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Abstract

In this paper, we extend the Asmussen-Rosiński approach for the approximation of
Lévy processes. To simulate the value of the process at time t, we introduce a time-
dependent truncation of the Lévy measure, which we refer to as dynamic cutting, followed
by the simulation of the large-jump component. We provide the sufficient condition under
which the compensated small-jump part can be replaced by a Gaussian approximation.
We also derive weak approximation rates for both approaches. Finally, we run numerical
simulations and compare the performance of our method with the Asmussen-Rosiński
approach.
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1. Introduction
Let Z(t), t ≥ 0, be a Lévy process on R, i.e. a stochastically continuous process with
independent and stationary increments. If not stated otherwise, we assume Z(0) = 0. Then
the characteristic function ϕt(ξ) = EeiξZ(t), ξ ∈ R, of Z possesses a specific structure, called
the Lévy-Khinchin representation:

ϕt(ξ) = exp
{

−t
(

−iℓξ + Q2ξ

2 +
∫

u̸=0

(
1 − eiξu + iξu1|u|≤1

)
ν(du)

)}
=: exp{−tψ(ξ)},

(1.1)

where ℓ,Q ∈ R and the measure ν(·) is assumed to satisfy
∫

u̸=0 min(|u|2, 1)ν(du) < ∞; such a
measure is called a Lévy measure. There is one-to-one correspondence between a given triplet
(ℓ,Q2, ν(·)) and a Lévy process, i.e. for any Lévy process there exists a triplet (ℓ,Q2, ν(·))
such that (1.1) is satisfied, and the converse is also true.
Starting with the triplet (ℓ,Q2, ν(·)), one can write the Lévy-Ito stochastic representation of
Z. Denote by N(·, ·) the Poisson random measure, related to Z:

NZ(du, ds) :=
∑

s>0:∆Z(s)̸=0
δ∆Z(s),s(du, ds). (1.2)

For any measurable set D ⊂ B(R) denote NZ
t (D) :=

∫ t
0 N

Z(D, ds); NZ
t (D) is a Poisson
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random process and ENZ
t (D) = tν(D) is its compensator. We use the notation

ÑZ(dy, ds) = NZ(dy, ds) − ν(dy)ds, ÑZ
t (dy) =

∫ t

0
ÑZ(dy, ds) = NZ

t (dy) − tν(dy)

for the compensated Poisson random measure and its time integral. Then (see, for example,
(Protter 2004, Th.I.42) or (Böttcher, Schilling, and Wang 2013, Th.2.12)) Z(t) admits the
following representation:

Z(t) = Z(0) + ℓt+QB(t) +
∫ t

0

∫
0<|y|≤1

yÑZ(dy, ds) +
∑

0<s≤t

∆Z(s)1|∆Z(s)|>1. (1.3)

Here B(t) is the Brownian motion at time t > 0. A Lévy process is a semi-martingale: one
can rewrite (1.3) as

Z(t) = Z(0) +M(t) +A(t), (1.4)

where
M(t) := QB(t) +

∫
0<|y|≤1

yÑZ
t (dy), A(t) = ℓt+

∑
0<s≤t

∆Zs1|∆Xs|>1,

are, respectively, the martingale and the process having finite variation on compacts, see
(Protter 2004, Th.I.40, 42).
A Lévy process has countably many jumps on any interval [0, T ] and finitely many jumps
of size bigger than some fixed ε > 0. In order to simulate Z, we need to take finitely many
jumps of Z, which gives an adequate description of Z. Apart from some particular cases,
e.g. Brownian motion, Gamma process, α-stable process, simulation of the Lévy process with
a given triplet is not an easy task. Usually, the distribution function of a Lévy process is
unknown or has a rather complicated form, which makes the simulation rather perplex. For
the methods of generating infinitely divisible random variables (r.v.’s) and Lévy processes (e.g.
methods of Khinchin, Fergusson-Klass, Bondesson, LePage, Rosiński) we refer to Rosiński
(2001). We also would like to mention that the Damien-Laud-Smith algorithm from Damien,
Laud, and Smith (1995) gives a way to simulate an (approximation of) an arbitrary one-
dimensional infinitely divisible r.v., which allows us to simulate a Lévy process. On the other
hand, it was observed by Bondesson (1982) and later by Asmussen and Rosiński (2001), that
under some conditions small jumps can be substituted by an (arithmetic) Brownian motion.
Necessary and sufficient conditions for this substitution were proved in Asmussen and Rosiński
(2001). The idea of this method is the following: one can cut away jumps of size less than
some fixed level δ and in such a way get the first order approximation

Z1,AR
δ (t) := t

(
ℓ−

∫
δ<|u|≤1

uν(du)
)

+QB(t) +
∑
s≤t

1|∆Z(s)|>δ∆Z(s). (1.5)

Under certain assumption on the Lévy measure one can write a better approximation by
substituting compensated small jumps with the (arithmetic) Brownian motion with certain
variance:

Z2,AR
δ (t) := t

(
ℓ−

∫
δ<|u|≤1

uν(du)
)

+ (Q2 + σ2(δ))1/2B(t) +
∑
s≤t

1|∆Z(s)|>δ∆Z(s), (1.6)

where σ2(δ) :=
∫

|u|≤δ u
2ν(du).

These approximations were used in Asmussen and Rosiński (2001) in order to get the error
rates in the form of Berry-Esseen bounds; however, the same technique can be used to get the
weak approximation rates. Related results on the Wasserstein and total variation distances
between the small-jump part of a Lévy process and its Gaussian approximation were obtained
in Mariucci and Reiß (2018) and the works cited therein.
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In this paper we propose a development of this approach, which we believe to be more
flexible and give more accurate numerical results. We cut the Lévy measure in a time-
dependent way, which we call the dynamic cutting (DC), and then simulate the large-jump
part. We state the sufficient condition which allows us to substitute the compensated small
jump-part with a Gaussian component. In both cases we provide the weak approximation
rates. Our proof of the error bounds uses the Burkholder-Davis-Gundy inequality for semi-
martingales, see the survey paper Kühn and Schilling (2023) as well as the Kunita (2004). This
approach is different from that in Asmussen and Rosiński (2001). We provide an algorithm
for simulation of Z, as well as some numerical results, which we compare with those obtained
by the Asmussen and Rosiński (AR) approach.
Various convergence rates for Lévy-driven SDEs, where the AR approach is used to approx-
imate the corresponding Lévy process, are obtained e.g. in Fournier (2011), Kohatsu-Higa
and Ngo (2013), Bally and Qin (2022), Bossy and Maurer (2024), see also the results quoted
therein. We believe that our approach and the results, e.g. Theorems 2.2 and 2.3, can
be applied for investigations of the Euler scheme for Lévy-driven SDEs and can give better
accuracy.
The structure of our paper is the following. In Section 2 we give some notions on Lévy
processes and formulate our results. Proofs of Theorems 2.1, 2.2 and 2.3 are given in Section 4.
Examples are provided in Section 3.

2. Construction and approximation

2.1. Notation and assumptions

We write f ≲ g if there exists a generic constant C > 0 such that f ≤ Cg. The notation
f ≍ g means that f ≲ g and g ≲ f .
Let ν+ := ν1(0,∞), ν− := ν1(−∞,0),

N+(r) = ν+(r,∞), N−(r) = ν−(−∞,−r), r > 0. (2.1)

Define the generalized inverses of functions N±, respectively, at t−1:

τ±(t) = sup{r ≥ 0 : N±(r) ≥ 1/t}, t > 0. (2.2)

Note that we cannot expect to have the relation N±(τ±(t)) = 1
t unless the functions N±(r)

are right-continuous, see (Embrechts and Hofert 2013, Prop.2.3). For simplicity, we make the
assumption (see (A1) below), which guarantees the above relation.
Define the Pruitt functions, see Pruitt (1981):

ψL,±(ξ) :=
∫

u̸=0,|uξ|≤1
|uξ|2ν±(du), ψU,±(ξ) :=

∫
u̸=0

(|uξ|2 ∧ 1)ν±(du).

Assumption.

Functions N± are strictly monotone and continuous. (A1)
N±(r) ≍ ψL,±(1/r), r > 0. (A2)

Let us discuss the assumption (A2) for N+, ψL,+ and ψU,+, the consideration for N−, ψL,−

and ψU,− are the same.
Assumption (A2) means that ψL,+(1/r), which in general is not monotone in r, can be
controlled by the monotone function N+(r). One can construct an examples in which the
measure ν+(·) is not absolutely continuous with respect to the Lebesgue measure, the function
ψL,+(1/r) is not monotone, but nevertheless (A2) is satisfied, see Knopova and Kulik (2013).



180 On Approximation of Some Lévy Processes

By the definition of N+ and ψU,+ we always have N+(r) ≤ ψU,+(1/r) ≲ 1/r2, r ∈ (0, 1].
However, one can show that ψU,+ has sub-quadratic growth at infinity. Indeed, by definition,
ψL,+(r) = r2 ∫

0<|u|≤1/r u
2ν+(du). Since we exclude 0 in the integral, the integral part tends

to 0 as r → ∞, implying the sub-quadratic growth of ψL,+ and, by the relation ψU,+ ≍ ψL,+,
the same property holds true for ψU,±(r). Condition (A2) implies in fact more, namely, the
existence of 0 < β+ < α+ < 2, such that

rβ+ ≲ ψU,+(r) ≲ rα+ , r ≥ 1. (2.3)

Indeed, by (A2), there exist c, C > 0, such that cψL,+(1/r) ≤ N+(r) ≤ CψL,+(1/r) for
r ∈ (0, 1], implying that

γψL,+(r) ≤ ψU,+(r) ≤ βψL,+(r), r ≥ 1, (2.4)

where γ = c + 1 ≤ β = C + 1. Estimates (2.4) allow us to derive the estimates r2/β ≲
ψU,+(r) ≲ r2/γ for r ≥ 1, see Knopova and Kulik (2013) for the lower bound, also Lemma 4.1
below, where the same argument was used. The same argument can be used to prove the
upper bound. Since c > 0, we have (2.3) with some α+ = 2/γ ∈ (0, 2).
Note that if (A2) fails, we cannot guarantee that α+ < 2. Indeed, take ν+(du) = du

u3| ln u|1+ε ,
u > 0, where ε > 0. We have

N+(r) ≍ 1
r2| ln r|1+ε

, ψL,+
(1
r

)
≍ 1
r2| ln r|ε , r ∈ (0, 1].

In this case we still have ψU,+(r) ≍ ψL,+(r), r ≥ 1, but (A2) fails. The right-hand side of
(2.3) holds with α+ = 2, but fails for any α+ ∈ (0, 2).
Thus, under (A2), there exists α± ∈ (0, 2), such that

N±(r) ≲ r−α± , r ∈ (0, 1]. (2.5)

By definition of τ±(t), (2.5) implies

τ±(t) ≲ t1/α± , t ∈ (0, 1]. (2.6)

We consider two types of approximation of Z(t). In what follows we fix the endpoint T > 0
and the parameter ε ∈ (0, 1), which is needed for the existence of finite intensity functions
λ±

h,ε(t), see below. We also fix the “tuning parameter” h ∈ (0, 1) such that Th ≪ 1.

2.2. First order approximation: construction and simulation algorithm

We delete the small-jump part and its compensator by the following dynamic cutting:

Z1,DC
h,ε (t) := Z0 +mDC

h,ε (t) + ZCP,+
h,ε (t) + ZCP,−

h,ε (t), t > 0, (2.7)

where

ZCP,+
h,ε (t) :=

∑
s≤t

∆Zs1∆Zs≥τ+((sh)ε), ZCP,−
h,ε (t) :=

∑
s≤t

∆Zs1∆Zs≤−τ−((sh)ε), (2.8)

are the upward and downward jumps, and

mDC
h,ε (t) : = ℓt−

∫ t

0

(∫
−1<u<−τ−((sh)ε)

uν−(du) +
∫

τ+((sh)ε)<u<1
uν+(du)

)
ds

= ℓt−
(
ℓDC,−

h,ε (t) + ℓDC,+
h,ε (t)

)
=
∫ t

0
ℓh,ε(s)ds,

(2.9)
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is the (compensated) drift.
Let us calculate the logarithm of the Laplace transform of ZCP,+

h,ε (t). Using the Fubini theorem
and the relation (τ+(u))−1 = 1

N+(u) , we get

− lnEe−rZCP,+
h,ε

(t) =
∫ t

0

∫
u>τ+((sh)ε)

(1 − e−ru)ν+(du)ds

=
∫ ∞

0

∫ 1
h

((τ+)−1(u))1/ε∧t

0
(1 − e−ru)dsν+(du)

=
∫ ∞

0
(1 − e−ru)

(1
h

(N+(u))−1/ε ∧ t

)
ν+(du)

=
∫ ∞

0
(1 − e−ru)µ+

h,ε(t, du),

(2.10)

where
µ+

h,ε(t, du) :=
(1
h

(N+(u))−1/ε ∧ t

)
ν+(du). (2.11)

It follows from representation (2.11) that

µ+
h,ε(t, du) = 1

h
µ+

1,ε (th, du) = tµ+
th,ε (1, du) . (2.12)

Fix t > 0. Then ZCP,+
h,ε (t) is an inhomogeneous compound Poisson (ICP) r.v., i.e.

ZCP,+
h,ε (t) =

N+
t∑

k=1
Z+

k (t), (2.13)

where N+
t is a Poisson r.v. with intensity

λ+
h,ε(t) =

∫ t

0

∫
u≥τ+((sh)ε)

ν+(du)ds = µ+
h,ε(t,R+), (2.14)

and Z+
k (t), k ≥ 1, are i.i.d. r.v.’s with the distribution function

F+
th,ε(x) := 1

λ+
h,ε(t)

∫ x

0
µ+

h,ε(t, du). (2.15)

Note that by (2.11) this distribution function depends on th. Let us calculate λ+
h,ε(t) explicitly:

λ+
h,ε(t) =

∫ t

0
ν+{u : u ≥ τ+((sh)ε)}ds =

∫ t

0

( 1
hs

)ε

ds = t1−ε

1 − ε

(1
h

)ε

. (2.16)

One can get a more user-friendly expression for the distribution function of Z+
k (t).

After several transformations one gets

∫ x

0
µ+

1,ε(t, du) =
{

ε
1−ε(N+(x))1−1/ε, 0 ≤ x ≤ τ+(tε),
t1−ε

1−ε − tN+(x), x > τ+(tε).

This representation allows us to rewrite F+
h,ε(x) as

F+
h,ε(x) =


(

1
h

)1−ε
ε
(
N+(x)

)1−1/ε
, 0 ≤ x ≤ τ+(hε),

1 − (1 − ε)hεN+(x), x > τ+(hε),

or, which is the same but more convenient to use in simulation,
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F+
h,ε(x) =


(

1
h

)1−ε
ε
(
N+(x)

)1−1/ε
, N+(x) ≥ h−ε,

1 − (1 − ε)hεN+(x), N+(x) < (h)−ε.

Similarly, one can define

λ−
h,ε(t) :=

∫ t

0
ν−{u : u ≥ τ−((sh)ε)}ds, µ−

h,ε(t, du) :=
(1
h

(N−(u))−1/ε ∧ t

)
ν−(du)

F̃−
th,ε(x) := 1

λ−
h,ε

(t)
∫ x

0 µ
−
h,ε(t, du), and write ZCP,−

h,ε (t) = ∑N−
t

k=1 Z
−
k (t), where N−

t ∼ Pois(λ−
h,ε(t)),

Z−
k (t) ∼ F̃−

th,ε, 1 ≤ k ≤ N−
t . On the other hand, for simulation purposes it is more handy to

simulate r.v.’s with the distribution function

F−
h,ε(x) :=


(

1
h

)1−ε
ε (N−(x))1−1/ε

, 0 ≤ x ≤ τ−(hε),
1 − (1 − ε)hεN−(x), x > τ−(hε),

(2.17)

defined on the non-negative half line, but then take it with the negative sign. Thus, we will
use the representation

ZCP,−
h,ε (t) = −

N−
t∑

k=1
Z−

k (t), (2.18)

with N−
t ∼ Pois(λ−

h,ε(t)) and Z−
k (t) ∼ F−

th,ε, 1 ≤ k ≤ N−
t . Observe also, that by our choice of

the cutting levels τ± we have λ−
h,ε(t) = λ+

h,ε(t).

Example 2.1. Suppose that ν(du) = C+αu
−1−αdu, u > 0, and ν(du) = C−α|u|−1−αdu,

u < 0, for some C± > 0. Then N±(x) = C±x
−α, x > 0, and for such x we have

F±
h,ε(x) =


(

1
h

)1−ε
ε
(

xα

C±

) 1−ε
ε , 0 ≤ x ≤ (C±h

ε)1/α,

1 − (1 − ε)hε C±
xα , x > (C±h

ε)1/α,

Algorithm 1 below allows us to simulate the first order approximation for fixed t > 0.

Algorithm 1. Fix t > 0, Z0 ∈ R, and put t0 = 0.

Step 1 Simulate r.v.’s N±
t := Pois(λ+

h,ε(t)).

Step 2 Simulate i.i.d. Z±
k (t) ∼ F±

th,ε(·), 1 ≤ k ≤ N±
t .

Step 3 Calculate ZCP,+
h,ε (t) = ∑N+

t
k=1 Z

+
k (t), ZCP,−

h,ε (t) = −
∑N−

t
k=1 Z

−
k (t).

Step 4 Calculate
Z1,DC

h,ε (t) = Z0 +mDC
h,ε (t) + ZCP,+

h,ε (t) + ZCP,−
h,ε (t). (2.19)

If ν(du) is symmetric, then mDC
h,ε (t) = 0.

2.3. Second order approximation: construction and simulation algorithm

Denote by Rh,ε(t) the “small-jump ” part of the process Z(t) up to time t > 0:

Rh,ε(t) := Z(t) − Z1,DC
h,ε (t) =

∫ t

0

∫
D±(s)

uÑZ(du, ds), (2.20)

where D±(s) := {u : −τ−((sh)ε) ≤ u ≤ τ+((sh)ε), u ̸= 0}.
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For p ≥ 2 denote

V (p),+(h) := 1
h

∫ h

0

∫
0<u≤τ+(sε)

|u|pν+(du)ds, V (p),−(h) := 1
h

∫ h

0

∫
−τ−(sε)≤u<0

|u|pν−(du)ds,

(2.21)
V (p)(h) := V (p),+(h) + V (p),−(h), (2.22)

and let
σ2

h,ε(t) := tV (2)(th). (2.23)

The second-order approximation of Z(t) is motivated by the following result.

Theorem 2.1. If
V (3)(h)

(V (2)(h))3/2 −→ 0, h → 0, (2.24)

then for any t > 0
Rh,ε(t)√
σ2

h,ε(t)
d=⇒ N(0, t), h → 0. (2.25)

One can show that (A2) is sufficient for (2.24).

Lemma 2.1. Suppose that (A2) holds true. Then (2.24) is satisfied.

The proofs of Theorem 2.1 and Lemma 2.1 are given in Section 4.
The above theorem allows us to substitute Rh,ε(t) by a normal r.v. and write the second
order approximation of Z(t) (for fixed t) in the spirit of Asmussen and Rosiński (2001):

Z2,DC
h,ε (t) := Z1,DC

h,ε (t) + σh,ε(t)W, (2.26)

where W ∼ N(0, 1) is independent of Z1,DC
h,ε (t).

Up to now we discussed the simulation of Z(t) at a fixed point t > 0. Note that the distribution
functions of Z±

k (t) depend on t, which does not allow us to simulate ZCP,±
h,ε (t) as “usual”

inhomogeneous compound Poisson processes. Instead, we propose the following procedure.
Observe that N+

t is the inhomogeneous Poisson process (IPP) with intensity function λ+
h,ε(t),

and N−
t is its independent copy. In order to simulate the jump times of the IPP with intensity

λ+
h,ε(t), we use the following algorithm, proposed by (Çinlar 1975, Ch.4.7):

• Generate Γi ∼ Exp(1);
• Put Ti = (λ+

h,ε)−1(Γi).
The algorithm below shows how to simulate the trajectory of the second order approximation
(2.26) up to a fixed time t > 0.

Algorithm 2. Fix t > 0, initial value Z0, partition size N , dynamic cutting parameters h, ε
and the process-specific arguments.

Step 1: Divide the interval [0, t] into N subintervals of equal length ∆t = t/N , forming a
grid πN = {tk}N

k=0, where tk = k∆t.

Step 2: Independently generate upward jump times {T+
k } and downward jump times {T−

k }:

T±
k ∼

(
λ±

h,ε

)−1
(Exp(1)),

and stop when the cumulative sum of upward jump times for {T+
k } exceeds t, and do

the same separately for the cumulative sum of downward jump times {T−
k }. Denote the

upward and downward jump times by the arrays S+ and S−, respectively.
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Step 3: Simulate the corresponding jump sizes Z+
k and Z−

k for the times T+
k and T−

k from
the distribution:

Z±
k ∼ F±

T ±
k

h,ε
(·).

Step 4: Merge the grid πN with the upward and downward jump times S+ and S−, creating
the array of all times S = {sk}. Sort S in ascending order.

Step 5: Simulate the process:

• Initialize X0 = Z0.
• For each time step ℓ = 0, . . . ,K − 1, where K is the size of S, do the following:

– Simulate Wℓ ∼ N(0, 1).
– Compute the time increment ∆sℓ = sℓ+1 − sℓ.
– Update the process Xℓ+1 according to the following cases:

If sℓ /∈ S+ ∪ S− : Xℓ+1 = Xℓ +mDC
h,ε (sℓ)∆sℓ + σh,ε(∆sℓ)Wℓ,

If sℓ ∈ S+ : Xℓ+1 = Xℓ +mDC
h,ε (sℓ)∆sℓ + σh,ε(∆sℓ)Wℓ + Z+

k ,

If sℓ ∈ S− : Xℓ+1 = Xℓ +mDC
h,ε (sℓ)∆sℓ + σh,ε(∆sℓ)Wℓ − Z−

k .

By the process-specific arguments we mean e.g. α for the α-stable process.
If one needs to simulate only the first order approximation, one can drop in the above algo-
rithm the term with the normal variable.
In Section 2.1 we illustrate the above results by simulations.

2.4. Weak approximation rates
Now we provide the weak approximation rates for the dynamic cutting schemes proposed
above . Denote τ(t) = max(τ+(t), τ−(t)). For simplicity we assume that Z0 = 0.

Theorem 2.2. Let f ∈ C1(R) with supx |f ′(x)| ≤ Cf . Suppose that (A1) and (A2) hold
true. Then

sup
t∈[0,T ]

∣∣∣Ef(Z(t)) − Ef(Z1,DC
h,ε (t))

∣∣∣ ≤ C(1)τ((Th)ε)(Th)−ε/2√
T , (2.27)

sup
t∈[0,T ]

∣∣∣Ef(Z(t)) − Ef(Z2,DC
h,ε (t))

∣∣∣ ≤ C(2)(1 ∨
√
T )τ ((Th)ε) (|ln(Th)ε| + |lnT |) , (2.28)

where C(i) > 0, i = 1, 2, are uniformly bounded in h ∈ (0, 1) and ε ∈ (0, 1/2).

Put
α := max(α+, α−). (2.29)

Note that under (A2) we have α ∈ (0, 2). For α close to 2 the convergence to 0 of the right-
hand side of (2.27) is slow, which is natural, because the distribution of Z “approaches” the
normal distribution, hence the first-order approximation becomes less accurate.

Corollary 2.1. From (2.6) we derive

τ±(t) ≲ t1/α± ≲ t1/α, t ∈ (0, 1]. (2.30)

Since we assume that Th < 1, the right-hand sides of (2.27) and (2.28) can be estimated from
above by

sup
t∈[0,T ]

∣∣∣Ef(Z(t)) − Ef(Z1,DC
h,ε (t))

∣∣∣ ≲ (Th)
(2−α)ε

2α

√
T , (2.31)

sup
t∈[0,T ]

∣∣∣Ef(Z(t)) − Ef(Z2,DC
h,ε (t))

∣∣∣ ≲ (1 ∨
√
T )(Th)

ε
α (|ln(Th)ε| + |lnT |) . (2.32)
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In the next theorem we estimate the distance between the distribution functions of Z(t),
Z1,DC

h,ε (t) and Z2,DC
h,ε (t), respectively.

Theorem 2.3. Suppose that (A1), (A2) are satisfied.

1. Suppose that the Lévy measure ν(du) is such that µh,ε(t, du) satisfies for some κ ∈ (0, 1]

µh,ε(t, B(z, r)) ≤ Crκ, r ∈ (0, 1), (2.33)

uniformly in t ∈ (0, T ] and |z| ≥ c, where c is such that z /∈ suppµh,ε(t, ·). Then for
such z we have

sup
|z|>c

sup
t∈[0,T ]

∣∣∣P(Z(t) ≤ z) − P(Z1,DC
h,ε (t) ≤ z)

∣∣∣ ≲ (
1 ∨ T 1+ ε(2−α)

α

)
h

κε(2−α)
(2+κ)α . (2.34)

2. For t ∈ (0, T ] we have

sup
z∈R

∣∣∣P(Z(t) ≤ z) − P(Z2,DC
h,ε (t) ≤ z)

∣∣∣ ≲ (
t−1/2 ∨ 1

)
(th)ε/2. (2.35)

Note (2.35) is non-uniform in t.

Remark 2.1. Note that (2.33) is satisfied with κ = 1 for any absolutely continuous Lévy
measure, in particular, for µh,ε as in Example 2.1.

3. Examples
In the examples below we assume that the Lévy measure is absolutely continuous with respect
to the Lebesgue measure and write its density in the form

n(u) = n+(u)1u>0 + n−(u)1u<0.

For simplicity, from now on we fix the time t = 1 and omit the time parameter in the
calculations below. We calculate the values Z1,DC

h,ε and Z2,DC
h,ε using the following algorithms:

(I) Algorithm 1: Implementation in C# for Z1,DC
h,ε and Z2,DC

h,ε is provided here:
https://gitlab.com/dmytro_ivanenko/levyprocesssimulation/-/tree/master?
ref_type=heads

(II) Algorithm 2: Implementation in Python code for Z1,DC
h,ε and Z2,DC

h,ε is provided here:
https://github.com/d-platonov/levy-processes-dynamic-cutting

For (I), we run Monte Carlo simulations with the number of simulationsN = 104, which means
that the error is of order 1/

√
N = 10−2. In the tables below we provide the simulation results

in order to illustrate the difference between the DC and AR approaches; the simulations may
vary in the range of the error.
For (II), we take the average and standard deviation of 102 Monte Carlo simulations, each
with N = 103 to estimate moments of both α-stable and tempered-stable processes.
In all tables we take h = 0.05 and ε = 0.01. Note that Python implementation includes seed
parameter for consistent and reproducible results if one decides to check the outputs.

https://gitlab.com/dmytro_ivanenko/levyprocesssimulation/-/tree/master?ref_type=heads
https://gitlab.com/dmytro_ivanenko/levyprocesssimulation/-/tree/master?ref_type=heads
https://github.com/d-platonov/levy-processes-dynamic-cutting
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Example 3.1. Consider a symmetric α-stable r.v. with the characteristic function ϕZ(ξ) =
e−|ξ|α. Denote M := C± (cf. Example 2.1); from

|ξ|α = Mα

∫
R

(1 − cos ξu)
|u|1+α

du

we find that M = M(α) =
(
2α
∫∞

0
(1−cos u)

u1+α du
)−1

. We use the notation Z ∼ S(α, γ) for a r.v.
with such a characteristic function, where γ = αM . We have

n±(u) = αM

|u|1+α
, N±(u) = M

|u|α
, τ±(t) = (tM)1/α .

Direct calculation yields

V (k)(h) = 2α2Mk/αh
(k−α)ε

α

((k − α)ε+ α)(k − α) ,

and
σ2

h,ε(1) = 2α2(M)2/α

((2 − α)ε+ α)(2 − α) (h)
(2−α)ε

α (3.1)

Let us compare the results obtained by the DC and AR approaches. We simulate Z1,AR
δ and

Z2,AR
δ with mAR

δ = 0 because n(u) is symmetric, and calculate

(σAR
δ )2 =

∫
|u|≤δ

|u|2n(u)du = 2
∫ δ

0

αMu2

u1+α
ν(du) = 2αMδ2−α

2 − α

In order to have the variance of the same order as in the DC case, take δ = hε/α.
In Table 1 we collect the results of computation of the absolute p-moment obtained using (I).
Note that the exact value of the absolute p-moment of a symmetric α-stable variable Z can be
calculated by the following formula (see Shanbhag and Sreehari (1977), Zolotarev (1957)):

mp := E|Z|p = 2pΓ((1 + p)/2)Γ(1 − p/α)
Γ(1 − p/2)Γ(1/2) , −1 < p < α < 2. (3.2)

The empirical absolute moments m̂Y
p := 1

N

∑N
k=1 |Yk|p are calculated for each

Y ∈ {Z1,DC
h,ε , Z2,DC

h,ε , Z1,AR
δ , Z2,AR

δ }.

In Table 2 we compare the L2-distance between empirical and theoretical characteristic func-
tions ϕ̂Y and ϕZ , respectively:

d2(ϕ̂Y , ϕZ) :=
∫
R

∣∣∣ϕ̂Y (ξ) − ϕZ(ξ)
∣∣∣2 e−ξ2/2

√
2π

dξ; (3.3)

The results of simulations demonstrate that the DC method shows better accuracy than the
AR method, which is expectable, since the DC method handles the small-jump part in a more
careful way. Approach (I) allows the reader to vary the argument α ∈ (0, 2) and the tuning
parameters h, ε > 0. On the other hand, one can try the open code (II); some results for
empirical moments and their standard deviations are listed in Table 3.

Example 3.2. Next we consider the tempered stable (TS) case (see also CGMY distribution,
Schoutens (2003), Jacob (2005)):

n±(u) = γ±e−β±|u|

|u|1+α± du, u ∈ R, (3.4)
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Table 1: p-moments of a symmetric α-stable r.v., p = 0.3; (I)

α mp m̂
(1,DC)
p m̂

(2,DC)
p m̂

(1,AR)
p m̂

(2,AR)
p

0.4 3.134779 2.637734 2.686604 1.759550 2.235229
0.6 1.532501 1.507219 1.569990 0.798177 1.246614
0.8 1.240316 1.169783 1,247960 0.767477 1.185772
1.0 1.122326 1.037327 1.126822 0.747823 1.136584
1.2 1.059521 0.950333 1.053445 0,717630 1.116851
1.4 1.020833 0.897030 1.025016 0.648963 1.075473
1.6 0.994726 0.824191 0.995633 0.542420 1.045514
1.8 0.975973 0.748651 0.974830 0.364412 1.014050

Table 2: Distance (3.3) for theoretical and empirical characteristic functions for a symmetric
α-stable r.v.; (I)

α d2(ϕ̂1,DC , ϕZ) d2(ϕ̂2,DC , ϕZ) d2(ϕ̂1,AR, ϕZ) d2(ϕ̂2,AR, ϕZ)
0.4 2.8636 ∗ 10−5 3.2609 ∗ 10−5 8.1892 ∗ 10−2 4.9653 ∗ 10−2

0.6 9.8685 ∗ 10−5 3.1334 ∗ 10−5 4.1973 ∗ 10−2 1.5020 ∗ 10−2

0.8 4.1907 ∗ 10−4 4.6133 ∗ 10−5 2.0308 ∗ 10−2 1.4894 ∗ 10−3

1.0 1.0968 ∗ 10−3 1.6380 ∗ 10−5 1.4672 ∗ 10−2 1.5818 ∗ 10−4

1.2 3.7066 ∗ 10−3 1.8312 ∗ 10−5 1.3460 ∗ 10−2 1.8001 ∗ 10−3

1.4 8.7726 ∗ 10−3 1.5414 ∗ 10−5 1.8454 ∗ 10−2 3.4445 ∗ 10−3

1.6 1.9749 ∗ 10−2 2.7285 ∗ 10−5 3.3820 ∗ 10−2 3.7019 ∗ 10−3

1.8 6.3345 ∗ 10−2 3.4925 ∗ 10−6 8.7105 ∗ 10−2 1.6689 ∗ 10−3

where α± ∈ (0, 2) and β± > 0, γ± > 0 are some constants (to be chosen). Clearly, after
appropriate choice of constants we arrive at the previous example. The characteristic function
of a tempered stable r.v. is known (cf. Asmussen (2022), (Küchler and Tappe 2013, Lem.2.6,
Rem.2.8), see also the expressions for CGMY distribution in Schoutens (2003), Jacob (2005)).
Here we consider the easier for numeric implementation case α± ∈ (0, 1); for such α± we
have

ϕZ(ξ) : = exp{γ−Γ(−α−)[(β− + iξ)α− − (β−)α− ] + γ+Γ(−α+)[(β+ − iξ)α+ − (β+)α+ ]}.
(3.5)

The expression for the cumulants κn := dn

dzn lnϕZ(−iz) is known:

κn = Γ(n− α+) γ+

(β+)n−α+ + (−1)nΓ(n− α−) γ−

(β−)n−α− , n ≥ 1. (3.6)

Since κn = µ0
n, n = 1, 2, 3 and µ0

4 = κ4 − 3κ2
2, the mean, variance, skewness and kurtosis are

given, respectively, by

µ1 = κ1, µ0
2 = κ2, γ1 = κ3

κ
3/2
2

, γ2 = κ4
κ2

2
− 3. (3.7)

In Tables 4 – 7 we provide the simulation results. In the AR approximation we chose δ :=
τ(hε).
In order to simulate a TS r.v. we use Algorithm 0 from Kawai and Masuda (2011) together
with the results already obtained in Example 3.1. Namely, in order to simulate a one-sided
TS r.v. with parameters (α, β, γ) and characteristic function

ψ(α,β,γ)(ξ) = exp {γΓ(−α) ((β − iξ)α − βα)} , ξ ∈ R,
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Table 3: p-moments of a symmetric α-stable r.v, p = 0.3, (II)

α mp m̂
(1,DC)
p std m̂

(2,DC)
p std

0.4 3.134779 2.868470 0.597413 3.069524 1.426976
0.6 1.532501 1.447962 0.068008 1.526103 0.093529
0.8 1.240315 1.141892 0.029508 1.230012 0.033335
1.0 1.122326 1.010071 0.020149 1.112143 0.019984
1.2 1.059521 0.931838 0.016124 1.050564 0.014890
1.4 1.020833 0.872643 0.013867 1.013388 0.011715
1.6 0.994726 0.815668 0.012367 0.989492 0.010049
1.8 0.975973 0.739470 0.010595 0.973055 0.008825

Table 4: Characteristics (3.7) for TS r.v. with α± = 0.2, β± = 1.0; (I)

parameters theory DC1 DC2 AR1 AR2
µ1 0 0.065065 -0.066202 0.000760 -0.002707
µ0

2 0.164791 0.158644 0.184591 0.026944 0.073073
γ1 0 0.174530 0.269878 -1.372971 -0,434400
γ2 27.584204 26.738838 20.349046 230.523477 36.000852

we simulate an α-stable r.v. V ∼ S+(α, γ) with characteristic function

ϕ(α,γ)(ξ) = exp
{∫ ∞

0
(eiξu − 1) γdu

u1+α

}
, ξ ∈ R.

We say that V ∼ S−(α, γ), if −V ∼ S+(α, γ). Then we use the following algorithm.

Algorithm 3.

Step 1 Generate U ∼ U[0, 1] and V ∼ S+(α, γ);

Step 2 If U ≤ e−βV , exit with V , otherwise go to Step 1.

We modify this algorithm, but instead of simulating one-sided S±(α, γ) r.v.’s, we simulate
their approximations by, respectively, AR and DC methods.

Algorithm 4.

Step 1 Generate U ∼ U[0, 1], and V + = ZCP,+
h,ε − ℓDC,+

h,ε ;

Step 2 If U ≤ e−βV +, set Z+ = V +; otherwise go to Step 1;

Step 3 Generate U ∼ U[0, 1], and V − = −(ZCP,−
h,ε − ℓDC,−

h,ε );

Step 4 If U ≤ e−βV −, set Z− = V −; otherwise go to Step 3;

Step 5 ZDC,1 := Z+ − Z−;

Step 6 Generate W ∼ N(0, 1), ZDC,2 := ZDC,1 + σ2
h,εW .

Here σ2
h,ε is calculated for n(u) = n+(u) + n−(u) with n± are given by (3.4), whereas ZCP,±

h,ε

and ℓDC,±
h,ε are calculated for the one-sided S±(α, γ) process, with only positive (respectively,

negative) jumps. Note that γ± = α±M(α±).
In Tables 5 – 7 we provide simulation results by (I). Although the d2–distance is slightly
better for the DC approximation, simulations show that in moment estimation, DC method is
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Table 5: Characteristics (3.7) for TS r.v. with α+ = 0.8, α− = 0.2, β± = 1.0; (I)

parameters theory DC1 DC2 AR1 AR2
µ1 1.187883 -0.084557 -0.087161 0.050844 0.053271
µ0

2 0.340571 0.310431 0.423684 0.110907 0.270157
γ1 0.812564 1.107415 0.600519 4.194460 1.033369
γ2 6.456588 13.896478 8.972440 36.77033 8.374111

Table 6: Characteristics (3.7) for TS r.v. with α± = 0.8, β+ = 1.0, β− = 1.0; (I)

parameters theory DC1 DC2 AR1 AR2
µ1 0 -0.247880 -0.245937 -0.00598 -0.00925
µ0

2 0.516351 0.482515 0.597410 0.216077 0.486467
γ1 0 0.839875 0.648124 -0.005699 0.008762
γ2 2.112800 18.414751 13.494138 27.957532 7.922462

better when both values of α± are small, whereas AR method shows better results for bigger
α±. On the other hand, some error can be produced by the acceptance-rejection Algorithm 3.
As expected, for small α± the DC method works better for the first approximation rather
than for the second one, which systematically overestimates the moments, whereas the second
approximation in the AR settings works better than the first one. In Tables 8–10 we provide
the results of simulations by method (II).

4. Auxiliary results and proofs

4.1. Auxiliary results on N±

In this subsection we provide technical results which are implied by condition (A2) on N±(·)
and ψL,±(·). For the sake of simplicity of notation, in this subsection we suppress the super-
scripts ± in the functions below.

Lemma 4.1. We have
N(2r) ≍ N(r), r > 0. (4.1)

Proof. By (A2) we have N(r) ≍ ψU (1/r), so it is enough to show the doubling property (4.1)
for ψU . Observe that the function ψU (r) is a.e. differentiable and

(ψU (r))′ = 2ψL(r)
r

, a.e.

Then for 0 < r1 < r2 we have ∫ r2

r1
(ψU (r))′dr ≤

∫ r2

r1

2ψU (r)
r

dr,

implying

ln
(
ψU (r2)
ψU (r1)

)
≤ ln

(
r2
r1

)2
.

Taking r2 = 2r, r1 = r, we derive ψU (2r) ≤ 4ψU (r). Thus,

ψU (r) ≤ ψU (2r) ≤ 4ψU (r),

which yields the doubling property of N .



190 On Approximation of Some Lévy Processes

Table 7: Distance (3.3) for theoretical and empirical characteristic functions for TS r.v.; (I)

α+ α+ β+ β− d2(ϕ̂1,DC , ϕZ) d2(ϕ̂2,DC , ϕZ) d2(ϕ̂1,AR, ϕZ) d2(ϕ̂2,AR, ϕZ)
0.10 0.10 1.0 0.5 0.920388 0.910131 0.893759 0.882829
0.10 0.50 1.0 0.5 0.891094 0.879827 0.921162 0.899328
0.50 0.95 1.0 0.5 0.966988 0.955811 0.998475 0.943920
0.95 0.95 1.0 0.5 0.837982 0.764671 0.943997 0.791415

Table 8: Characteristics (3.5) for TS r.v. with α± = 0.2, β± = 1.0; (II)

parameters theory DC2 std
µ1 0.000000 0.001522 0.010423
µ0

2 0.176606 0.174702 0.031245
γ1 0.000000 0.262261 1.370075
γ2 25.538054 25.441146 10.569981

One can elaborate (4.1).

Lemma 4.2. Take R > 1. Then there exists ζ = ζ(R) > 0 such that

RN(r) ≤ N

(
r

Rζ

)
, r > 0. (4.2)

Proof. By (4.1), there exists a constant C > 0 such that CN(r) ≤ N(r/2) for all r > 0.
Iterating this inequality k times we get

CkN(r) ≤ N(r2−k).

Take κ := min{ℓ > 0 : R < Cℓ}, i.e. κ =
[

log2 R
log2 C

]
+ 1. Then

RN(r) ≤ N(r2−κ) ≤ N(rR−ζ),

where ζ = κ
log2 R .

The above property yields the upper estimate on τ(t).

Lemma 4.3. For R > 1 we have

τ(Rt) ≤ Rζτ(t), t > 0, (4.3)

where ζ = ζ(R) > 0 is the same as in (4.2).

Proof. Since N(r) is monotone decreasing, (4.2) implies

(RN(r))−1 ≤ (N(rR−ζ))−1, r > 0,

which in turn implies (4.3).

Finally, we show that (A1), (A2) allow us to prove the following estimates for V (p).

Lemma 4.4. Suppose that (A1), (A2) are satisfied. Then for any p ≥ 2, ε ∈ (0, 1/2)

V (p)(h) ≤ 2Cτp(hε)h−ε. (4.4)

For p = 2 we have the lower bound

V (2)(h) ≥ cτ2(hε)h−ε. (4.5)

The constants C, c > 0 are independent of ε if ε ∈ (0, 1/2).
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Table 9: Characteristics (3.5) for TS r.v. with α+ = 0.8, α− = 0.2, β± = 1.0; (II)

parameters theory DC2 std
µ1 1.183829 1.216658 0.017094
µ0

2 0.347145 0.318226 0.036514
γ1 0.741511 0.687948 0.792942
γ2 6.363491 10.518729 8.495347

Table 10: Characteristics (3.5) for TS r.v. with α± = 0.8, β± = 1.0, (II)

parameters theory DC2 std
µ1 0.000000 -0.003014 0.019988
µ0

2 0.517683 0.460326 0.041929
γ1 0.000000 -0.030982 0.478558
γ2 2.099642 5.977117 3.789936

Proof. Observe that the function τ(t) is increasing in t. Using the definition of τ(t) we get

V (p)(h) = h−1
∫ h

0
τp(sε)

∫
0<|u|<τ(sε)

|u/τ(sε)|pν(du)ds ≤ h−1τp(hε)
∫ h

0
ψL(1/τ(sε))ds

≤ Ch−1τp(hε)
∫ h

0
N(τ(sε))ds = Ch−1τp(hε)

∫ h

0
s−εds

= C

1 − ε
τp(hε)h−ε,

(4.6)

where in the penultimate line we used (A1) and (A2).
Similarly,

V (2)(h) = h−1
∫ h

0
τ2(sε)ψL(1/τ(sε))ds

≥ c1h
−1
∫ h

0
τ2(sε)s−εds ≥ c1h

−1
∫ h

h/2
τ2(sε)s−εds = c1

( 2 − 2ε

(1 − ε)2

)
τ2((h/2)ε)h−ε

≥ c2

( 2 − 2ε

(1 − ε)2

)
τ2((h/2)ε)h−ε ≥ c2

2 τ
2(hε)h−ε.

(4.7)

where in the penultimate inequality we used the doubling property of τ . In the last inequality
we used (4.2) and that 2 − 2ε > 1 − ε for ε < − ln(ln 2)/ ln 2, and − ln(ln 2)/ ln 2 > 1

2 .

4.2. Proofs of Theorem 2.1 and Lemma 2.1

The proof of Theorem 2.1 relies on Lemma 4.5 below.

Lemma 4.5. Let Zh,ε be an infinitely divisible r.v. with the characteristic function

EeiξZh,ε = exp
{

− 1
h

∫ h

0

∫
D±(s)

(
1 − eiξu + iξu

)
ν(du)ds

}
. (4.8)

If (2.24) holds true, then

Zh,ε√
V (2)(h)

w=⇒ N(0, 1) as h → 0. (4.9)
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Proof. Using the Taylor decomposition of the expression in the exponent we get

− lnEe
iξZh,ε√
V (2)(h) = ξ2

2hV (2)(h)

∫ h

0

∫
D±(s)

u2ν(du)ds+ 1
h

∫ h

0

∫
D±(s)

f

 ξ√
V (2)(h)

, u

 ν(du)ds

= ξ2

2 + 1
h

∫ h

0

∫
D±(s)

f

 ξ√
V (2)(h)

, u

 ν(du)ds,

where
|f(ξ, u)| :=

∣∣∣∣∣eiξu − 1 − iξu− (iξu)2

2

∣∣∣∣∣ ≤ |ξu|3

6 , u, ξ ∈ R.

Then (2.24) implies the convergence to the characteristic function of a normal distribution:∣∣∣∣∣∣1h
∫ h

0

∫
D±(s)

f

 ξ√
V (2)(h)

, u

 ν(du)ds

∣∣∣∣∣∣ ≤ |ξ|3

6

1
h

∫ h
0
∫

D±(s) |u|3ν(du)ds(
1
h

∫ h
0
∫

D±(s) |u|2ν(du)ds
)3/2

≤ |ξ|3

6
V (3)(h)

(V (2)(h))3/2 −→ 0, h → 0.

Proof of Theorem 2.1. The characteristic function of Rh,ε(t) is

EeiξRh,ε(t) = exp
(

−
∫ t

0

∫
D±(s)

(1 − eiξu + iξu)ν(du)ds
)

= exp
(

− 1
h

∫ th

0

∫
D±(s)

(1 − eiξu + iξu)ν(du)ds
)

= EeitξZth,ε ,

where Zh,ε is a r.v. with characteristic function (4.8). Then for any fixed t > 0 we have

Rh,ε(t)√
σ2

h,ε(t)
·=

√
tZth√

V (2)(th)
w=⇒ N(0, t), h → 0, (4.10)

provided that (2.24) is satisfied.

Observe that if we use the fixed cutting level, the result is pretty much the same. Indeed,
define

Ṽ (k)(h) :=
∫

0<|u|≤h
|u|kν(du), (4.11)

which can be obtained from (2.21) by using constant cutting level.

Lemma 4.6. Let Zh be an infinitely divisible r.v. with characteristic function

EeiξZh = exp
{

−
∫

0<|u|≤h

(
1 − eiξu + iξu

)
ν(du)

}
. (4.12)

If
Ṽ (3)(h)

(Ṽ (2)(h))3/2 −→ 0, h → 0, (4.13)

then
Zh√
Ṽ (2)(h)

w=⇒ N(0, 1) as h → 0. (4.14)
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The proof is similar to that of Lemma 4.5. We omit the details.

Proof of Lemma 2.1. From Lemma 4.4 we have

V (3)(h)
(V (2)(h))3/2 ≲ hε/2 −→ 0, h → 0,

i.e. (2.24) is satisfied.

Similarly, under (A2) we get (4.13):

Ṽ (3)(h)
(Ṽ (2)(h))3/2 ≲

h3ψL(h−1)
(h2ψL(h−1))3/2 = 1√

ψL(h−1)
→ 0, h → 0,

where ψL(r) := ψL,+(r) + ψL,−(r) → ∞ as r → ∞.

4.3. Proofs of Theorems 2.2 and 2.3

Proof of Theorem 2.2. To simplify the notation, we write in the proofs below Zi,DC(t) instead
of Zi,DC

h,ε (t), i = 1, 2, R(t) instead of Rh,ε(t) (cf. (2.20)) and σ2(t) instead of tV (2)(th) (cf.
(2.23)).
Proof of (2.27). Observe that R(t) is a martingale and E|R(t)|2 = σ2(t). Using the Taylor
expansion and Lemma 4.4 we derive∣∣∣Ef(Z(t)) − Ef(Z1,DC(t))

∣∣∣ ≤
∣∣∣∣ER(t)

∫ 1

0
f ′(Z1,DC(t) + uR(t))du

∣∣∣∣
≤ CfE|R(t)| ≤ Cf

√
E|R(t)|2 ≤ Cfσ(t)

≲ τ((th)ε)(th)−ε/2√
t.

Note that the right-hand side is increasing in t if ε is small enough. Taking supremum in
t ∈ [0, T ] we get (2.27).
Proof of (2.28). Performing integration by parts, we get

|Ef(Z(1,DC)(t) +R(t)) − Ef(Z(1,DC)(t) + σ(t)B(1))|

≤
∫

|Ef(x+R(t)) − Ef(x+ σ(t)B(1))|P(Z1,DC(t) ∈ dx)

≲ σ(t)
∫

|P((σ(t))−1R(t) < y) − P(B(1) < y)|dy.

We can decompose the remainder R(t) as follows (cf. (1.2) and (1.3)):

R(t) =
∫ t

0

∫
0<|u|≤τ((sh)ε)

u
(
NZ(du, ds) − ν(du)ds

)
=

n∑
j=1

∫ jt/n

(j−1)t/n

∫
0<|u|≤τ((sh)ε)

u
(
NZ(du, ds) − ν(du)ds

)

=:
n∑

j=1
Yj(t/n).

For fixed t, Yj = Yj(t/n) are independent, EYj = 0, but not identically distributed. In
order to estimate the expression on the right-hand side, we apply the Esseen theorem, see
Theorem B.1 in Appendix B. For this we need to estimate E|Yj |k, k = 2, 3.
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As a function of r, Yj(r) is a martingale with characteristic

⟨Yj⟩r =
∫ r

0

∫
0<|u|≤τ((t(j−1)/n+s)h)ε)

|u|2ν(du)ds. (4.15)

Hence
E|Yj(t/n)|2 = ⟨Yj⟩t/n =

∫ tj/n

tj/(n−1)

∫
0<|u|≤τ((sh)ε)

|u|2ν(du)ds (4.16)

and by (4.7)

Bn(t) :=
n∑

j=1
E|Yj(t/n)|2 = σ2(t) ≳ tτ2((th)ε)(th)−ε. (4.17)

To estimate the third moment, we apply Theorem A.2 with F (y, s) = y10<|y|≤τ((t(j−1)/n+s)h)ε):

E|Yj(t/n)|3 ≲
∫ tj/n

tj/(n−1)

∫
0<|u|≤τ((sh)ε)

|u|3ν(du)ds+
(∫ tj/n

tj/(n−1)

∫
0<|u|≤τ((sh)ε)

|u|2ν(du)ds
)3/2

.

(4.18)
Then

n∑
j=1

E|Yj(t/n)|3 ≲
∫ t

0

∫
0<|u|≤τ((sh)ε)

|u|3ν(du)ds+
n∑

j=1

(∫ tj/n

tj/(n−1)

∫
0<|u|≤τ((sh)ε)

|u|2ν(du)ds
)3/2

= tV (3)(th) +
n∑

j=1

(∫ tj/n

tj/(n−1)

∫
0<|u|≤τ((sh)ε)

|u|2ν(du)ds
)3/2

.

(4.19)

Let us estimate the second term. Since τ(t) is increasing, using the inequality 1 − (1 − x)a ≤
21−aax which is valid for x ∈ (0, 1/2] and a ∈ (0, 1), we get

n∑
j=1

(∫ tj/n

t(j−1)/n

∫
0<|u|≤τ((sh)ε)

|u|2ν(du)ds
)3/2

≲
n∑

j=1

(∫ tj/n

t(j−1)/n
τ2((sh)ε)(sh)−εds

)3/2

≲

(
τ2 ((th)ε) (h)−ε

(
t

n

)1−ε
)3/2 n∑

j=1

(∫ j

j−1
s−εds

)3/2

≲

(
τ2 ((th)ε) (h)−ε

(
t

n

)1−ε
)3/2 n∑

j=1

(
j1−ε

1 − ε

(
1 −

(
1 − 1

j

)1−ε
))3/2

≲

(
τ2 ((th)ε) (h)−ε

(
t

n

)1−ε
)3/2

 1
1 − ε

+
n∑

j=2

(
j1−ε

1 − ε
· 2ε(1 − ε)

j

)3/2


≲

(
τ2 ((th)ε) (h)−ε

(
t

n

)1−ε
)3/2 n∑

j=1

1
j3ε/2

≲

(
τ2 ((th)ε) (h)−ε

(
t

n

)1−ε
)3/2

n1−3ε/2

≲ τ3 ((th)ε) (h)−3ε/2 · t
3(1−ε)/2

n1/2 .

(4.20)

By (4.6) we have tV (3)(th) ≤ Ct
1−ετ

3 ((th)ε) (th)−ε. Thus, if we chose n ≥ [t(th)−ε], then

Ln(t) := B−3/2
n (t)

n∑
j=1

E|Yj(t/n)|3 ≲

[
(th)ε/2

t1/2 + 1
n1/2

]

≲ (th)ε/2
( 1√

t
∨ 1
)
,

(4.21)



Austrian Journal of Statistics 195

and | lnLn(t)| ≲ (| ln(th)ε| + | ln t|). Then by (B.4)

σ(t)
∫

|P((σ(t))−1R(t) < y) − P(B(1) < y)|dy

≲
(
tV (2)(th)

)1/2
Ln(t)| lnLn(t)|

∫
R

dy

1 + y2

≲ (1 ∨
√
t)τ ((th)ε) (| ln(th)ε| + | ln t|) .

Since τ(t) and τ(t)| ln t| are increasing, this proves (2.28).

Proof of Theorem 2.3. Proof of (2.34). Observe that condition (2.33) guarantees that the
probability Qt(A) := P(Z1,DC(t) ∈ A) can be estimated from above as follows:

Qt(B(z, r)) ≲ rκ, r ∈ (0, 1), (4.22)

Indeed,

Qt(A) = e−λh,ε(t)

δ0(A) +
∞∑

k=1

µ
(∗k)
h,ε (t, A)
k!

 , (4.23)

where µ(∗k)
h,ε (t, ·) is the k-folds space convolution of µh,ε(t, ·). Take now A = B(z, r), where z

is as in the assumption of the theorem and r ∈ (0, 1). By (2.33) we have for r ∈ (0, 1)

µ
(∗k)
h,ε (t, B(z, r)) ≤ Ckrκ.

Denote ϕ(h) := h
ε(2−α)

2α
− δ

2 , where α is from (2.29), δ < ε(2−α)
α (then ϕ(h) → 0 as h → 0).

Take now r = ϕ(h). By the Chebyshev inequality we get∣∣∣P(Z(t) ≤ z) − P(Z1,DC(t) ≤ z)
∣∣∣ =

∣∣∣∣∫ z

0
(P(R(t) ≤ w − y) − 1)Qt(dy)

∣∣∣∣
=
∫ z

0
P(R(t) > w − y)Qt(dy)

≤
∫

|y−w|≤ϕ(h)
Qt(dy)(dy) +

∫
|y−w|>ϕ(h)

σ2(t)
|y − w|2

Qt(dy)

≲

(
ϕκ(h) + σ2(t)

ϕ2(h)

)

≲
(
ϕκ(h) + T 1+ ε(2−α)

α hδ
)

≲
(

1 ∨ T 1+ ε(2−α)
α

)
h

κε(2−α)
(2+κ)α ,

where in the last line we choose δ such that the terms ϕκ(h) and hδ are comparable in h.
Proof of (2.35). We have

sup
w

∣∣∣P(Z(t) ≤ w) − P(Z2,DC(t) ≤ w)
∣∣∣

≤
∫
R

|P(R(t) ≤ w − v) − P(σ(t)B(1) ≤ w − v)|Qt(dv)

≤ sup
w

∣∣∣Px((σ(t))−1R(t) ≤ w) − P(B(1) ≤ w)
∣∣∣

≲
(
t−1/2 ∨ 1

)
(th)ε/2,

where in the last line we used (4.21) and (B.3).
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A.
In this Appendix we quote the Burkholder-Davis-Gundy inequality, used in our proofs. The
following result can be found in (Kühn and Schilling 2023, Th.4.20), see also (Kunita 2004,
Thm.2.11) or (Protter and Talay 1997, Lem.4.1).

Theorem A.1. Let X(t) be a one-dimensional stochastic process of the form

X(t) =
∫ t

0

∫
y ̸=0

F (y, s)Ñ(dy, ds). (A.1)

where F (y, s) is a predictable stochastic process, Ñ(dy, ds) is a compensated Poisson random
measure with compensator ν(dy)ds, the measure ν(·) satisfies

∫
y ̸=0 min(1, |y|2)ν(dy), cf. (1.2).

If
∫ T

0
∫

y ̸=0 |F (y, s)|2ν(du)ds < ∞, then for all p ≥ 2

E

(
sup
t≤T

|X(t)|p
)

≲ E

[(∫ T

0

∫
y ̸=0

|F (y, s)|pν(dy)ds
)]

+ E

(∫ T

0

∫
y ̸=0

|F (y, s)|2ν(dy)ds
)p/2

 . (A.2)

For p = 2 we have the two-sided inequality because of the Ito isometry, see (Kunita 2004,
(1.7)), also (Schilling 2016, Th.13.3).

Remark A.1. Let F (y, s) be a predictable stochatsic process satisfying

E

∫ T

0

∫
y ̸=0

|F (y, s)|2ν(dy)ds < ∞. (A.3)

Then

E

[∫ T

0

∫
y ̸=0

F (y, s)Ñ(dy, ds)
]2

= E

∫ T

0

∫
y ̸=0

|F (y, s)|2ν(dy)ds < ∞. (A.4)

B.
The Esseen theorem for independent r.v.’s is quoted from (Petrov 1975, Th.3, p.111) and
(Petrov 1975, Th.11,p.133), see also Esseen (1945).

Theorem B.1. Let Yj, j = 1, . . . , n be independent r.v.’s such that EYj = 0, E|Yj |3 < ∞,
i = 1, . . . , n. Denote

σ2
j = E|Yj |2, Bn :=

n∑
j=1

σ2
k, Ln := B−3/2

n

n∑
j=1

E|Yj |3, (B.1)

Then for

Fn(x) := P

 1√
Bn

n∑
j=1

Yj < x

 , Φ(x) := 1√
2π

∫ x

−∞
e−y2/2dy (B.2)

we have
sup

x
|Fn(x) − Φ(x)| ≲ Ln. (B.3)

If Ln → 0 as n → ∞, then

|Fn(x) − Φ(x)| ≲ Ln| lnLn|
1 + x2 , x ∈ R. (B.4)
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