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Abstract

This paper is devoted to establishing upper bounds for a difference of n-step transition
probabilities for two time-inhomogeneous Markov chains with values in a locally compact
space when their one-step transition probabilities are close. This stability result is applied
to the functional autoregression in Rn.
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1. Introduction

The functional autoregression model plays an important role in many applications. In par-
ticular, diffusion models are widely used in modern generative learning; see, for example
Ho, Jain, and Abbel (2020) and Ho, Saharia, Chan, Fleet, Norouzi, and Salimans (2022).
The typical approach used in such models involves Langevin diffusion in both discrete-
time and continuous-time settings (see earlier works Parisi (1981), Grenander and Miller
(1994) and modern work Song, Sohl-Dickstein, Kingma, Kumar, Ermon, and Poole (2020)).
At the same time, inserting time-inhomogeneity into such models may improve their qual-
ity. For example, time-inhomogeneous simulating annealing algorithms (see Bras and Pages
(2023)) demonstrate a potential for global optimisation or faster convergence time, while
time-inhomogeneous functional autoregression processes in machine learning allow more ex-
pressive and complex models. The stability of such models plays a crucial role, for example,
in actuarial mathematics, they are used in a non-trivial modelling, such as calculating pre-
mium for widow pension with inhomogeneous impact factor (see Golomoziy, Kartashov, and
Kartashov (2016)).
That is the main motivation for us to study in this paper the stability of general discrete-time,
inhomogeneous Markov chains with application to functional autoregression. The stability
of homogeneous chains is well studied, and there are classical books that provide a modern
treatment of the subject (Meyn and Tweedie (1993), Douc, Moulines, Priouret, and Soulier
(2018)). At the same time, the inhomogeneous case is much more difficult and classical
stability results often can not be applied, or require corrections (see Golomoziy (2014) and
Golomoziy (2020)).
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In the present work, we use the coupling method as a main tool for our research. The coupling
method is well described in the classical books of Thorisson (2000) and Lindvall (1991). Our
approach, however, is slightly different from that of Lindvall and other researchers (see Douc,
Fort, Moulines, and Soulier (2004a), Douc, Moulines, and Rosenthal (2004b), Andrieu, Fort,
and Vihola (2015) and Fort and Roberts (2005)), since we are estimating proximity of two
different n-steps transition probabilites versus stability of a single Markov chain with regard
to different initial distributions. To this end, there is a modified coupling framework (see
Golomoziy and Kartashov (2013a), Golomoziy and Kartashov (2013b) and Golomoziy and
Kartashov (2016) for Markov chains with discrete state space and Golomoziy (2020) and
Golomoziy (2014) for general state spaces) which heavily relies on a renewal theory adapted to
the inhomogeneous case (see Golomoziy (2015), Golomoziy and Kartashov (2012), Golomoziy
(2022b) and Golomoziy (2017)).
Our stability result is obtained under the condition of geometric recurrence of corresponding
time-inhomogeneous Markov chains. The notion of geometric recurrence in a homogeneous
case is well described in Douc et al. (2018), while the works of Golomoziy (2022a) and Golo-
moziy (2022b) extend it to the time-inhomogeneous case and provide the necessary instru-
ments to verify such recurrence using so-called drift condition (or Foster-Lyapunov criterion).
This paper is organized as follows. In Section 2, we define two time-inhomogeneous Markov
chains with values in some locally compact phase space, introduce key notations and condi-
tions and state the result about stability on n-steps transition probability. In Section 3, we
introduce the coupling schema for such chains and provide proof of the main result. Section
4 is devoted to the functional autoregression on Rn. In this section, we establish its geometric
recurrence and demonstrate how to apply the stability result from Section 2. Finally, Ap-
pendix includes the statement of an auxiliary Lemma 1 from Golomoziy (2023), which plays
an essential role in the proof of the main result.

2. Stability of general Markov chains

In this section, we study a pair of independent, discrete-time Markov chains {X(i)
n , n ≥ 0},

i ∈ {1, 2} with values in a locally compact space E equipped with a σ-field E. Since E is locally
compact, there exists a sequence of compact sets {Kn, n ≥ 0}, such that Kn ⊂ Kn+1, n ≥ 0
and

⋃
n≥0Kn = E.

For any signed measure µ on (E,E) we define a total variation norm

||µ||T V = |µ|(E) = µ+(E) + µ−(E),

where µ = µ+ − µ− is a Hahn-Jordan decomposition.
Let µ1 and µ2 be any non-negative measures on (E,E), and denote by D(µ1, µ2) a set of
all non-negative measures η on (E,E) such that η(A) ≤ µ1(A) and η(A) ≤ µ2(A), for all
A ∈ E. Proposition D.2.8 from Douc et al. (2018) states that there exists a maximal element
η∗ ∈ D(µ1, µ2). This maximal element we call a minimum of two measures and denote by

η∗ = µ1 ∧ µ2. (1)

The minimum of two measures can also be defined as

η∗ =
∫

E

(
dµ1

d(µ1 + µ2)(x) ∧ dµ2
d(µ1 + µ2)(x)

)
(µ1 + µ2)(dx),

where dµi

d(µ1+µ2) is a Radon-Nikodym derivative and ∧ is minimum of two real numbers.
Let us introduce Markov kernels

Pin(x,A) = P
{
X

(i)
n+1 ∈ A

∣∣∣ X(i)
n = x

}
, n ≥ 1, x ∈ E,A ∈ E.
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Since we are interested in stability, the kernels P1n and P2n should be close in some sense
which we are going to define next. To this end, we introduce substochastic kernels

Qn(x, ·) = (P1n ∧ P2n) (x, ·), (2)

where ∧ should be understood as a minimum of two measures defined in (1), and put

ε := 1 − inf
n,x

Qn(x,E) ≤ 1. (3)

Going forward, we assume that ε < 1. We denote the residual substochastic kernels by

Rin(x,A) = Pin(x,A) −Qn(x,A),

so that
Rin(x,E) ≤ ε.

Here, Qn(x, ·) can be thought as a “common part” of probabilities P1n(x, ·) and P2n(x, ·),
x ∈ E. Clearly, if Qn(x,E) = 1 then P1n(x, ·) = P2n(x, ·) and ε = 0.
For every pair of initial states x, y ∈ E, the family of Markov kernels {Pin, i ∈ {1, 2}, n ≥ 1}
defines a canonical probability space (Ω,F,Pxy) (see Douc et al. (2018), Theorem 3.1.2).
Denote its expectation as Exy. In case an event in probability Pxy {·} is related to only one
chain, X(1) or X(2), we will write Px and omit the second initial value. For example, the
notation Px

{
X

(1)
n ∈ A

}
means the probability of X(1)

n ∈ A, assuming X(1)
0 = x and arbitrary

initial value for X(2)
0 .

Our goal is to establish the upper bound of the form

sup
n

∥∥∥Px

{
X(1)

n ∈ ·
}

− Px

{
X(2)

n ∈ ·
}∥∥∥

T V
≤ C(x)ε, (4)

where C : E → R is some finite function. Inequality (4) means that uniform in n proxim-
ity of one-step transition probabilities implies uniform in n proximity of n-steps transition
probabilities.
When studying inhomogeneous chains, it is important to consider the probabilities of the
form P

{
X

(1)
n+k ∈ A,X

(2)
n+j ∈ B

∣∣∣X(1)
n = x,X

(2)
n = y

}
. We denote them by Pn

xy and follow the
notation Pn

x for events that depend on a single chain X(1) or X(2).
Next, we introduce conditions that are essential in proving the stability result for chains X(1)

and X(2).

Condition M (Minorization condition) Assume that there exist a set C ∈ E, a sequence of
real numbers {an, n ≥ 1}, an ∈ (0, 1) and a sequence of probability measures νn on (E,E)
such that:

inf
x∈C

Pin(x,A) ≥ anνn(A), i ∈ {1, 2},

inf
n
νn(C) > 0,

0 < a∗ := inf
n
an ≤ an ≤ a∗ := sup

n
an < 1,

for all A ∈ E and n ≥ 1.
This condition can be understood as a local-mixing condition, where mixing occurs on a set
C.
Let us introduce the following condition of geometric recurrence of the pair of chains

(
X(1), X(2)

)
.

Condition GR (Geometric Recurrence) Assume independent chains X(1) and X(2) satisfy
Condition M and C is a corresponding set. Then, there exist constant ψ > 1 such that

h(x, y) = sup
n

En
xy [ψσC×C ] < ∞,
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for all x, y ∈ E, where

σC×C = inf
{
k ≥ 1 :

(
X

(1)
k , X

(2)
k

)
∈ C × C

}
.

When used in the context of Pn
xy by σC×C we mean

σC×C = inf
{
k ≥ n+ 1 :

(
X

(1)
n+k, X

(2)
n+k

)
∈ C × C

}
.

To prove the main result, we will need some regularity conditions on Qn.

Condition T (Tails condition). Denote by Am = Km+1 \ Km. Assume that there exist
sequences {Ŝn, n ≥ 1} and {r̂n, n ≥ 1}, such that

m̂ =
∑
m≥1

Ŝm < ∞, ∆ =
∑
m≥1

r̂mŜm < ∞,

and (
n∏

k=1
Qt+k

)
(x,Am) ≤

(
n∏

k=1
Qt+k

)
(x,E)Ŝm, x ∈ C,

νt

(
n∏

k=1
Qt+k

)
(Am) ≤ νt

(
n∏

k=1
Qt+k

)
(E)Ŝm, x ∈ C,

(5)

and
sup

x,t∈Am

∫
E2\C×C

R1t(x, dy)R2t(x, dz)
1 −Qt(x,E) h(y, z) ≤ r̂m. (6)

for all t ≥ 0. Here, we understand the product of kernels as

(QnQn+1) (x,A) =
∫

E
Qn(x, dy)Qn+1(y,A).

Remark 1. This condition looks technical and difficult, but in fact, it is a reasonable condition
that can be verified using the framework developed in the works Golomoziy (2022b), Golomoziy
(2022a) and Golomoziy (2023). Note, that paper Golomoziy (2023) has a detailed discussion
of such a condition and contains examples demonstrating how to check it in applications. We
only mention that inequalities (5) are the inhomogeneous analogues of positivity (should Q be
a homogeneous, positive Markov kernel equalities (5) would be a simple result of ergodicity).
Regarding inequality (6), note that 1−Qt(x,E) is approximately equal to ε, each Rit(x,E) ≤ ε,
and so the whole fraction R1t(x,E)R2t(x,E)

1−Qt(x,E) has a magnitude approximately equals to ε. Speaking
about function h(x, y), we can say that it is usually possible to estimate it using results from
Golomoziy (2022b), and it very often has the form of C1(|x| + |y|) +C2, where C1 and C2 are
some constants, and assuming E = Rn. The value supx,t∈Am

∫
E2\C×C

R1t(x,dy)R2t(x,dz)
1−Qt(x,E) h(y, z)

in such typical applications will be O(m), which makes condition
∑
m
Ŝmr̂m ≤ ∞ to be a

moment-type condition. See further discussion in Golomoziy (2023).

Now, we are ready to state the main result related to the stability of general chains.

Theorem 1. Let X(i), i ∈ {1, 2}, be two Markov chains defined above that satisfy Condition
M, Condition GR and Condition T. Assume that ε < 1, where ε is deinfed in (3). Then
there exist constants M1,M2 ∈ R, such that for every x ∈ C∣∣∣∣∣∣Pt

x

{
X(1)

n ∈ ·
}

− Pt
x

{
X(2)

n ∈ ·
}∣∣∣∣∣∣ ≤ εm̂M1 + ∆M2, (7)

where m̂ and ∆ are defined in Condition T.
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For every x /∈ C the following inequality holds true∣∣∣∣∣∣Pt
x

{
X(1)

n ∈ ·
}

− Pt
x

{
X(2)

n ∈ ·
}∣∣∣∣∣∣ ≤ ε(2m̂M1 + µ̂(x)) + 2∆M2, (8)

where

µ̂(x) = sup
t

∑
k≥1

k−1∏
j=0

Qt+j1E\C

 (x,E \ C) ≤ 1.

Remark 2. Note, that the bound (7) is note of the same form as (4), due to the term ∆M2.
However, in many applications, ∆ = O(ε), so that we actually have a bound of the form (4).

3. Coupling construction and proof of stability bounds
The key tool in proving Theorem 1 will be the modified coupling method. We define it as
follows.
Assuming Condition M holds true, we define “noncoupling” operators

Tit(x,A) = Pit(x,A) − atνt(A)
1 − at

,

T (t)
xy (A,B) = T1t(x,A)T2t(y,B).

We define the Markov chain Z̄n =
(
Z

(1)
n , Z

(2)
n , dn

)
with values in (E,E, {0, 1, 2}) by setting

its transition probabilities

P̄n(x, y, 1;A×B × {2}) = 1x=yQn(x,A ∩B),

P̄n(x, y, 1;A×B × {0}) = 1x=y
R1n(x,A)R2n(y,B)

1 −Qn(x,E) ,

we assume the latter probability is equal to zero if Qn(x,E) = 1,

P̄n(x, y, 0;A×B × {0}) = (1 − an)1C×C(x, y)T1n(x,A)T2n(y,B)
+ (1 − 1C×C(x, y))P1n(x,A)P2n(y,A)

P̄n(x, y, 0;A×B × {1}) = 1C×C(x, y)anνn(A ∩B),

P̄n(x, y, 2; ·) = P̄n(x, y, 1; ·).

All other probabilities are equal to zero.
It is straightforward that marginal distributions of the process Z̄n equal to those of X(i)

n .
Indeed, for all x ∈ E

P̄n(x, x, 1, A×E×{0, 1, 2}) = Qn(x,A)+R1n(x,A)R2n(x,E)
1 −Qn(x,E) = Qn(x,A)+R1n(x,A) = P1n(x,A),

for all (x, y) ∈ C × C

P̄n(x, y, 0, A× E × {0, 1, 2}) = (1 − an)T1n(x,A)T2n(x,E) + anνn(A)

= P1n(x,A) − anνn(A) + anνn(A) = P1n(x,A),

and for all (x, y) /∈ C × C

P̄n(x, y, 0, A× E × {0, 1, 2}) = P1n(x,A)P2n(y,E) = P1n(x,A).
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Similar equalities for P2n and for P̄n(x, y, 2, A × E × {0, 1, 2}) can be obtained in the same
exact fashion.
We will use canonical probability P̄t

x,y,d and expectation Ēt
x,y,d, x, y ∈ E, d ∈ {0, 1, 2} in the

same sense as before.
Let us denote by

σ̄C×C = σ̄C×C(1) = inf
{
n ≥ 1 :

(
Z(1)

n , Z(2)
n

)
∈ C × C

}
,

σ̄C×C(m) = inf
{
n ≥ σ̄C×C(m− 1) :

(
Z(1)

n , Z(2)
n

)
∈ C × C

}
,m ≥ 2,

σ̄ = inf{t > 0 : Z(1)
t = Z

(2)
t ∈ C, d1 = . . . = dt = 2}.

the first and m-th return times to C × C by the pair
(
Z

(1)
n , Z

(2)
n

)
.

We will also need a special notation for the sets

Dn = {d1 = d2 = . . . = dn = 0},
Dnk = {d1 = d2 = . . . = dn = 0, σ̄C×C(k) = n},
Bnk = {dk ∈ {1, 2}, dk+1 = 0, . . . dn = 0} ,

(9)

and for the values
ρnk = sup

x,y∈C,t
P̄t

x,y,0 (Dnk) . (10)

Proof of Theorem 1. The proof of this theorem follows the line of reasoning of Theorem 2
from Golomoziy (2023) with only minor deviations.
First, from Theorem 2 in Golomoziy (2023) we have an inquality

∣∣∣Pt
x

{
X(1)

n ∈ A
}

− Pt
x

{
X(2)

n ∈ A
}∣∣∣ ≤ P̄t

x,x,1 {dn = 0} ≤
n−1∑
k=1

∑
m≥0

Λt
k(x,Am) sup

y∈Am

P̄t+k
y,y,1(Dn−k),

(11)

where
Λt

k(x,A) = P̄t
x,x,1

{
dk ∈ {1, 2}, Z(1)

k = Z
(2)
k ∈ A

}
.

and Am = Km+1 \Km.
Second, from the proof of same Theorem 2 in Golomoziy (2023) we know that

Λt
k(x,Am) ≤ 1C(x)Ŝm + 1E\C(x)

(
2Ŝm + qk,m(x)

)
where

qk,m(x) = P̄t
x,x,1{d2 = . . . = dk−1 = 2, σ̄ ≥ k, Z

(1)
k−1 = Z

(2)
k−1 ∈ Am},

and ∑
k,m≥0

qk,m(x) = µ̂(x).

Denote by

H
(m)
t = sup

x,t∈Am

∫
E2\C×C

R1t(x, dy)R2t(x, dz)
1 −Qt(x,E) h(y, z).

Note that by Condition T H
(m)
t ≤ r̂m.
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Let us first consider the case x ∈ C. Since Λt
k(x,Am) ≤ Ŝm in this case, we can apply Lemma

1 to (11) and obtain∣∣∣Pt
x

{
X(1)

n ∈ A
}

− Pt
x

{
X(2)

n ∈ A
}∣∣∣ ≤

∑
m≥0

Ŝm

∑
k≥1

sup
y∈Am,t

P̄t
y,y,1(Dk)

≤ εm̂S
ψ(1 + ρ)
ψ − 1 +

∑
m≥0

ŜmH
(m)
t

(ψS(1 + ρψ)
(ψ − 1)2 + ψ(1 + S)

ψ − 1

)

≤ εm̂S
ψ(1 + ρ)
ψ − 1 + ∆

(
ψS(1 + ρψ)

(ψ − 1)2 + ψ(1 + S)
ψ − 1

)
,

where m̂ is defined in Condition T.
In case x /∈ C we can follow the same reasoning and use the equality

∑
k,m≥0

qk,m(x) = µ̂(x)

along with obvious P̄t+k
y,y,1(Dn−k) ≤ ε to obtain∣∣∣Pt

x

{
X(1)

n ∈ A
}

− Pt
x

{
X(2)

n ∈ A
}∣∣∣ ≤

∑
m≥0

Ŝm

∑
k≥1

sup
y∈Am,t

P̄t
y,y,1(Dk)

≤ 2εm̂Sψ(1 + ρ)
ψ − 1 + 2∆

(
ψS(1 + ρψ)

(ψ − 1)2 + ψ(1 + S)
ψ − 1

)
+ εµ̂(x).

4. Applicaton to functional autoregression
In this section we demonstrate an example of estimating function h(x, y) in a model which
plays an important role in applications, in particular in optimisation problems that arise in
modern diffusion models of generative learning. Let E = Rd and E be a Borel σ-field. As
before we consider a pair of independent time-inhomogeneous Markov chains X(1)

n , X
(2)
n with

values in Rd of the form
X(i)

n = f (i)
n

(
X

(i)
n−1

)
+ Z(i)

n , (12)

where f (i)
n - are locally bounded, measurable functions, and and Z(i)

n are independent random
variables.

Theorem 2. Let X(1) and X(2) be independent Markov chains defined in (12). Assume the
following conditions hold
1. µ1 := supi,n E|Z(i)

n | < ∞.
2.

sup
i,n

lim sup
|x|→∞

|f (i)
n (x)|
|x|

< 1.

Then X(1) and X(2) are geometrically recurrent and the following estimate holds for all x ∈ Rd

and some r1 > 0
sup

n
En

ix

[
λ−σ

(i)
C

]
≤ 1 + |x| + b1|x|≤r1 ,

where

λ = 1
2

(
1 + sup

i,n
lim sup
|x|→∞

|f (i)
n (x)|
|x|

)
< 1,

C = {|x| ≤ r1},

and b some constant.
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Proof. This result is well-known for time-homogeneous chains (see Douc et al. (2018), Ex-
ample 11.4.3, p.257). In order to establish geometric recurrence we will use Theorem 1 from
Golomoziy (2022a). Let us select a Foster-Lyapunov function

V (x) = 1 + |x|.

We have then

PinV (x) = 1 + Ein

[∣∣∣f (i)
n (x) + Z(i)

n

∣∣∣] ≤ 1 + |f (i)
n (x)| + µ1 = V (x) + |f (i)

n (x)| − |x| + µ1

= V (x) + |x|
(

|f (i)
n (x)|
|x|

− 1
)

+ µ1 = λV (x) + (1 − λ)(1 + |x|) + |x|
(

|f (i)
n (x)|
|x|

− 1
)

+ µ1

= λV (x) + (1 − λ) + |x|
(

|f (i)
n (x)|
|x|

− λ

)
+ µ1

Clearly

lim
|x|→∞

(1 − λ) + |x|
(

|f (i)
n (x)|
|x|

− λ

)
+ µ1 = −∞,

so we can select

r1 := inf
x

{
(1 − λ) + |x|

(
|f (i)

n (x)|
|x|

− λ

)
+ µ1 < 0

}
+ 1.

The result now follows from Theorem 1 from Golomoziy (2022a) with set C = {|x| ≤ r1}.

Theorem 3. Let X(1) and X(2) be the chains defined above. Assume conditions of Theorem
2 hold. Assume, additionally, that Condition M holds true for both chains X(1), X(2) with
the same measures νn, constants an, n ≥ 1 and set C = {|x| ≤ r1}. Then there exist ψ > 1
and constants C0, C1 ∈ R, such that for every x, y ∈ Rd and n ≥ 0

En
xy

[
ψ

σC×C

1
]

≤ C0(|x| + |y|) + C1,

where
σC×C = inf

{
t ≥ 1 :

(
X

(1)
t , X

(2)
t

)
∈ C × C

}
,

C = {|x| ≤ r1},

and r1 is defined in Theorem 2.

Proof. From Golomoziy (2022b), Theorem 4.2 we can find such ψ0, ψ ∈ (1, 1/λ) (where λ is
defined in Theorem 2) that

En
x,y [ψσC×C ] ≤ M

(
En

x

[
ψ

σ
(1)
C

0

]
S1(ψ0) + En

y

[
ψ

σ
(2)
C

0

]
S2(ψ0)

)
,

where M ∈ R is some constant and

Si(u) = sup
n,x∈C

{ 1
1 − an

(
En

x

[
uσ

(i)
C

]
− anEn

νn

[
uσ

(i)
C

])}
.

Note, that Condition M guarantees that Si(u) are positive and finite for all ψ0 < 1/λ. From
the estimate in Theorem 2 we get

En
x,y [ψσC×C ] ≤ M ((|x| + 1 + b)S1(ψ0) + (|y| + 1 + b)S2(ψ0))

≤ MB(|x| + |y|) +MB(1 + b),

where B = max{S1(ψ0), S2(ψ0)}.
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Remark 3. For the model (12) minorization condition takes the form

min
|x|≤r1,i,n

Γ(i)
n

(
C − f (i)

n (x)
)
> 0, (13)

where Γ(i)
n is a distribution of Z(i)

n , min is a minimum of measures defined in (1). Condition
(13) is a natural condition, which means all incremental distributions have some common
probability mass around 0 (assuming some regularity of f (i)

n ).

The final question to address before we can apply Theorem 1 to the model (12) is related to
verifying Condition T. In order to verify Condition T, we need more information about
functions f (i)

n and distributions of increments Z(i)
n . For example, in Golomoziy (2023), it was

shown that for a linear autoregression in R Condition T reduces to

sup
n,i

E|Z(i)
n |p < ∞,

for any p > 2, and is valid, for example, for Guassian autoregression. The same exact
reasoning can be applied to a linear autoregression in Rn. For non-linear autoregressions,
exact calculations depend on the form of f (i)

n .

5. Appendix

Lemma 1. In the notations of Section 2 the following inequality holds∑
n≥1

sup
x∈[m,m+1),t

P̄t
x,x,1 {Dn} ≤

≤ εS
ψ(1 + ρ)
ψ − 1 +H

(m)
t (x)

(
ψS(1 + ρψ)

(ψ − 1)2 + ψ(1 + S)
ψ − 1

)
,

where
H

(m)
t = sup

x,t∈Am

∫
E2\C×C

R1t(x, dy)R2t(x, dz)
1 −Qt(x,E) h(y, z),

and
S = (1 − a∗) sup

x,y∈C,t≥0,

∫
R2\C×C

T (t)
x,y(du, dv)h(u, v).

This statement was proved in Lemma 9, Golomoziy (2023).
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