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Abstract

In this paper a time-invariant continuous linear system is considered with a real-valued
impulse response function (IRF) which is defined on a bounded domain. A sample input-
output cross-correlogram is taken as an estimator of the response function. The input
processes are supposed to be zero-mean stationary Gaussian process and can be repre-
sented as a finite sum with uncorrelated terms. A rate of convergence of IRF estimator
in the space L2([0,Λ]) is obtained that gives a possibility to propose a nonparametric
goodness-of-fit testing on IRF.

Keywords: impulse response function, cross-correlogram, large deviation probability, rate of
convergence, statistical criterion, hypothesis testing,nonparametric goodness-of-fit testing .

1. Introduction
The problem of estimation of a stochastic linear system driven by impulse response function
(IRF) has been a matter of active research in recent years. One of the simplest models
considers a black box that receives some input and produces a corresponding output. The
input may be single or multiple and there is the same choice for the output. This generates
a great amount of models that can be considered. The range of applications for these models
is extensive, ranging from signal processing and automatic control to econometrics (errors-in-
variables models) and oceanology. For more details, see Barigozzi, Lippi, and Luciani (2021),
Hannan and Deistler (1988), Soderstrom and Stoica (1989), Stern (2018) and Lütkepohl
(2010), Takahito and Munehiko (2022).
The issue of the estimation of IRF is similar to inverse problem and deconvolution one that
are used, for example, for restoring signal or images, signal detection (see Abramovich, Pen-
sky, and Rozenholc (2013), Delaigle, Hall, and Meister (2008), Meister (2009), Marteau and
Sapatinas (2015)).
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The estimates in these models have been mostly obtained in usual statistical framework.
Optimality results (in the minimax sense) have been given for various loss functions and
sequence/function spaces. Many methods have been considered including kernel, local poly-
nomial, spline, projection and wavelet methods (see, e.g.Cavalier and Raimondo (2007) ).
We are interested in the estimation of the so-called impulse function from observations of
responses of a SISO (single-input single-output) system to certain input signals. This problem
can be considered both for linear and non-linear systems. To solve this problem, different
statistical approaches were used as well as various deterministic methods that are based on
a perturbation of the system by stationary stochastic processes and the further analysis of
some characteristics of both input and output processes. Let us mention some publications
on this problem by Bendat and Piersol (1980) and Schetzen (1980), Nelles (2020). One of the
first article on this topic was Akaike (1965) where the author studied a MISO (multiple-input
single-output) linear system and obtained estimates of the Fourier transform of the response
function in each component.
Some methods for estimation of unknown impulse response function of linear system and the
study of properties of corresponding estimators were considered in the works of Buldygin and
his followers. These methods are based on constructing a sample cross-correlogram between
the input stochastic process and the response of the system (see, e.g. Buldygin and Li (1997a),
Buldygin and Li (1997b), Blazhievska and Zaiats (2021) ).
An inequality for the supremum of the estimation error in the space of continuous functions in
the case of integral-type cross-correlogram estimator was obtained by Kozachenko and Rozora
(2016).
In the paper Rozora and Kozachenko (2016) a time-invariant continuous linear system with a
real-valued impulse response function was considered. The input signal process was supposed
to be a zero mean Gaussian stochastic process which was represented as a treamed sum with
respect to orthonormal basis in L2(R). The case of Hermite polynomials as orthonormal
basis in L2(R) was studied. A new method for the construction of estimator of the impulse
response function was proposed ant the criteria on impulse response function were given.
In Rozora (2018) and Rozora (2020) for integral cross–correlogram estimator the algorithm
of statistical hypothesis testing for response function was written applying upper estimate of
overrunning by square-Gaussian random process the level specified by continuous function.
In this paper a time-invariant continuous linear system is considered with a real-valued impulse
response function which is defined on bounded domain. An input-output cross-correlogram
based on one single observation is taken as an estimator of the response function. The input
processes are supposed to be zero-mean stationary Gaussian process and can be represented
in trimmed series of Fourier decomposition. In such model the built estimator of impulse
function depends on the length of averaging interval for cross-correlogram T and the level
of cutting for input signal N . The estimation of large deviation probability for errors in the
space L2(T ) is found. These allow us to develop the hypothesis testing on the shape of the
impulse response function.
The paper consists of 8 sections and the structure is as follows.
The second section covers the main definitions and general properties of the estimator. The
input signal process is supposed to be a zero mean Gaussian stochastic process which is
represented as a treamed sum with respect to orthonormal basis in L2([0,Λ]).
In section 3 we suppose that the input process of the system can be represented as a series with
respect to the trigonometric basis on [0,Λ]. The upper bounds for mathematical expectation,
variance are found that provide asymptotically unbiasedness as N → ∞ and consistency as
N, T → ∞.
Section 4 deals with square Gaussian random variables and processes. Inequality for Lp(T )
norm of a square Gaussian stochastic process is shown.
In the fifth section the convergence rate for the estimator of unknown impulse response
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function in the space Lp([0,Λ]) is investigated. In the sixth section the goodness of fit test is
developed on the shape of the impulse response function.
Section 7 is devoted to software simulation. In one particular case the critical values of the
length of averaging interval T are found for different accuracy, reliability and N (the upper
limit of the summing in the model) using software environment for statistical computing and
graphics R.

2. The estimator of an impulse response function and its properties
Consider a time-invariant continuous linear system with a real-valued square integrable im-
pulse response function (IRF) H(τ) which is defined on a finite domain τ ∈ [0,Λ]. This means
that the response of the system to an input signal X(t), t ∈ R, has the following form:

Y (t) =
∫ Λ

0
H(τ)X(t− τ)dτ, t ∈ R (1)

and H ∈ L2([0,Λ]). One of the problems arising in the theory of linear systems is to estimate
the function H from observations of responses of the system to certain input signals. In this
paper we use cross-correlogram approach to estimate the unknown IRF H. At first, let’s
describe the input process that is performed due to some orthonormal basis.
Let the system of functions {φ0(t), φk(t), ψk(t), k ≥ 1, t ∈ R} be an orthonormal basis
in L2[0,Λ] and the functions φk(t), ψk(t) are continuous and Λ-periodic. Assume that the
function φ0(t) is a constant. This means that it should be equal to φ0(t) = 1√

Λ .
Consider now as input of the linear system a real-valued Gaussian stationary zero mean
stochastic process X = XN = (XN (u), u ∈ R), that can be presented as

XN (u) =
N∑

k=1
ξkφk(u) +

N∑
k=1

ηkψk(u), u ∈ R, (2)

where N > 0 is fixed integer number and Gaussian random variables ξk, ηk, k ≥ 0, are
uncorrelated with Eξk = Eηk = 0, Eξ2

k = Eη2
k = 1.

Remark 1. The input signal XN (t) can be considered as a model of some stochastic pro-
cess that can be expanded into a series over given orthonormal basis. To read more about
model construction with given accuracy and reliability we refer readers to Kozachenko, Pogo-
rilyak, Rozora, and Tegza (2016), Kozachenko, Pashko, and Rozora (2007), Vasylyk, Rozora,
Ianevych, and Lovytska (2021), Rozora, Ianevych, Pashko, and Zatula (2023), Ianevych, Ro-
zora, and Pashko (2022).

A covariance function rN (t − s) = EXN (t)XN (s) of the stationary process XN should be
equal to

rN (t− s) =
N∑

k=1
(φk(t)φk(s) + ψk(t)ψk(s)) . (3)

If the system (1) is perturbed by the stochastic process XN , then for the output process we
obtain

YN (t) =
∫ Λ

0
H(τ)XN (t− τ)dτ,

Show that the covariance function of XN will be equal to rN (t− s)

EXN (t)XN (s) = E
(

N∑
k=1

ξkφk(t) +
N∑

k=1
ηkψk(t)

)(
N∑

k=1
ξkφk(s) +

N∑
k=1

ηkψk(s)
)

=
N∑

k=1
(φk(t)φk(s) + ψk(t)ψk(s)) .
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By the condition (3) we obtain that the covariance function of stochastic process XN is equal
to EXN (t)XN (s) = rN (t− s). Under a0 we define the output of the system on the constant
signal. This means that

a0 = 1√
Λ

∫ Λ

0
H(t)dt. (4)

Set
H∗(τ) = H(τ) − a0. (5)

As an estimator of the difference of IRF and a0 H
∗(τ) we will consider an integral cross-

correlogram
Ĥ(τ) = ĤN,T,Λ(τ) = ĤN,T,Λ(τ) = 1

T

∫ T

0
YN (t)XN (t− τ)dt, (6)

where T > 0 is a parameter for averaging.

Remark 2. The integral in (1) is considered as the mean-square Riemann integral.
The integral in (1) exists if and only if there exists the Riemann integral (see Gikhman and
Skorokhod (1996)) ∫ Λ

0

∫ Λ

0
H(τ)rN (s− τ)H(s)dsdτ. (7)

The covariance function of the process XN is given by (3). Since {φk(t), ψk(t), k ≥ 0} is an
orthonormal basis in L2([0,Λ]), H ∈ L2([0,Λ]), then the integral (7) exists. Therefore, there
exists also the integral in (1).

Denote now
ak =

∫ Λ

0
H(t)φk(t)dt, bk =

∫ Λ

0
H(t)ψk(t)dt. (8)

Since H ∈ L2([0,Λ]), then the function H can be expanded into the series by orthonormal
basis {φk(t), ψk(t) k ≥ 0} on the domain [0,Λ]. We obtain

H(t) =
∞∑

k=0
akφk(t) +

∞∑
k=1

bkψk(t), (9)

where ak and bk are from (8).

Remark 3. According to the Riesz–Fischer theorem (see Beals (2004)) the series (9) con-
verges in the mean squared sense. If the function H(t) and derivative H ′(t) are continuous
then the convergence in (9) can be considered in pointwise and uniform senses.

Lemma 1. Kozachenko and Rozora (2023) The following relations hold true:

EĤN,T,Λ(τ) =
∫ Λ

0
H(v)rN (v − τ)dv =

N∑
k=1

(φk(τ)ak + ψk(τ)bk) , τ ∈ [0,Λ], (10)

and
H∗(τ) − EĤN,T,Λ(τ) =

∞∑
k=N+1

(φk(τ)ak + ψk(τ)bk) , τ ∈ [0,Λ]. (11)

Lemma 2. Kozachenko and Rozora (2023) The joint moments of ĤN,T,Λ is equal to

EĤN,T,Λ(τ)ĤN,T,Λ(θ) =
∫ Λ

0
H(u)rN (τ − u)du ·

∫ Λ

0
H(v)rN (θ − v)dv

+ 1
T 2

∫ T

0

∫ T

0

[∫ Λ

0

∫ Λ

0
H(v)H(u)rN (t− s+ u− v)dudv · rN (t− s+ θ − τ)

+
∫ Λ

0
H(v)rN (t− s+ θ − v)dv ·

∫ Λ

0
H(u)rN (s− t+ τ − u)du

]
dtds, (12)



204 On Impulse Response Function

where rN (t−s) = EXN (t)XN (s) is a covariance of XN , the coefficients ak and bk are defined
in (8).
The variance of the estimator ĤN,T,Λ is equal to

V arĤN,T,Λ(τ) = 1
T 2

∫ T

0

∫ T

0

[∫ Λ

0

∫ Λ

0
H(v)H(u)rN (t− s+ u− v)dudv · rN (t− s)

+
∫ Λ

0
H(v)rN (t− s+ τ − v)dv ·

∫ Λ

0
H(u)rN (s− t+ τ − u)du

]
dtds.(13)

3. Fourier series based approach
Let now consider the system of functions{

1√
Λ
,

√
2
Λ cos

(2kπt
Λ

)
,

√
2
Λ sin

(2kπt
Λ

)
, k ≥ 1

}
(14)

that is orthonormal basis in L2([0,Λ]). Under notation of previous section

φ0(t) = 1√
Λ
, φk(t) =

√
2
Λ cos

(2kπt
Λ

)
, ψk(t) =

√
2
Λ sin

(2kπt
Λ

)
, k ≥ 1

and the coefficients ak, bk are equal to

ak =
∫ Λ

0
H(τ)φk(τ)dτ =

√
2
Λ

∫ Λ

0
H(τ) cos

(2kπτ
Λ

)
dτ k ≥ 1, (15)

bk =
∫ Λ

0
H(τ)ψk(τ)dτ =

√
2
Λ

∫ Λ

0
H(τ) sin

(2kπτ
Λ

)
dτ k ≥ 1. (16)

Suppose now that the input signal processes of the system (1) are zero mean stationary
Gaussian stochastic processes that are formed by (14). This means that the process XN (u)
is given by:

XN (u) =
√

2
Λ

N∑
k=1

(
ξk cos

(2kπu
Λ

)
+ ηk sin

(2kπu
Λ

))
, u ∈ R. (17)

It follows from (3) that the covariance function of stationary Gaussian process XN can be
written as

rN (t− s) =
N∑

k=1
(φk(t)φk(s) + ψk(t)ψk(s))

= 2
Λ

N∑
k=1

(
cos

(2kπt
Λ

)
cos

(2kπs
Λ

)
+ sin

(2kπt
Λ

)
sin
(2kπs

Λ

))
(18)

= 2
Λ

(
N∑

k=1
cos

(2kπ(t− s)
Λ

))
.

Consider the following conditions:
Condition A. The function H(τ) is two times differentiable on [0,Λ]. The functions H(τ)
and H ′(τ) are continuous on [0,Λ] and

I0 = I0(Λ) =
∫ Λ

0
|H(τ)|dτ < ∞,

I1 = I1(Λ) =
(∫ Λ

0
|H ′(τ)|2dτ

)1/2

< ∞,

I2 = I2(Λ) =
∫ Λ

0
|H ′′(τ)|dτ < ∞.
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Condition B. The following relation holds true

H(0) = H(Λ).

Remark 4. Condition B means that the effect of the impulse on the domain [0,Λ] should
be completely ended. In case when the condition isn’t fulfilled the rotation of the graph by the
angle arctan H(Λ)−H(0)

Λ can be applied.

Let’s denote
d = |H ′(0)| + |H ′(Λ)|. (19)

Lemma 3. Kozachenko and Rozora (2023) Assume that the conditions A, B are satisfied.
Then

|H∗(τ) − EĤN,T,Λ(τ)| ≤ Λ(d+ I2(Λ))
2π2N

, (20)

V arĤN,T,Λ(τ) ≤ Λ3(Λ + 2)I2
1

π4T 2

(
2 − 1

N

)2
, (21)

where I1(Λ) and I2(Λ) are defined in condition A.

4. Square Gaussian random variables and processes
In this section the definition and some properties of square Gaussian random variables and
processes are presented. Let (Ω, L, P ) be a probability space and let (T, ρ) be a compact
metric space with metric ρ.
Definition 1. Buldygin and Kozachenko (2000) Let Ξ = {ξt, t ∈ T} be a family of joint
Gaussian random variables for which Eξt = 0 (e.g., ξt, t ∈ T, is a Gaussian stochastic
process). The space SGΞ(Ω) is the space of square Gaussian random variables if any element
η ∈ SGΞ(Ω) can be presented as

η = ξ̄⊤Aξ̄ − Eξ̄⊤Aξ̄, (22)

where ξ̄⊤ = (ξ1, ξ2, . . . , ξn), ξk ∈ Ξ, k = 1, . . . , n, A is a real-valued matrix or the element
η ∈ SGΞ(Ω) is the square mean limit of the sequence (22)

η = l.i.m.n→∞(ξ̄⊤
n Aξ̄n − Eξ̄⊤

n Aξ̄n).

Definition 2. Buldygin and Kozachenko (2000) A stochastic process ξ(t) = {ξ(t), t ∈ T} is
square Gaussian if for any t ∈ T a random variable ξ(t) belongs to the space SGΞ(Ω).

There are shown in the book by Buldygin and Kozachenko (2000) that

• SGΞ(Ω) is a Banach space with respect to the norm ∥ζ∥ =
√

Eζ2;

• SGΞ(Ω) is a subspace of the Orlicz space LU (Ω) generated by the function

U(x) = exp |x| − 1;

• the norm ∥ζ∥LU (Ω) on SGΞ(Ω) is equivalent to the norm ∥ζ∥.

Example 1. Consider a family of Gaussian centered stochastic processes
ξ1(t), ξ2(t), . . . , ξn(t), t ∈ T. Let the matrix A(t) be symmetric. Then

X(t) = ξ̄⊤(t)A(t)ξ̄(t) − Eξ̄⊤(t)A(t)ξ̄(t),

where ξ̄⊤(t) = (ξ1(t), ξ2(t), . . . , ξn(t)), is a square Gaussian stochastic process.
For more information about properties of square Gaussian random processes see Buldygin
and Kozachenko (2000), Kozachenko and Moklyachuk (1999), Kozachenko and Moklyachuk
(2000), Kozachenko et al. (2007), Kozachenko et al. (2016), Kozachenko and Stus (1998).
The following theorem can be found in article Kozachenko and Troshki (2015).
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Theorem 1. Kozachenko and Troshki (2015) Let {T, A, µ} be a measurable space, where T
is a parametric set, and let ξ = {ξ(t), t ∈ T} be a measurable square Gaussian stochastic
process. Assume that the Lebesgue integral

∫
T(Eξ2(t))

p
2 dµ(t) is well defined for p ≥ 1. Then

the integral
∫

T(Eξ2(t))pdµ(t) exists with probability 1, and

P

{∫
T

|ξ(t)|pdµ(t) > x

}
≤ 2

√√√√1 + x1/p
√

2

C
1
p
p

exp

− x1/p

√
2C

1
p
p

 , (23)

for all x ≥ ( p√
2 +

√
(p

2 + 1)p)pCp, where Cp =
∫

T(Eξ2(t))
p
2 dµ(t).

5. On the rate of convergence of the estimator of impulse response function
This section is devoted to the investigation of the rate of convergence of estimators of unknown
IRF in the space of the space L2([0,Λ]).
The next Lemma is trivial.
Lemma 4. Stochastic process ẐN,T,Λ(τ) = ĤN,T,Λ(τ) − EĤN,T,Λ(τ), τ > 0, is a square
Gaussian one.

Consider a difference of the estimator ĤN,T,Λ(τ) and the impulse function H(τ) nonmetering
the response on the constant signal a0

H∗(τ) − ĤN,T,Λ(τ), τ > 0.

Denote
h∗

N,Λ = Λ(d+ I2(Λ))
2π2N

.

Then from (20) it follows that

|EĤN,T,Λ(τ) −H∗(τ)| ≤ h∗
N,Λ, τ ∈ [0,Λ].

Remark 5. Since h∗
N,Λ → 0 as N → ∞ then the estimator ĤN,T,Λ(τ) is asymptotically

unbiased.

Put
γ0(N,T,Λ) = γ0 = Λ

√
Λ(Λ + 2)I1
π2T

(
2 − 1

N

)
. (24)

From (21) we have that
sup

τ∈[0,Λ]

√
V arẐN,T,Λ(τ) ≤ γ0

Since γ0 → 0 as T,N → ∞ then a sufficient condition for consistency of ĤN,T,Λ(τ) is fulfilled.
Consider a parametric set T = [0,Λ] and let {[0,Λ],F, µ} be a metric space with Euclidean
measure µ.
Theorem 2. Assume that the conditions A,B are satisfied. Then for

ε ≥
(

( p√
2

+
√

(p2 + 1)p)Λ
1
pγ0 + Λh∗

N,Λ

)p

(25)

the estimate

P

{∫ Λ

0
|H∗(τ) − ĤN,T,Λ(τ)|pdτ > ε

}
≤ 2

√√√√√1 +
(ε

1
p − Λh∗

N,Λ)
√

2

Λ
1
p γ0

exp

−
ε

1
p − Λh∗

N,Λ
√

2Λ
1
pγ0

 (26)

holds true.
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Remark 6. Emphasize that the lower bound on ε in (25) can be made arbitrarily small.
Really, the values γ0 and h∗

N,Λ go to 0 as T,N → ∞. The bigger T and N are, the smaller ε
is.

Proof. We show first that the result of Theorem 1 can be applied to the process ẐN,T,Λ(τ), τ >
0. Really, by Lemma 4 ẐN,T,Λ(τ) is a square Gaussian stochastic process. Prove that the
Lebesgue integral ∫ Λ

0
(EẐ2

N,T,Λ(τ))
p
2 dµ(τ)

is correctly defined. From inequality (21) follows that∫ Λ

0
(EẐ2

N,T,Λ(τ))
p
2 dµ(τ) =

∫ Λ

0
(V arẐN,T,Λ(τ))

p
2 dτ

< Λ
(4I1(Λ) · (N + 1)

Λ

) p
2
.

Therefore, inequality (23) for the process ẐN,T,Λ(τ) as x ≥ ( p√
2 +

√
(p

2 + 1)p)pCp can be
rewritten as

P

{∫ Λ

0
|ẐN,T,Λ(τ)|pdµ(τ) > x

}
≤ 2

√√√√1 + x1/p
√

2

C
1
p
p

exp

− x1/p

√
2C

1
p
p

 , (27)

where Cp =
∫ Λ

0 (EẐ2
N,T,Λ(τ))

p
2 dτ.

From the Minkowski inequality follows that(∫ Λ

0
|H∗(τ) − ĤN,T,Λ(τ)|pdµ(τ)

) 1
p

=
(∫ Λ

0
|H(τ) − a0 ± EĤN,T,Λ(τ) − ĤN,T,Λ(τ)|pdµ(τ)

) 1
p

≤
(∫ Λ

0
|H∗(τ) − EĤN,T,Λ(τ)|pdµ(τ)

) 1
p

+
(∫ Λ

0
|EĤN,T,Λ(τ) − ĤN,T,Λ(τ)|pdµ(τ)

) 1
p

≤ h∗
N,Λ · Λ +

(∫ Λ

0
|ẐN,T,Λ(τ)|pdµ(τ)

) 1
p

.

If ε > (h∗
N,ΛΛ)p then from the relationship above we have that

{∫ Λ

0
|H∗(τ) − ĤN,T,Λ(τ)|pdµ(τ) > ε

}
=


(∫ Λ

0
|H∗(τ) − ĤN,T,Λ(τ)|pdµ(τ)

) 1
p

> ε
1
p


⊂

Λh∗
N,Λ +

(∫ Λ

0
|ẐN,T,Λ(τ)|pdµ(τ)

) 1
p

> ε
1
p


=

{∫ Λ

0
|ẐN,T,Λ(τ)|pdµ(τ) >

(
ε

1
p − Λh∗

N,Λ

)p
}
.

Substituting x =
(
ε

1
p −Ah∗

N,Λ

)p
in (27), we obtain

P

{∫ Λ

0
|H∗(τ) − ĤN,T,Λ(τ)|pdµ(τ) > ε

}
≤ 2

√√√√√1 +
(ε

1
p − Λh∗

N,Λ)
√

2

C
1
p
p

exp

−
ε

1
p − Λh∗

N,Λ
√

2C
1
p
p

 .
(28)
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Since (21) implies supτ∈[0,Λ] V arẐN,T,Λ(τ) ≤ (γ0)2, where γ0 is from (24), then

Cp =
∫ Λ

0
(EẐ2

N,T,Λ(τ))
p
2 dτ ≤ Λγp

0 .

To complete the proof it’s enough to substitute the above value Cp in (28). Hence,

P

{∫ Λ

0
|H∗(τ) − ĤN,T,Λ(τ)|pdµ(τ) > ε

}
≤ 2

√√√√√1 +
(ε

1
p − Λh∗

N,Λ)
√

2

Λ
1
p γ0

exp

−
ε

1
p − Λh∗

N,Λ
√

2Λ
1
pγ0

 .

6. Goodness-of-fit testing of IRF
Using Theorem 2 it is possible to test hypothesis on the shape of IRF.
Let the null hypothesis H0 state that an IRF is H(τ), τ ∈ [0,Λ], and the alternative Ha
implies the opposite statement.
Denote

g(ε) = g(ε,N) = 2

√√√√√1 +
(ε

1
p − Λh∗

N,Λ)
√

2

Λ
1
pγ0

exp

−
ε

1
p − Λh∗

N,Λ
√

2Λ
1
pγ0

 . (29)

From Theorem 2 follows that if

ε > tN,T,Λ(p) =
(

( p√
2

+
√

(p2 + 1)p)Λ
1
pγ0 + Λh∗

N,Λ

)p

,

then
P

{∫ Λ

0
|H(τ) − ĤN,T,Λ(τ)|pdτ > ε

}
≤ g(ε).

Let εδ be a solution of the equation g(εδ) = δ, 0 < δ < 1. Put

ε∗
δ = max{εδ, tN,T,Λ(p)}. (30)

It is clear that g(ε∗
δ) ≤ δ and

P

{
sup

τ∈[0,Λ]
|H(τ) − ĤN,T,Λ(τ)| > ε∗

δ

}
≤ δ.

From Theorem 2 it follows that to test the hypothesis H0, we can use the following testing.

Theorem 3. For a given level of confidence 1 − δ, δ ∈ (0, 1), the hypothesis H0 is rejected if∫ Λ

0
|H(τ) − ĤN,T,Λ(τ)|pdτ > ε∗

δ ,

otherwise the hypothesis H0 is accepted, where ε∗
δ is from (30).

7. Simulation study
We consider a particular case when Λ = 10, α = 1 and p = 2. An IRF is supposed to
be H(τ) = τ(e−τ − e−Λ). Obviously, that the Conditions A, B are fulfilled for H(τ) and
I0 = 0.9972, I1 = 0.5, I2 = 1.2703, d = 1.0004. The function H∗(τ) = H(τ) − a0 is equal to

H∗(τ) = τ(e−τ − e−Λ) − 0.3153.
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Table 1: The minimal values of T for fixed value of N = 1000 with given significant level δ
and accuracy ε for the function g(ε,N) = δ

Accuracy, ε T when δ = 0.3 T when δ = 0.2 T when δ = 0.1

0.001 7022 (0.4816) 8185 (0.2900) 10125 (0.1112)
0.005 2386 (0.3312) 2781 (0.2716) 3441 (0.4302)
0.01 1597 (0.4617) 1861 (0.2328) 2302 (0.1395)
0.025 964 (0.3019) 1123 (0.1912) 1389 (0.4428)
0.05 666 (0.1292) 776 (0.3743) 960 (0.4132)
0.075 539 (0.4674) 628 (0.3397) 776 (0.4467)
0.1 464 (0.3408) 540 (0.3954) 668 (0.4956)
0.2 324 (0.2712) 378 (0.0615) 468 (0.4715)
0.3 263 (0.4898) 307 (0.0977) 380 (0.1051)

Table 2: The minimal values of T for fixed value of N = 5000 with given significant level δ
and accuracy ε for the function g(ε,N) = δ

Accuracy, ε T when δ = 0.3 T when δ = 0.2 T when δ = 0.1

0.001 4820 (0.4189) 5618 (0.2035) 6950 (0.0059)
0.005 2066 (0.1427) 2408 (0.0915) 2979 (0.0723)
0.01 1447 (0.2671) 1686 (0.1688) 2086 (0.1263)
0.025 907 (0.1428) 1057 (0.2759) 1308 (0.0977)
0.05 639 (0.3153) 744 (0.3877) 921 (0.1558)
0.075 520 (0.4909) 607 (0.3672) 750 (0.4346)
0.1 450 (0.2473) 525 (0.2362) 649 (0.1586)
0.2 318 (0.3090) 370 (0.2692) 458 (0.0412)
0.3 259 (0.1477) 302 (0.0369) 374 (0.3654)

Table 3: The minimal values of T for fixed value of N = 10000 with given significant level δ
and accuracy ε for the function g(ε,N) = δ

Accuracy, ε T when δ = 0.3 T when δ = 0.2 T when δ = 0.1

0.001 4639 (0.3200) 5406 (0.3866) 6688 (0.0339)
0.005 2032 (0.0760) 2368 (0.3868) 2930 (0.1890)
0.01 1430 (0.0315) 1667 (0.3702) 2062 (0.2969)
0.025 901 (0.4603) 1050 (0.4200) 1298 (0.3821)
0.05 635 (0.4138) 741 (0.4245) 916 (0.1283)
0.075 518 (0.3214) 604 (0.1041) 747 (0.3065)
0.1 449 (0.3741) 523 (0.1260) 647 (0.1791)
0.2 317 (0.1124) 369 (0.3328) 457 (0.1171)
0.3 259 (0.3848) 301 (0.4163) 373 (0.1332)
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Table 4: The minimal values of T for fixed value of N = 50000 with given significant level δ
and accuracy ε for the function g(ε,N) = δ

Accuracy, ε T when δ = 0.3 T when δ = 0.2 T when δ = 0.1

0.001 4503 (0.1214) 5248 (0.1099) 6492 (0.1701)
0.005 2006 (0.3767) 2338 (0.4438) 2892 (0.3280)
0.01 1417 (0.1647) 1651 (0.3230) 2043 (0.2322)
0.025 895 (0.3265) 1044 (0.4960) 1291 (0.1343)
0.05 633 (0.1787) 738 (0.4461) 912 (0.3905)
0.075 517 (0.4012) 602 (0.0965) 745 (0.1770)
0.1 447 (0.3373) 521 (0.3721) 645 (0.0370)
0.2 316 (0.2478) 369 (0.4128) 456 (0.0396)
0.3 258 (0.1909) 301 (0.0783) 372 (0.2550)
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Figure 1: The values of T for fixed value of N = 50000

We use the free software environment for statistical computing and graphics R to find T for
different values of accuracy and reliability and the level of cutting N of the input process
from the conditions of Theorem 2 for Lp metric.
In tables 1-4 the minimal values of T for fixed value of cutting point N with given significant
level δ and accuracy ε for the function g(ε,N) = δ are calculated and the values in parentheses
indicate the standard deviation of the estimator ĤN,T,Λ(τ) with the corresponding values N
and T . The values T in tables 1-4 show that the more accurate result we want to obtain the
larger term T should be.
Figure 1 demonstrates the dependency of accuracy ε and parameter for averaging T in case of
tree different significant level and fixed cutting point N = 50000. As we can see the functions
are decreasing.

8. Conclusions
In this paper we considered a time-invariant continuous linear system in which the IRF is
defined on the domain [0,Λ]. The input signal process was supposed to be a zero mean
Gaussian stochastic process which was represented as a series with respect to an orthonormal
basis in L2([0,Λ]. A particular case where the orthonormal basis was given by trigonometric
functions was studied in details. Some characteristics of the estimator of impulse function
such as mathematical expectation, variance were described that . We also investigated the
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convergence rate for the estimator of unknown IRF in the space Lp([0,Λ]). For this reason
the theory of square Gaussian random variables and processes was applied, namely we used
inequality for Lp(T ) norm of square Gaussian stochastic process. It gave us an opportunity
to construct the goodness of fit test on IRF. In one particular case the values T were found
for different accuracy and reliability and N (the upper limit of the summing in the model)
using software environment for statistical computing and graphics R.
In future studies we are planning to consider the cases involving discretely observed processes,
which are more realistic scenario in functional data analysis as well.
We would like to thank the reviewers for their thorough review of our manuscript and for
their valuable feedback, which has helped us to make significant improvements to our work.
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