and product autoregressions with
gamma marginal where as Moriña et al. (2015) emphasised the unique connection between
the ACF of product form (transform) and distribution of innovations in additive models.

3. PAR(1) models with specified marginal distributions
In this section, we review and obtain the explicit form of the innovations for the PAR (1) mod-
els with specified stationary marginal distributions. Mckenzie (1982) introduced the PAR(1)
model to define a stationary sequence of gamma random variables and proved a characteri-
sation result that the gamma distribution is the only one, among the self-decomposable dis-
tributions, for which the PAR(1) process has the Markovian correlation structure. Mckenzie
(1982) assumed that Zt has a gamma distribution (Gamma(θ, λ)) with a probability density
function (pdf)

f (z) = 1
Γ (θ) exp (−λz) λθzθ−1 , z ≥ 0, λ > 0, θ > 0. (9)

Mckenzie (1982) obtains the distribution of innovations for an exponential PAR(1) model
(θ = 1, λ = 1 in the above discussion) and shows that it is distributed as S−α, where S is
the positive stable random variable with Laplace transform ϕS (s) = exp (−sα). However, in
the gamma case, an explicit form of the innovation distribution was not available, and later,
Balakrishna and Lawrance (2012) obtained an approximate distribution with good accuracy.
Balakrishna and Shiji (2010) discussed the properties of a Markov sequence of Weibull random
variables generated using the PAR model. They focused on the PAR(1) model with Weibull
marginal distribution

f (z) = λ θ zθ−1 exp
(
−λzθ

)
, z ≥ 0, λ > 0, θ > 0. (10)

As the innovation random variable ηt does not possess a closed-form density, Balakrishna and
Shiji (2010) proposed an approximate approach for studying the statistical properties of the
model.
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Balakrishna and Lawrance (2012) discussed the PAR(1) model with gamma marginal dis-
tribution by approximating the innovation density. They also identified additional PAR(1)
models with specified marginal distributions, which admit explicit solutions for {ηt} in model
(2). Balakrishna and Lawrance (2012) proved that the random variable Zt defined by (2)
follows a Weibull distribution denoted by Weibull(θ, λ) with pdf (10) if the distribution of
the corresponding innovations ηt is given by that of

(
λ−(1−α)S−α

)1/θ
, where S has a positive

stable distribution, with Laplace transform ϕS (s) = exp (−sα).
Balakrishna and Lawrance (2012) discussed a simple PAR(1) model obtained by exponenti-
ating a linear Gaussian AR(1) model. If Xt in (1) follows a normal distribution with mean µ
and variance σ2, then Zt = eXt follows a log-normal

(
µ, σ2) distribution with pdf

f (z) = 1
zσ

√
2π

exp
(

−(ln (z) − µ)2

2σ2

)
, z > 0, µ > 0, σ > 0. (11)

Then, the corresponding innovation random variable ηt follows a log-normal distribution with
parameters

(
(1 − α) µ,

(
1 − α2)σ2).

Balakrishna and Lawrance (2012) also discussed the development of PAR(1) model with
exponential marginal distribution with pdf

f (z) = λ exp (−λz) , z > 0, λ > 0. (12)

Mckenzie (1982) showed that the distribution of innovations for an exponential PAR(1) model
with λ = 1 is given by that of ηE = S−α, where S is a positive stable random variable with
Laplace transform ϕS (s) = exp (−sα). If the stationary marginal distribution of the PAR(1)
process is exponential with scale parameter λ, the distribution of the associated innovations
is given by ηt = λ−(1−α)ηE .
Abraham and Balakrishna (2012) obtained an explicit form of the innovation random variable
ηt of Mckenzie (1982), which provides gamma marginal distribution for {Zt}. Abraham
and Balakrishna (2012) also proved that if the PAR(1) sequence defined by model (2) has
stationary marginal distribution with pdf given by (9), then the distribution of its innovation
random variables ηt is specified by ηt = λ−(1−α)[B (α, θ)]αVEw, where B (α, θ) and VEw are
mutually independent and independent and identically distributed random variables with
B (α, θ) being beta (αθ, (1 − α) θ) with pdf

fB (x) = Γ(θ)
Γ(αθ)Γ((1−α)θ)xαθ−1(1 − x)(1−α)θ−1, 0 ≤ x ≤ 1,

and the pdf of VEw is given by

g (x) = Γ(αθ+1)
Γ(θ+1) xθgE (x) , x > 0,

where gE (x) = 1
π

∞∑
k=1

Γ(kα)
Γ(k) sin (kπα) (−x)k−1, x > 0.

In another line of research, Jose and Thomas (2012) developed an additive and product AR
structure with log-Laplace marginal distribution with pdf

f (z) = 1
δ

βγ

β + γ


(

z
δ

)γ−1
for 0 < z < δ(

δ
z

)β+1
for z ≥ δ ,

(13)

where δ > 0, β > 0, γ > 0.
A more general PAR(1) structure with double Pareto log-normal marginals with pdf
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f (z) = λ1λ2
λ1+λ2

[
exp

(
λ1ν + λ2

1τ2

2

)
z−λ1−1Φ

(
ln z−ν−λ1τ2

τ

)
+zλ2−1 exp

(
−λ2ν + λ2

1τ2

2

)
Φc
(

ln z−ν−λ2τ2

τ

)]
,

(14)

where Φ is the cumulative distribution function (cdf) and Φc is the complementary cdf of
N (0, 1). Jose and Thomas (2012) also found that the AR correlation structure is not preserved
in the case of log-Laplace and double Pareto log-normal PAR(1) models.
Recently Muhammed Anvar et al. (2019) discussed a PAR(1) model with generalised gamma
(GG) marginal distribution for {Zt} as given by

f (z) = λτ

Γ (θ)(λz)θτ−1 exp (−(λz)τ ) , z ≥ 0; λ, τ, θ > 0, (15)

where Γ (.) is the gamma function, τ and θ are shape parameters and λ is the rate param-
eter. The distribution of innovations {ηt} is specified by ηt = λ−(1−α)[B (α, θ)]

α
τ V

1
τ

Ew, where
B (α, θ) and VEw are mutually independent and independent and identically distributed ran-
dom variables, as described in Abraham and Balakrishna (2012).
Table 1 lists the Mellin transforms MZ (s), Mη (s) and ACF ρZ (k) of the PAR(1) models
with specified marginal distributions discussed in this section.

4. Other product autoregressive models
As mentioned in Section 1, slightly different forms of PAR models are also studied in the
literature. The model introduced by Bakouch et al. (2013) have studied a random coeffi-
cient product autoregressive models whereas Soyer et al. (2016) constructed a product auto
regression of the form Xt = Xt−1

γ εt. We describe them in following sub sections.

4.1. Random coefficient PAR models

Bakouch et al. (2013) proposed a first-order PAR model with random coefficients based on
the operation random products of random variables and the notion of infinite divisibility. The
stationary PAR(1) model introduced by Bakouch et al. (2013) is given by

Zt = Zαt
t−1ηt , t = 1, 2, ..., (16)

where {αt} is a sequence of independent and identically distributed random variables with
P (αt = 0) = 1 − P (αt = 1) = p independent of Zt−k for k > 0 and {αt} and {ηt} are two
mutually independent sequences.
The unconditional mean and variance of Zt in (16) is given by

E (Zt) = pµη

1 − (1 − p) µη
and V (Zt) =

p (1 − p) (1 − µη)2
(
µ2

η + σ2
η

)
+ p2σ2

η(
1 − (1 − p)

(
µ2

η + σ2
η

))
(1 − (1 − p) µη)2 , (17)

where µη and σ2
η denote the mean and variance of ηt, respectively.

ACF of random coefficient PAR(1) sequence {Zt} is obtained as

ρZt (k) = (1 − p)kµk
η ; k > 0. (18)

Further, |(1 − p) µη| < 1 and hence ACF converges to zero as k → ∞.



8 Review of Product Autoregressive Models

Ta
bl

e
1:

M
el

lin
tr

an
sfo

rm
s

M
Z

(s
),

M
η

(s
)

an
d

A
C

F
ρ

Z
(k

)
of

th
e

PA
R

(1
)

m
od

el
s

w
ith

sp
ec

ifi
ed

m
ar

gi
na

ld
ist

rib
ut

io
ns

Z
M

Z
(s

)
M

η
(s

)
ρ

Z
(k

)

G
a
m

m
a

(θ
,λ

)
λ

−
s

Γ(
s+

θ
)

Γ(
θ
)

λ
−

(1
−

α
)s

Γ(
s+

θ
)

Γ(
α

s+
θ
)

α
k

;k
=

0,
1,

2,
..
.

W
ei

bu
ll

(θ
,λ

)
λ

−
s θ
Γ
( 1

+
s θ

)
λ

−
(1

−
α

)s
θ

Γ (
1+

s θ
)

Γ (
1+

α
s θ
)

Γ (
1 θ

+
1 )
{ Γ( 1+

α
k

θ
+

1) −
Γ( α

k θ
+

1) Γ (
1 θ

+
1 )
}

Γ( α
k θ

+
1){ Γ (

2 θ
+

1 )
−

(Γ
(1 θ

+
1 )

)2
}

;k
=

1,
2,

..
.

L
og

−
n

or
m

a
l( µ

,σ
2)

ex
p
( sµ

+
s2

σ
2

2

) ex
p
( s

(1
−

α
)µ

+
s2

(1
−

α
2
)σ

2

2

)
ex

p (
α

k
σ

2
)−

1
ex

p(
σ

2
)−

1
;

k
=

1,
2,

..
.

E
x

p
on

en
ti

a
l(

λ
)

λ
−

s
Γ

(s
+

1)
λ

−
(1

−
α

)s
Γ(

s+
1)

Γ(
α

s+
1)

α
k

;k
=

0,
1,

2,
..
.

L
og

−
L

a
p
la

ce
(δ

,β
,γ

)
δs

β
γ

(β
−

s)
(γ

+
s)

δ(1
−

α
)s

(β
−

α
s)

(γ
+

α
s)

(β
−

s)
(γ

+
s)

(β
−

2)
(γ

+
2)

(β
−

k
−

1)
(γ

+
k

+
1)

[ (β
−

k
)(

γ
+

k
)(

β
−

1)
(γ

+
1)

−
β

γ
(β

−
k

−
1)

(γ
+

k
+

1)
(β

−
1)

2
(γ

+
1)

2
−

β
γ

(β
−

2)
(γ

+
2)

] ;β
>

2,
k

=
1,

2,
..
.

G
G

(θ
,τ

,λ
)

λ
s

Γ (
s τ

+
θ
)

Γ(
θ
)

λ
(1

−
α

)s
Γ (

s τ
+

θ
)

Γ (
α

s τ
+

θ
)

Γ (
1 τ

+
θ
){ Γ(

θ
)Γ
( α

k
+

1
τ

+
θ

) −
Γ( α

k τ
+

θ

) Γ (
1 τ

+
θ
)}

Γ( α
k τ

+
θ

){ Γ(
θ
)Γ

(2 τ
+

θ
)−

(Γ
(1 τ

+
θ
))

2
}

;k
=

1,
2,

..
.



Austrian Journal of Statistics 9

4.2. Type II- product autoregressive models

This type of models is widely used in the context of latent variable models and their Bayesian
analysis. Soyer et al. (2016) constructed a Markovian product autoregressive model given by

Zt = Zt−1
γ

εt. (19)

In this model, the sequence is governed by a discounting factor γ and this results an implied
stochastic ordering between two consecutive observations, i.e., Zt < Zt−1

γ .
The conditional distributions of consecutive observations are all scaled Beta densities,

Zt|Ft−1 ∼ β (γαt−1, (1 − γ) αt−1; (0, Zt−1γ)).

That is,

f (Zt| Ft−1) = 1
β (γαt−1, (1 − γ)αt−1)

(
γ

Zt−1

)αt−1−1
Xt

γαt−1−1
(

Zt−1
γ

− Zt

)(1−γ)αt−1−1
. (20)

From equation (20) we obtain E (Zt| Ft−1) = Zt−1 which results in a random walk type of
evolution in the expected Poisson rates. Soyer et al. (2016) further demonstrate the usefulness
of this PAR model by taking suitable prior distributions and getting analytical expressions
for various quantities like predictive likelihood.
In the next section, we list the different methods for statistical estimation of PAR models
discussed in the literature.

5. Parameter estimation of PAR models
Most of the estimation methods available in the literature for non-linear and non-Gaussian
time series are model-specific. That is, these methods depend on a particular model structure
and the type of stationary marginal distribution or the type of innovation distribution. The
estimation methods for PAR(1) models is very cumbersome in most cases due to the complex
form of their innovation distribution. The maximum likelihood estimation approach has been
used by Balakrishna and Shiji (2010) and Balakrishna and Lawrance (2012) for Weibull and
gamma PAR(1) models, respectively, based on approximate innovation density. Abraham and
Balakrishna (2012) proposed conditional least-squares estimates for gamma PAR(1) model
and obtained the asymptotic distribution of estimators. Balakrishna and Muhammed (2017)
proposed a method of optimal estimating functions for estimation of Weibull and gamma
PAR(1) models and described the asymptotic properties. In this section, we review the
methods commonly used for parameter estimation of PAR(1) models.

5.1. Maximum likelihood method

If we have an explicit form for the innovation density function, then the likelihood-based
inference is possible for the PAR (1) model in (2). Suppose that (z0, z1, ..., zn) is a realisation
from a stationary PAR(1) model with stationary marginal density function, f (.), and one-step
transition density, f (zt|zt−1). Let θ = (θ1, θ2, ..., θp)′ be the vector of parameters indexing
the finite-dimensional distribution of the sequence. Then, the likelihood function of θ based
on the observed realisation (z0, z1, ..., zn) can be written as

Ln (θ) = f (z0)
n∏

t=1
f (zt|zt−1) = f (z0)

n∏
t=1

1
zα

t−1
fη

(
zt

zα
t−1

)
, (21)
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where fη (.) is the innovation density function. Ignoring the term corresponding to the initial
density (as its influence on the overall likelihood function diminishes as the sample size n
increases), the log-likelihood function is

log Ln (θ) =
n∑

t=1
log fη

(
zt

zα
t−1

)
+

n∑
t=1

log
(

1
zα

t−1

)
. (22)

Then, the maximum likelihood estimators of model parameters are given by

θ̂ = arg
θ∈Θ

max log Ln (θ) . (23)

Under certain regularity conditions of Billingsley (1961), the likelihood equations admit con-
sistent solutions and the maximum likelihood estimates are consistent and asymptotically
normal. However, the likelihood-based inference of PAR(1) models is cumbersome in most
cases because of the complex structure of innovation random variables. Therefore, alternative
estimation methods are discussed.

5.2. Conditional least-squares method

Klimko and Nelson (1978) proposed the conditional least-squares (CLS) estimation method
for Markov processes. Let {Zt} be the stationary Markov sequence. The CLS estimators of
the PAR(1) parameters are obtained by minimising

Qn (θ) =
n∑

t=1
[Zt − g (θ; Zt−1)]2 (24)

with respect to the parameter vector θ = (θ1, θ2, ..., θp)′, where g (θ; Zt−1) = E (Zt|Zt−1).
The CLS estimates are obtained by solving the least squares equations:

∂Qn (θ)
∂θi

= 0, i = 1, 2, ..., p. (25)

Klimko and Nelson (1978) proved under certain regularity conditions that the CLS estimators
are consistent and asymptotically normal.

5.3. Estimating functions method

The CLS method described in Section 5.2. is not capable of handling all parameters that are
presented in the conditional mean function of a PAR(1) model. In other words, the so called
parameter identifiability problem arises when we use CLS method. That is, in CLS method,
we need to minimize an objective function which is expressed as the (conditional) sum of
squares of deviations taken from conditional mean function, conditional on the past values
of the time series. But in most of the cases, we fail to get estimators of all parameters if we
restrict the CLS method based on conditional mean function alone. As a remedy to this prob-
lem, Balakrishna and Muhammed (2017) suggested the method of estimating function (EF)
which is more general method and a convenient way to manage the parameter identifiability
by considering an objective function consisting of more than one moment condition. For a gen-
eral discussion of theory and applications of EF method of estimation in time series analysis,
we refer Godambe (1985) and Ghahramani and Thavaneswaran (2009). As standard linear
estimating function methods do not help in estimating the parameters of PAR(1) models,
Balakrishna and Muhammed (2017) proposed a combined estimating function method that
combines linear and quadratic estimating functions to improve the efficiency of the resulting
estimates. In what follows, we briefly describe the EF method applied for PAR models.
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Suppose that {zt, t = 1, 2, ...} is a realisation of a PAR(1) process whose finite-dimensional
distribution is indexed by a vector parameter θ belonging to an open subset Θ of the p-
dimensional Euclidean space. Let (Ω, ℑ, Pθ) denote the underlying probability space and ℑz

t

be the sigma field generated by {z1, z2, ..., zt, t ≥ 1}.
The following conditional moments are useful for constructing the combined estimating func-
tion to estimate the parameters of the PAR(1) models discussed in Section 3:

µt (θ) = E
(
Zt|ℑz

t−1
)
, σ2

t (θ) = V
(
Zt|ℑz

t−1
)
,

γt (θ) =
E
[
(Zt − µt (θ))3|ℑz

t−1

]
σ3

t (θ) and κt (θ) =
E
[
(Zt − µt (θ))4|ℑz

t−1

]
σ4

t (θ) − 3. (26)

That is, we assume that the skewness and the excess kurtosis of the standardised variable Zt

does not contain any additional parameters. In order to estimate the parameter vector θ based
on the observations {z1, z2, ..., zt, t ≥ 1}, we consider two classes of martingale differences
{mt (θ) = zt − µt (θ) , t = 1, 2, ...} and

{
st (θ) = m2

t (θ) − σ2
t (θ) , t = 1, 2, ...

}
such that

⟨m⟩t = E
(
m2

t |ℑz
t−1
)

= E
[
(zt − µt (θ))2|ℑz

t−1

]
= σ2

t ,

⟨s⟩t = E
(
s2

t |ℑz
t−1
)

= σ4
t (κt + 2),

and

⟨m, s⟩t = E
(
mtst|ℑz

t−1
)

= σ3
t γt.

The optimal estimating functions based on the martingale differences and are summarised in
the following theorem proved by Liang, Thavaneswaran, and Abraham (2011).
Theorem: Let {Zt} be a discrete parameter stochastic process with conditional moments given
by (21), then, in the class of all quadratic estimating functions of the form

GQ =
{

gQ (θ) : gQ (θ) =
n∑

t=1
(at−1mt + bt−1st)

}
,

where at−1 and bt−1 are ℑz
t−1 measurable functions; the optimal one is given by

g∗
Q (θ) =

n∑
t=1

(
a∗

t−1mt + b∗
t−1st

)
, (27)

where

a∗
t−1 =

(
1 − ⟨m,s⟩2

t
⟨m⟩t⟨s⟩t

)−1 (
−∂µt

∂θ
1

⟨m⟩t
+ ∂σ2

t
∂θ

⟨m,s⟩t
⟨m⟩t⟨s⟩t

)
and

b∗
t−1 =

(
1 − ⟨m,s⟩2

t
⟨m⟩t⟨s⟩t

)−1 (
∂µt

∂θ
⟨m,s⟩t

⟨m⟩t⟨s⟩t
− ∂σ2

t
∂θ

1
⟨s⟩t

)
with the associated Godambe information matrix

Ig∗
Q

(θ) =
n∑

t=1

{(
1 − ⟨m,s⟩2

t
⟨m⟩t⟨s⟩t

)−1 (
∂µt

∂θ
∂µt

∂θT
1

⟨m⟩t
+ ∂σ2

t
∂θ

∂σ2
t

∂θT
1

⟨s⟩t
−
(

∂µt

∂θ
∂σ2

t

∂θT + ∂σ2
t

∂θ
∂µt

∂θT

)
⟨m,s⟩t

⟨m⟩t⟨s⟩t

)}
.
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Thus, the optimal estimators are obtained by solving the equation g∗
Q (θ) = 0. The standard

errors of the estimators may be found using the information matrix (possibly by observed
Godambe information matrix). Note that the EF method do not assumes the knowledge of
complete probability distribution of the process except perhaps first few conditional moments.
This flexibility and generality of the method facilitates a robust and semi parametric approach
to the estimation problem.

6. Applications of PAR(1) models
The application avenues of the multiplicative version of AR models are vast, as the modelling
of non-negative random variables plays a major role in the context of economic and financial
time series analysis. In this section, we provide some of the applications of PAR(1) models
discussed in the literature.

6.1. Modelling non-negative variables

When the time series of interest is a sequence of non-negative random variables, such as
volatility, stock market index or wave heights, the product form of the AR models is desirable
compared with their linear counterparts. Another context in which the modelling of non-
negative random variables plays a major role is the study of financial time series, where one
has to model the evolution of conditional variances, called volatility. The applications of
PAR(1) models for modelling non-negative random variables have been studied extensively
by Balakrishna and Shiji (2010) and Balakrishna and Lawrance (2012). Balakrishna and
Shiji (2010) applied the Weibull PAR(1) model to analyse the daily maximum of the Bombay
Stock Exchange index values, and Balakrishna and Lawrance (2012) fitted the gamma PAR(1)
model to an hourly wave height series from the Bay of Bengal and found that the model could
certainly be used in realistic simulations of non-negative time series such as wave heights.

6.2. Bivariate exponential distribution from PAR(1) models

Balakrishna and Shiji (2014) introduced a class of absolutely continuous bivariate exponential
distributions in which the components are linked through a product structure of Balakrishna
and Lawrance (2012), with an exponential marginal distribution given in (12).
Let (X, Y ) be a non-negative random vector, and FX (.) and FY (.) be the distribution func-
tions of X and Y , respectively. Define

Y = XαZ, 0 < α < 1, (28)

where Z is a non-negative random variable independent of X, such that the equality in
(28) holds in the distribution. Balakrishna and Shiji (2014) identified the distribution of Z,
for which (X, Y ) has an absolutely continuous bivariate exponential distribution when the
marginal random variables are tied together using (28).
Let X be an exponential random variable with pdf given in (12), and Z be defined by Z =
β−1

(
λ
S

)α
, where S is a positive stable random variable with Laplace transform ϕS (s) =

exp (−sα) , 0 < α < 1.
Then, for any α ∈ (0, 1), the distribution of Y = XαZ is obtained as

f (y; β) = β exp (−βy) , y > 0.

Balakrishna and Shiji (2014) employed this result to construct a bivariate random vector with
exponential marginals and obtained the density function of (X, Y ) as

f (x, y) =
(
βλ1−αx−α

)
exp (−λx) fv

(
βy

(λx)α

)
,
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where fV (.) is the pdf of V = S−α, which may be expressed as

fV (υ; α) = 1
π

∞∑
k=1

Γ(kα)
Γ(k) (−υ)k−1 sin (kπα) , υ > 0.

In addition to discussing the properties of this distribution, Balakrishna and Shiji (2014)
proposed inference procedures for their proposed model. The authors considered a set of
data reported in Hanagal (2011) on bone marrow transplantation for leukemia patients and
another dataset reported in Jamalizadeh and Kundu (2013) on game time from American
Football League from the matches on three consecutive weekends in the year 1986 for the
illustration purpose. The results suggest that the proposed bivariate exponential distribution
is a good fit for both datasets.

6.3. Stochastic volatility generated by PAR models

Abraham, Balakrishna, and Sivakumar (2006) proposed a stochastic volatility model in which
non-negative volatility sequence is generated from linear gamma AR(1) of Gaver and Lewis
(1980) and proved that the model captures the excess kurtosis implied by financial return
series. Muhammed Anvar et al. (2019) used the PAR(1) structure (2) with generalised gamma
marginal distribution given in (15) to generate the unobserved volatilities in the analysis of
stochastic volatility of financial return series.
Let {Yt} be the sequence of returns of certain financial asset, and the volatilities are generated
by a Markov sequence {Zt} of non-negative random variables. Then, the SV model proposed
by Muhammed Anvar et al. (2019) is expressed as

Yt =
√

Ztνt, Zt = Zα
t−1ηt ; t = 1, 2, . . . , (29)

where {νt} is a sequence of independent and identically distributed standard normal vari-
ables with mean zero and variance one. The sequence of conditional variance {Zt} is gen-
erated by a PAR(1) model with the generalised gamma marginal distribution given in (15).
Muhammed Anvar et al. (2019) derived the properties of volatility model (29) generated by
PAR models and illustrated its applications using simulated and real datasets. In the data
analysis, the authors utilised the proposed stochastic volatility sequence generated by the
generalised gamma PAR(1) model to analyse the exchange rate volatility of Indian Rupee
to British Pound for the period January 01, 2012 to December 31, 2017 and found that the
model captures the stylised features of the exchange rate return series.

7. Numerical illustration
To illustrate the applications of the PAR(1) models and the associated inferential results,
we first consider a simulation study for examining the sample path properties. Then the
proposed PAR(1) model is applied to a real data set. All the computations in this section
were performed using the R package.

7.1. Simulation of PAR(1) sequences

In this section, we describe an algorithm for generating the realizations from PAR(1) models.
As already mentioned in Section 3, the innovation distribution of the exponential PAR(1)
model plays the key role in generating the realizations from various PAR(1) processes with
exponential, Weibull, gamma and generalized gamma marginals. A basic requirement for
generating data from these models is an appropriate method for simulating observations from
the innovation random variable of a unit exponential PAR(1) model. The random numbers
from this distribution can be generated using the formula (see, Balakrishna (2021))
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ηE = E1−α sin U.(sin (αU))−α.(sin ((1 − α) U))−(1−α), (30)

where U is a uniform random variable over (0, π) and E is an unit exponential random
variable independent of U . Once we have realizations from i.i.d. random variables {ηE},
the innovation sequences of the PAR(1) models with specified marginal distributions can be
obtained. Thus the innovations for exponential and Weibull PAR(1) models can be generated
using the following steps:

1. Specify the values for the parameter α and generate a random sample of size N from
ηE using the formula (30). Let {ηE(t), t = 1, 2..., N} denote the resulting sample.

2. The innovation sequence {ηt} for the exponential PAR(1) model is then obtained as
ηt = λ−(1−α)ηE(t), t = 1, 2, ..., N , for specified values of λ.

3. For specified values of α, λ and θ, the innovations of Weibull PAR(1) model can be
obtained as ηt =

(
λ−(1−α)ηE(t)

)1/θ
, t = 1, 2, ..., N .

4. Finally, obtain the PAR(1) sequence using (2).

Now, we generated a sample of size 10000 from Weibull PAR(1) model using the Steps 1–4
by fixing α = 0.95, λ = 5 and θ = 3. The sample path, ACF and histogram of the simulated
sample are given in Figure 1. Figure 1(a) gives the sample path properties of simulated
Weibull PAR(1) process. Figure 1(b) is the ACF of the simulated series which is geometrically
decreasing, a characterizing property of Weibull PAR(1) sequence. Figure 1(c) is a histogram
of the realization generated from Weibull PAR(1) model which shows good agreement between
the simulated and theoretical Weibull density curve.
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Figure 1: The sample path, ACF and histogram of the simulated sample from Weibull PAR(1)
model

7.2. Real data analysis

In this Section, we illustrate the better performance of PAR models compared to its linear ad-
ditive counter parts when applied to a non-negative series. For the sake of comparison, we now
apply the Weibull PAR(1) model of Balakrishna and Shiji (2010) described in Section 3 to a
real data set. The data consists of 122 observations of the annual maximum Temperature (°C)
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in India from the year 1901 to 2022. The data is downloaded from the website of Ministry of
Statistics and Programme Implementation, Government of India (https://www.mospi.gov.in).
Figure 2 exhibits the basic characteristics of the data. Figure 2(a) provides the time series
plot of the original data {Xt} and indicates that the series is not stationary. In order to make
the data to stationary, we transform the original series by taking the absolute values of first
differences Zt = |Xt − Xt−1| and analyse this series by Weibull PAR(1) model. We use the
absolute values of the stationary data to retain the non-negativity. Figure 2(b) is the plot of
the transformed series, which seems to be stationary.
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Figure 2: Time series plot of the (a) original series (b) stationary series and (c) Histogram of
the stationary series superimposed with Weibull density curve

Table 2 summarizes the descriptive statistics of the original and stationary series, including
mean, median, standard deviation, skewness and kurtosis. These statistics suggest the data
generating process must be positively skewed and having excess kurtosis than a Gaussian
process. The objective is to fit a Weibull PAR(1) model and an additive exponential AR(1)
model and then compare their ability to describe the properties of the data. Further, We
judiciously fit a Gaussian linear AR(1) model in order to understand the effect of miss-
specification.

Table 2: Descriptive statistics of original and stationary versions of annual maximum tem-
perature series

Statistics Original series Stationary series
Mean 29.3803 0.2445
Median 29.1300 0.1700
Minimum 28.1100 0.0000
Maximum 31.5400 1.0200
Standard Deviation 0.8341 0.2045
Skewness 1.2443 1.3391
Kurtosis 3.0612 3.8858
Sample size 122 121

The parameters of the proposed Weibull PAR(1) model are estimated using the maximum
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likelihood method explained in Section 5.1. To compare the performance of PAR(1) model
with linear AR models, we have also fitted classical Gaussian AR(1) model and Exponential
AR(1) model of Gaver and Lewis (1980) to the stationary data. The estimation results
for Weibull PAR(1) and linear AR(1) models are presented in Table 3. Figure 2(c) shows
the histogram of the series {Zt} super-imposed by the Weibull probability density function
evaluated with these estimated parameters. This plot shows that the marginal distribution of
the stationary data follows Weibull distribution as assumed by Balakrishna and Shiji (2010)
in the construction of the model.

Table 3: ML estimation results for the real data

Parameter Normal AR(1) Exponential AR(1) Weibull PAR(1)
φ̂ 0.2231 0.2373 -
σ̂ 0.2035 - -
α̂ - - 0.1490
λ̂ - 0.8953 0.1904
θ̂ - - 1.2123

AIC 411.1277 360.1800 316.9335
BIC 411.2932 360.3456 317.1819

MAPE 21.0477 15.7203 8.3018

For model selection, we computed the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) values for both the fitted models. Table 3 indicates that the
Weibull PAR(1) model reported the smallest AIC and BIC values than the fitted linear
AR(1) models for the selected data. Note that a substantial reduction in AIC and BIC values
is observed for the PAR(1) model. To perform diagnostic checks, the residuals, histogram
of residuals and their ACF from the fitted PAR(1) model were plotted in Figures 3 and
4 respectively. The ACF of the resulting residuals and squared residuals in Figure 4 are
negligible, indicating the absence of significant serial correlations in the residuals.
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Figure 3: Time series plot and histogram of residuals from the fitted Weibull PAR(1) model

Finally, we evaluated these models based on their forecasting performance. We performed
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Figure 4: ACF of residuals and squared residuals from fitted Weibull PAR(1) model

an out-of-sample forecast exercise for the selected data using Weibull PAR(1), normal AR(1)
and exponential AR(1) models. We divided the data set into training data (first 110 obser-
vations; around 90% ) and validation data (last 12 observations) for the forecast exercise.
Next, we evaluated the one-step-ahead forecast using fitted models and repeated this rolling
forecast until we obtained 12 forecast values. The minimum mean squared error forecasts
were computed by plugging the estimates of parameters in the conditional mean function of
each models. Then the forecast performance measure, viz, mean absolute percentage error
(MAPE), was computed using the forecasts from each of the proposed models and the actual
validation data. The results are listed in Table 3. The proposed Weibull PAR(1) model
clearly outperformed linear AR(1) models with normal and exponential marginals in terms of
MAPE. The same pattern in results was also obtained when the data splitting ratio changed
to 95:5 percent. However, we didn’t include the results due to space restriction. Hence, we
verified the adequacy and performance of the proposed PAR(1) model. These illustrations
established the relevance and advantage of the proposed PAR models for non-negative time
series data in comparison with conventional AR models.

8. Concluding remarks

The modelling of non-negative (continuous valued) time series data gained special attention
in many studies, where one has to model non-negative variables such as volatility, trade du-
rations etc. Recently, the necessity of developing pure multiplicative models for non-negative
time series has been identified and discussed by various researchers. This lead to apply the
multiplicative structure to model a non-negative time series such as MEM, pure multiplica-
tive ETS model, etc. However, a suitable class of models namely product autoregressive that
can handle the continuous non negative time series in a direct way and possessing certain
auto-correlation structures observed in many empirical non-negative time series data was
unnoticed for a long period. PAR type models can appropriately model the auto-correlation
structures often present in such data and it is useful for analysing the data in the original scale
or in some non-negative transform suggested by theory. Further developments of this type
of model were discussed only in the past decade. In view of this, in this paper, we reviewed
the developments in the PAR model literature starting from the work of Mckenzie (1982).
Since then, several PAR models have been framed to analyse the time series of non-negative
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random variables. This paper provides an exhaustive review of the construction, properties,
estimation methods and applications of PAR models. In best of our knowledge, we have
enlisted the works related to the product form of the auto-regressive models discussed in the
literature. The PAR models are promising candidates for stochastic volatility analysis and
range-based volatility modelling in parameter-driven setups.
Future studies are obviously required for this topic and will be studied vigorously. Several
possible extensions to the basic PAR(1) models are in order. First, one can develop the
product auto regressive model of order more than one, say p (>1), possibly combining with
a moving average component. Identifying the distribution of the innovation random variable
will be the challenge as it is not clear how to define infinite divisibility in this case. Further,
it is necessary to identify the innovation random variable to simulate observations from these
models. Second, a direct multivariate extension is not trivial. Multiple non-negative time
series occur frequently in practice. In light of the usefulness of PAR models in univariate
case, developing a multivariate PAR models is expected to be helpful. Third, like in the case
of classical time series, PAR models can also be viewed in a Bayesian perspective. The main
hindrance to the maximum likelihood estimation in PAR models is the lack of manageable
likelihood function. Bayesian estimation may be a suitable solution to this problem. Four, as
the most cases considered in PAR models are restricted to continuous non-negative variates,
some situation may demand the models for discrete valued variates. Even though (linear
additive) integer valued autoregressive models (INAR) are available in the literature, it will
be instructive to search for a product autoregressive model for discretely valued time series.
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