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Abstract

The paper presents conditions for the asymptotic normality of functionals of squared
periodograms based on tapered data. Stationary Gaussian random fields are considered.
Two limit theorems are stated: for the first one the certain condition of integrability of
the spectral density of the field is assumed, and the second result is for spectral densities
with the prescribed behavior near the points of singularities.
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1. Introduction and preliminaries
In the present paper we study conditions for the asymptotic normality of integral functionals
of the squared periodograms based on tapered data. Note that in the spectral analysis of
stationary processes and fields data are often tapered before calculating various statistics or
constructing estimators of parameters of considered models. Tapering data improves asymp-
totic properties of statistics, it is used to reduce a leakage effect for spectra with high peaks
and to treat situations with missing observations, for spatial data it helps to reduce a bias
caused by so-called “edge effects” (see, e.g., Dahlhaus (1983), Dahlhaus and Künsch (1987),
Guyon (1995)).
Introduce the assumption on the random fields studied in the paper:

X(t), t ∈ Zd, is a real-valued measurable stationary Gaussian random field with zero mean
and a spectral density f(λ), λ ∈ Λ = (−π, π]d.

Let a random fieldX(t), t ∈ Zd, be observed on a sequence LT of increasing finite domains. We
will suppose that LT is a hypercube: LT = [−T, T ]d = {t ∈ Zd : −T ≤ t(i) ≤ T, i = 1, ..., d}.
Consider the tapered values

{hT (t)X (t) , t ∈ LT } ,
where hT (t) = h (t/T ) , t = (t(1), ..., t(d)) ∈ Rd, and the taper h (t) factorizes as h (t) =∏d

i=1 h̃
(
t(i)
)
, t(i) ∈ R, with h̃ (·) satisfying the assumption below.
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H1. h̃ (t) , t ∈ R, is a positive even function of bounded variation with bounded support:
h̃ (t) = 0 for |t| > 1.

Denote

H̃k,T (λ) =
T∑

t=−T

[h̃T (t)]ke−iλt, Hk,T (λ) =
∑

t∈LT

[hT (t)]ke−i(λ,t) =
d∏

i=1
H̃k,T (λi),

where h̃T (t) = h̃ (t/T ), λ = (λ1, ..., λd), and k is a positive integer number.
Define the finite Fourier transform of tapered data {hT (t)X (t) , t ∈ LT } :

dT (λ) = dh
T (λ) =

∑
t∈LT

hT (t)X(t)e−i(λ,t), λ ∈ Λ,

and the tapered periodogram of the second order (provided that H2,T (0) ̸= 0):

IT (λ) = 1
(2π)d H2,T (0) dT (λ)dT (−λ).

Consider the functional
JT (φ) =

∫
Λ
φ (λ) I2

T (λ) dλ, (1.1)

where the weight function φ is is such that φf2 ∈ L1(Λ).
Limit distributions for nonlinear functionals of the periodogram have been studied exten-
sively in the literature. We mention, for example, Taniguchi (1980), where the integrals of
nonlinear functions of the periodogram (including, in particular, powers of positive orders of
the periodogram) were studied for discrete time processes under the assumption of bounded-
ness of the spectral density. In Deo and Chen (2000) the integral functionals of the squared
periodogram were studied for stationary Gaussian series given by the moving average rep-
resentation, the asymptotic normality result was stated under the particular assumption of
summability of the coefficients of the representation and continuity of the derivative of the
spectral density. In Sakhno (2012) the asymptotic normality results for such functionals were
derived for Gaussian processes, covering both discrete and continuous time settings, under
the general conditions of integrability of the spectral density and the weight function, and
also for discrete time non-Gaussian processes under the condition of boundedness of spectral
densities of all orders. Asymptotic results for the functionals of powers of the periodogram
of a general order k ≥ 2 were studied in Chiu (1988), McElroy and Holland (2009), Sakhno
(2014), with applications to weighted least squares estimators in the frequency domain in
Chiu (1988), and with several applications discussed in McElroy and Holland (2009), in par-
ticular, to frequency domain goodness-of-fit testing. Note that all above mentioned papers
deal with the case of processes, and data tapering was used only in Sakhno (2014).
The aim of the present paper is to state the asymptotic normality of the functional (1.1) for
the case of random fields and tapered data.
We present two central limit theorems for JT (φ): (1) under the conditions of integrability of
the spectral density f and weight function φ, that is, generalizing the corresponding results
for processes from Sakhno (2012) and (2) under the condition of long-range dependence of a
random field X by prescribing behaviour of f and φ at the point of singularity of f .
These results generalize the next two limit theorems for the linear functionals of the peri-
odogram

J̃T (φ) =
∫

Λ
φ (λ) IT (λ) dλ, (1.2)

which were stated in Alomari, Frias, Leonenko, Ruiz-Medina, Sakhno, and Torres (2017).
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Theorem 1 (Alomari et al. (2017), Theorem A.1). Let X(t), t ∈ Zd , be a zero-mean Gaussian
random field with spectral density f(λ) ∈ Lp and φ(λ) ∈ Lq , where 1

p + 1
q ≤ 1

2 . Then

T d/2(J̃T (φ) − EJ̃T (φ)) D−→ N(0, σ2) as T → ∞, (1.3)

where
σ2 = 2(2π)de(h)

∫
Λ
f2(λ)φ2(λ)dλ, (1.4)

and e(h) is defined as

e(h) = ed(h) =
( ∫

(h̃(t))4dt
( ∫

(h̃(t))2dt
)−2 )d

. (1.5)

Theorem 2 (Alomari et al. (2017), Theorem A.2). Let X(t), t ∈ Zd, be a zero-mean Gaussian
random field with spectral density f(λ) such that for some 0 < αi < 1, i = 1, .., d, f(λ) =
O(
∏d

i=1 |λi|−αi) as λi → 0, and φ(λ) = O(
∏d

i=1 |λi|αi) as λi → 0. The sets of discontinuities
of functions f(λ) and φ(λ) have Lebesgue measure zero, and these functions are bounded for
δ ≤ |λ| ≤ π for all δ > 0. Then

T d/2(J̃T (φ) − EJ̃T (φ)) D−→ N(0, σ2) as T → ∞, (1.6)

where σ2 is the same as in Theorem 1.

Note that Theorems 1 and 2 are important, in particular, for solving the problems of parameter
estimation and are used to state asymptotic normality results for minimum contrast estimators
(see, e.g., Alomari et al. (2017), Avram, Leonenko, and Sakhno (2010a), Avram, Leonenko,
and Sakhno (2010b)). As can be seen from these theorems, the limiting variance is given
by the integral of the square of the spectral density, the estimate of which can be based on
the integrals of the form (1.1). Therefore, investigation of integrals (1.1) is important, in
particular, in the context of estimation of limiting variance of minimum contrast estimators.
In Section 2 we state the analogues of Theorems 1 and 2 for the case of the functional of the
squared periodogram. Some auxiliary results needed for the proofs are given in Appendix.

2. Results and discussion

Theorem 3. Let X(t), t ∈ Zd, be a zero-mean Gaussian random field with spectral density
f(λ) ∈ Lp and φ(λ) ∈ Lq , where 1

q + 21
p = 1

2 . Then

T d/2(JT (φ) − EJT (φ)) D−→ N(0, σ2) as T → ∞, (2.1)

where
σ2 = 32(2π)de(h)

∫
Λ
φ2(λ)f4(λ)dλ, (2.2)

e(h) =
( ∫

(h̃(t))4dt
( ∫

(h̃(t))2dt
)−2 )d

. (2.3)

Theorem 4. Let X(t), t ∈ Zd, be a zero-mean Gaussian random field with spectral density
f(λ) such that for some 0 < αi < 1, i = 1, .., d, f(λ) = O(

∏d
i=1 |λi|−αi) as λi → 0, and

φ(λ) = O(
∏d

i=1 |λi|2αi) as λi → 0. Suppose further that the sets of discontinuities of functions
f(λ) and φ(λ) have the Lebesgue measure zero, and these functions are bounded for δ ≤ |λ| ≤ π
for all δ > 0. Then

T d/2(JT (φ) − EJT (φ)) D−→ N(0, σ2) as T → ∞, (2.4)

where σ2 is the same as in Theorem 3.
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Proof of Theorem 3. The proof is obtained by following the same technique as that in the
proof of Lemma 6 in Sakhno (2012), within the approach based on the evaluation of cumulants
of the functional JT (φ). Applying the analogous calculations, we just need to keep track of
normalizing factors, since now they are defined via the functions Hk,T due to the appearance of
the kernels of the Fejér’s type ΦT

k (see Appendix) in the expressions for cumulants. Therefore,
we will not repeat here all the derivations, but only consider the evaluation of the variance.
In Lemma 1 below we present a more general result on the asymptotics for the covariance of
two functionals JT (φ1) and JT (φ2), which also will be used for the proof of Theorem 4.

Lemma 1.
cov

(
T d/2JT (φ1) , T d/2JT (φ2)

)
→ 16(2π)de(h)

∫
Λ
φ1 (λ) [φ2 (λ) + φ2 (−λ)]f4 (λ) dλ, as T → ∞. (2.5)

Proof. Consider

cov(JT (φ1), JT (φ2))

= 1
((2π)dH2,T (0))4

∫
Λ2
φ1(α)φ2(β)cum((dT (α)dT (−α))2, (dT (β)dT (−β))2)dαdβ. (2.6)

Using the formula for calculation of cumulants of products of random variables (see, for
example, Sakhno (2012), Appendix A, and references therein), the cumulant under the integral
sign in (2.6) can be written in the form∑

ν=(ν1,...,νp)

p∏
i=1

cum(dT (µj), µj ∈ νi), (2.7)

where, due to the Gaussianity assumption, the summation should be taken over all inde-
composable partitions by pairs ν = (ν1, ..., ν4), |νi| > 1, of the table T2 with two rows
{α,−α, α,−α} and {β,−β, β,−β}. Therefore, we have in (2.7) the sum of terms of the
following form

4∏
i=1

cum(dT (µi), dT (λi)), (2.8)

where µi, λi ∈ {α,−α, β,−β} and ν = {(µi, λi), i = 1, ..., 4} forms an indecomposable parti-
tion of the table T2.
The main contribution (of order 1

T d ) into the covariance (2.6) is given by the terms, which cor-
respond to the products involving the cumulants cum(dT (α), dT (−α)) and cum(dT (β), dT (−β)),
namely, by the terms

cum(dT (α), dT (−α))cum(dT (β), dT (−β))[cum(dT (α), dT (β))cum(dT (−α), dT (−β)) (2.9)
+cum(dT (α), dT (−β))cum(dT (−α), dT (β))],

there are 16 terms of this kind in (2.8). Their contribution to the covariance is of the following
form:

1
((2π)dH2,T (0))4

∫ ∫
φ1(α)φ2(β)

×
∫
f(γ1)H1,T (γ1 − α)H1,T (−γ1 + α)dγ1

∫
f(γ2)H1,T (γ2 − β)H1,T (−γ2 + β)dγ2

×
[∫

f(γ3)H1,T (γ3 − α)H1,T (−γ3 − β)dγ3

∫
f(γ4)H1,T (γ4 + α)H1,T (−γ4 + β)dγ4

+
∫
f(γ3)H1,T (γ3 − α)H1,T (−γ3 + β)dγ3

∫
f(γ4)H1,T (γ4 + α)H1,T (−γ4 − β)dγ4

]
dαdβ

= kT (h)
∫ ∫

φ1(α)φ2(β)
∫
f(γ1)ΦT

2 (γ1 − α)dγ1

∫
f(γ2)ΦT

2 (γ2 − β)dγ2

∫ ∫
f(γ3)f(γ4)

×
[
ΦT

4 (γ3 − α,−γ3 − β, γ4 + α) + ΦT
4 (γ3 − α,−γ3 + β, γ4 + α)

]
dγ3dγ4dαdβ

= IX
1 (φ1, φ2) + IX

2 (φ1, φ2) = I1 + I2. (2.10)
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We denote in the above formula and in what follows

kT (h) = (2π)3dH4,T (0)
((2π)dH2,T (0))2 .

Note that all other terms in (2.8) produce the impact to the covariance (2.6) of smaller order
(we refer for more delail to Sakhno (2012), see the proof of Lemma 1 therein). Since the terms
I1 and I2 are quite similar, we analyze here just one of them. Consider:

I1 = kT (h)
∫ ∫

φ1(α)φ2(β)
∫
f(γ1)ΦT

2 (γ1 − α)dγ1

∫
f(γ2)ΦT

2 (γ2 − β)dγ2

×
∫ ∫

f(γ3)f(γ4)ΦT
4 (γ3 − α,−γ3 − β, γ4 + α)dγ3dγ4dαdβ.

Let us represent the above integral as follows

kT (h)
∫

Λ2

∫
Λ4
φ1(α)φ2(β)f(u1 + α)f(u2 + β)f(γ3)f(γ4)

×ΦT
4 (γ3 − α,−γ3 − β, γ4 + α)dαdβdγ3dγ4ΦT

2 (u1)ΦT
2 (u2)du1du2 (2.11)

= kT (h)
∫

Λ2

∫
Λ3

[∫
Λ
φ1(α)φ2(−v1 − v2 − α)f(u1 + α)f(u2 − v1 − v2 − α)

×f(v1 + α)f(v3 − α)dα
]
ΦT

4 (v1, v2, v3)dv1dv2dv3ΦT
2 (u1)ΦT

2 (u2)du1du2 . (2.12)

If φi ∈ Lq, f ∈ Lp with 1
q + 21

p = 1
2 , then the inner integral is a bounded and continuous

function of arguments u1, u2, v1, v2, v3 and we can apply formula (2.22)(see Appendix) to
conclude that

I1 ∼ (2π)d

T d
e(h)

∫
Λ
φ1 (λ)φ2 (λ) f4 (λ) dλ, as T → ∞,

where e(h) is given by (2.3). The normalizing factor T dH4,T (0)
H2,T (0)2 converges to e(h) due to the

asymptotic behavior Hk,T (0) ∼ T d
( ∫

h̃k(t)dt
)d as T → ∞. Analogously,

I2 ∼ (2π)d

T d
e(h)

∫
Λ
φ1 (λ)φ2 (−λ) f4 (λ) dλ as T → ∞,

and, therefore, we obtain the expression for the covariance (2.5). The lemma is proved.

Return to the proof of Theorem 3. The convergence of Var(T d/2(JT (φ) − EJT (φ))) to σ2

follows from Lemma 1. Following the same arguments as in Sakhno (2012), the integrability
conditions on f and φ imply also the convergence to zero of all cumulants of T d/2(JT (φ) −
EJT (φ)) of order k ≥ 3.

Proof of Theorem 4. For the proof we use techniques and ideas from two classical papers
Heyde and Gay (1993) and Fox and Taqqu (1987).
Consider firstly the case d = 1. Following an idea from Heyde and Gay (1993) (see also
Alomari et al. (2017)), introduce the filtered process

Y (t) = ∇α/2X(t),

where ∇ = 1−B, B is the backward shift operator (BX(t) = X(t−1)), α ∈ (0, 1) (α is taken
as in the condition of the theorem), and ∇α/2 = (1 − B)α/2 :=

∑∞
j=0C

α/2
j (−B)j with the

generalized binomial coeeficients of the form C
α/2
j = ((α/2)(α/2 − 1) . . . (α/2 − j + 1))/(j!),

j = 0, 1, . . . . Then the process Y (t) has the spectral density fY (λ) = (2 sin |λ
2 |)αfX (λ) , since
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Y (t) is obtained from X(t) by using the filter with transfer function D(iλ) = (1 − eiλ)α/2 and
|D(iλ)|2 = (2 sin |1

2λ|)α.
Let ψ(λ) = φ(λ)/(2 sin |1

2λ|)2α and consider the functional

J̃Y
T (ψ) =

∫ π

−π
ψ(λ)(IY

T (λ))2dλ− E

∫ π

−π
ψ(λ)(IY

T (λ))2dλ,

where IY
T (λ) = 1

2πH2,T (0) |
∑

t∈LT
hT (t)eiλtY (t)|2 is the tapered periodogram which corresponds

to {Y (t), t ∈ LT }.
Since the spectral density fY (λ) of the process Y (t) and the function ψ(λ) satisfy conditions
of Theorem 3, for the functional J̃Y

T (ψ) we have the convergence as T → ∞

T 1/2J̃Y
T (ψ) D→ N(0, σ2), (2.13)

where
σ2 = 64πe1(h)

∫ π

−π
ψ2(λ)f4

Y (λ)dλ = 64πe1(h)
∫ π

−π
φ2(λ)f4

X(λ)dλ. (2.14)

To prove the statement of the theorem, it is sufficient to show that

lim
T →∞

TE|J̃X
T (φ) − J̃Y

T (ψ)|2 = 0, (2.15)

where
J̃X

T (φ) =
∫ π

−π
φ(λ)(IX

T (λ))2dλ− E

∫ π

−π
φ(λ)(IX

T (λ))2dλ.

Consider

TE|J̃X
T (φ) − J̃Y

T (ψ)|2 = TE|J̃X
T (φ)|2 + TE|J̃Y

T (ψ)|2 − 2TE|J̃X
T (φ)J̃Y

T (ψ)|. (2.16)

For the functional which corresponds to the process Y (t) we have the convergence TE|J̃Y
T (ψ)|2 →

σ2 as T → ∞.
We need to evaluate the asymptotic behaviour of TE|J̃X

T (φ)|2 and TE|J̃X
T (φ)J̃Y

T (ψ)|. We
will show that these expressions also tend to σ2 as T → ∞.
Basing on the calculations for cov(JX

T (φ1), JX
T (φ2)) in the proof of Lemma 1, we conclude

that the asymptotic behaviour of TE|J̃X
T (φ)|2 is defined by that of ĨX

1 (φ) = IX
1 (φ,φ) and

ĨX
2 (φ) = IX

2 (φ,φ), where IX
1 (φ,φ) and IX

2 (φ,φ) are the terms which appear in formula (2.10)
(with φ1 = φ2 = φ)), these terms have the same behaviour as T → ∞, so, we can analyze
just one of them, say, ĨX

1 (φ):

ĨX
1 (φ) = kT (h)

∫ ∫
φ(y1)φ(y2)

∫
fX(γ1)ΦT

2 (γ1 − y1)dγ1

∫
fX(γ2)ΦT

2 (γ2 − y2)dγ2

×
∫ ∫

fX(γ3)fX(γ4)ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)dγ3dγ4dy1dy2

= kT (h)
∫

Λ2

∫
Λ4
φ(y1)φ(y2)fX(u1 + y1)fX(u2 + y2)fX(γ3)fX(γ4)

×ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)dy1dy2dγ3dγ4ΦT

2 (u1)ΦT
2 (u2)du1du2. (2.17)

For evaluation of E|J̃X
T (φ)J̃Y

T (ψ)| we use the same arguments as for cov(JX
T (φ1), JX

T (φ2)), the
asymptotic behaviour will be defined by that of ĨXY

1 (φ,ψ) and ĨXY
2 (φ,ψ) which expressions

are obtained by substitution into the corresponding expressions for ĨX
1 (φ) and ĨX

2 (φ) instead
of the product

φ(·)φ(·)fX(·)fX(·)fX(·)fX(·)

the following product:
φ(·)ψ(·)fX(·)fY (·)fXY (·)fXY (·)
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with the corresponding arguments, where fXY is the cross-spectral density of the processes
X and Y . Again, it is sufficient to analyze just ĨXY

1 (φ,ψ), we write down its expression:

ĨXY
1 (φ,ψ) = kT (h)

∫ ∫
φ(y1)ψ(y2)

∫
fX(γ1)ΦT

2 (γ1 − y1)dγ1

∫
fY (γ2)ΦT

2 (γ2 − y2)dγ2

×
∫ ∫

fXY (γ3)fXY (γ4)ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)dγ3dγ4dy1dy2

= kT (h)
∫

Λ2

∫
Λ4
φ(y1)ψ(y2)fX(u1 + y1)fY (u2 + y2)fXY (γ3)fXY (γ4)

×ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)dy1dy2dγ3dγ4ΦT

2 (u1)ΦT
2 (u2)du1du2.

Consider ĨX
1 (φ). Denote

G(φ1, φ2, f1, f2, f3, f4; y1, y2, γ1, . . . , γ4) = φ1(y1)φ2(y2)
4∏

i=1
fi(γi).

Then we can write

ĨX
1 (φ) = kT (h)

∫
Λ6
G(φ,φ, fX , fX , fX , fX ; y1, y2, γ1, . . . , γ4)ΦT

4 (γ3 − y1,−γ3 − y2, γ4 + y1)

×ΦT
2 (γ1 − y1)ΦT

2 (γ2 − y2)dy1dy2dγ1dγ2dγ3dγ4. (2.18)

Introduce the measure µT on Λ6 = [−π, π]6 as follows:

µT (E) =
∫

E
ΦT

4 (γ3 − y1,−γ3 − y2, γ4 + y1)ΦT
2 (γ1 − y1)ΦT

2 (γ2 − y2)dy1dy2dγ1dγ2dγ3dγ4

for E ⊂ Λ6.
First we note that the measure µT converges weakly to the measure µ which is concentrated
on the diagonal D = {y1 = . . . = y6} and satisfies µ{y : a ≤ y1 = y2 = . . . = y6 ≤ b} = b− a
for π ≤ a ≤ b ≤ π. Similarly to Fox and Taqqu (1987), this can be shown by considering the
Fourier coefficients of µT and µ. Indeed, using the kernel property of ΦT

k (see Appendix), we
have the convergence

∫
Λ6
∏6

i=1 fi(yi)µT (dy) →
∫

Λ
∏6

i=1 fi(z)dz for any bounded continuous
functions fi. Therefore, we conclude that the Fourier coefficients of µT converge to those of
µ: ∫

Λ6
ei(n1y1+···n6y6)µT (dy) →

∫
Λ
ei(n1+···n6)zdz =

∫
Λ6
ei(n1y1+···n6y6)µ(dy).

To evaluate the asymptotic behaviour of ĨX
1 (φ) we follow the approach from the paper Fox

and Taqqu (1987). We split the integral in (2.18) in the sum of two integrals over the domains
Λ6 \ Λ6

ε and Λ6
ε, where Λ6

ε = [−ε, ε]6. Then∫
Λ6\Λ6

ε

G(φ,φ, fX , fX , fX , fX ; y1, y2, γ1, . . . , γ4)dµT →
∫

Λ6\Λ6
ε

φ2(z)f4
X(z)dz, as T → ∞

in view of the above discussed property of the measure µT and properties of the furnctions φ
and fX . Therefore, to prove that

ĨX
1 (φ) ∼ 2π

T
e1(h)

∫
Λ
φ2 (λ) f4

X (λ) dλ, as T → ∞, (2.19)

we need to show that

lim
ε→0

lim sup
T →∞

1
T

∫
Λ6

ε

G(φ,φ, fX , fX , fX , fX ; y1, y2, γ1, . . . , γ4)ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)

×ΦT
2 (γ1 − y1)ΦT

2 (γ2 − y2)dy1dy2dγ1dγ2dγ3dγ4 = 0.
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We rewrite the above integral in another form using formula (2.17) and evaluate its modulus
as follows:∫

Λ2
ε

∫
Λ4

ε

|φ(y1)φ(y2)fX(u1 + y1)fX(u2 + y2)fX(γ3)fX(γ4)| 1
(2π)3H4,T (0)

×H1,T (γ3 − y1)H1,T (−γ3 − y2)H1,T (γ4 + y1)H1,T (−γ4 + y2)|
×|ΦT

2 (u1)||ΦT
2 (u2)|dy1dy2dγ3dγ4du1du2

≤
∫

Λ4
ε

|y1|2α|y2|2α|y1|−α|y2|−α|γ3|−α|γ4|−α 1
(2π)3H4,T (0)

×|H1,T (γ3 − y1)H1,T (−γ3 − y2)H1,T (γ4 + y1)H1,T (−γ4 + y2)|dy1dy2dγ3dγ4

=
∫

Λ4
ε

|y1|α|y2|α|γ3|−α|γ4|−α 1
(2π)3H4,T (0) |H1,T (γ3 − y1)H1,T (−γ3 − y2)

×H1,T (γ4 + y1)H1,T (−γ4 + y2)|dy1dy2dγ3dγ4 :=
∫

Λ4
ε

FT (y1, y2, γ3, γ4)dy1dy2dγ3dγ4.

Here we used the properties of functions φ and fX at the proximity of 0 supposed in the
conditions of the theorem and properties of the kernels ΦT

k (see Appendix).
Next we note that the following estimate holds for H1,T : |H1,T (λ)| ≤ const · lT (λ), where
lT (u) denotes 2π-periodic extension of the function l∗T (u), which is defined as: l∗T (u) = T for
|u| ≤ 1

T , and l∗T (u) = 1
|u| for 1

T < |u| ≤ π (see, e.g., Dahlhaus (1983)).
Therefore, we can apply Proposition 6.2, part a) from Fox and Taqqu (1987) (taking there
p = 2 and β = −α) to conclude that

lim
ε→0

lim sup
T →∞

1
T

∫
Λ4

ε

FT (y1, y2, γ3, γ4)dy1dy2dγ3dγ4 = 0.

and hence (2.19) holds true.
In the similar way we analyze the asymptotic behaviour of ĨXY

1 (φ,ψ) as T → ∞. We can
write it in the form

ĨXY
1 (φ,ψ) = kT (h)

∫
Λ6
G(φ,ψ, fX , fY , fXY , fXY ; y1, y2, γ1, . . . , γ4)

×ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)ΦT

2 (γ1 − y1)ΦT
2 (γ2 − y2)dy1dy2dγ1dγ2dγ3dγ4.

Then we use that ψ(λ) = φ(λ)
|D(iλ)|4 , fY (λ) = fX(λ)|D(iλ)|2, fXY (λ) = D(iλ)fX(λ) and follow-

ing the same reasoning as that for ĨX
1 (φ) we obtain∫

Λ6\Λ6
ε

G(φ,ψ, fX , fY , fXY , fXY ; y1, y2, γ1, . . . , γ4)dµT →
∫

Λ6\Λ6
ε

φ2(z)f4
X(z)dz, as T → ∞.

Next, the integral∫
Λ6

ε

|G(φ,ψ, fX , fY , fXY , fXY ; y1, y2, γ1, . . . , γ4)ΦT
4 (γ3 − y1,−γ3 − y2, γ4 + y1)

×ΦT
2 (γ1 − y1)ΦT

2 (γ2 − y2)|dy1dy2dγ1dγ2dγ3dγ4

can be bounded by∫
Λ4

ε

|y1|α|y2|α|γ3|−α/2|γ4|−α/2 1
(2π)3H4,T (0) |H1,T (γ3 − y1)| |H1,T (−γ3 − y2)|

×|H1,T (γ4 + y1)| |H1,T (−γ4 + y2)|dy1dy2dγ3dγ4 :=
∫

Λ4
ε

F̂T (y1, y2, γ3, γ4)dy1dy2dγ3dγ4,

and we can apply again Proposition 6.2, part a) from Fox and Taqqu (1987) (now with p = 2
and β = −α/2 in which case that statement still holds) to obtain that

lim
ε→0

lim sup
T →∞

1
T

∫
Λ4

ε

F̂T (y1, y2, γ3, γ4)dy1dy2dγ3dγ4 = 0.
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Summarizing all above derivations, we conclude that (2.15) holds true and, therefore, the
statement of the theorem is proved for the case d = 1
The proof for the case d = 1 can be directly extended for d > 1 under the conditions imposed
on the spectral density, when its singularities factorize as specified in the theorem, and due
to the use of the taper which factorizes. This entails that the corresponding integrals in
the course of the proof can be split as d-tuple of integrals, which appear when d = 1, and,
therefore, all arguments can be preserved. Note that the filtered field is introduced as

Y (t) = Y (t1, ..., td) = ∇α1/2
1 ...∇αd/2

d X(t)

=
∞∑

k1=0
...

∞∑
kd=0

d∏
i=1

C
αi/2
ki

X(t1 − k1, ..., td − kd),

and has the spectral density

fY (λ1, ..., λd) =
(

d∏
i=1

∣∣∣∣2 sin λ2

∣∣∣∣αi
)
fX (λ1, ..., λd) .

Remark 1. In the paper Sakhno (2012) a class of minimum contrast estimators was presented
which based on an objective function given as an integral of the squared periodogram. Namely,
suppose the model with spectral density f(λ, θ), let w(λ) be some weight function and∫

Λ
f2 (λ; θ)w (λ) dλ = σ2 (θ) ,

so that the spectral density can be represented as

f2 (λ; θ) = σ2 (θ)ψ (λ; θ) , λ ∈ Λ, θ ∈ Θ, with
∫

Λ
ψ (λ; θ)w (λ) dλ = 1.

The objective function is defined as

UT (θ) =
∫

Λ
I2

T (λ)ψ (λ; θ)−1w (λ) dλ.

The derivation of consistency and asymptotic normality of the corresponding minimum con-
trast estimators is based on the asymptotic properties of the integral functionals of the squared
periodogram with particular weight functions. We refer for details to Sakhno (2012). The
conditions there were formulated it terms of integrability of the spectral density and weight
functions. Using the results of the present paper, minimum contrast method proposed in
Sakhno (2012) can be extended for the case of spectral densities with singularities.

Remark 2. Important topic in statistical data analysis is the comparison of different time
series. One approach to check similarities or discrepancies between two stationary processes is
to compare their spectral densities using various L2-type statistics. For example, in the paper
Preuß and Hildebrandt (2013) the comparison of processes is based on the L2-distance of the
form D2 :=

∫
Λ(f1(λ) − f2(λ))2 dλ, where f1 and f2 are the spectral densities of the compared

processes, say, X and Y . To estimate D2, functionals of the squared periodograms IX
T (λ) and

IY
T (λ) (corresponding to the observed data from X and Y ) are used and also functionals of the

product IX
T (λ)IY

T (λ). In Preuß and Hildebrandt (2013) (and in some other papers devoted to
such problem which are referenced therein) the asymptotic normality of statistics based on
squared periodograms is stated under the assumption of weak dependence of the processes X
and Y formulated as conditions of summability of cumulants of the processes. The approach
of the present paper can be applied to extend the results from Preuß and Hildebrandt (2013)
to the case of spectral densities with singularities. We address the detailed treatment of such
extension to further research.
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Remark 3. The important issue for further investigation is to extend the results of Theorems
3, 4 to the convergence

T d/2(JT (φ) − Ĵ (φ)) D−→ N(0, σ2) as T → ∞,

where Ĵ (φ) = 2
∫

Λ φ (λ) f2 (λ) dλ.
For such extension one needs to investigate the bias EJT (φ) − Ĵ (φ) as T → ∞ and to find
conditions guaranteeing the convergence

T d/2(EJT (φ) − Ĵ (φ)) → 0 as T → ∞. (2.20)

For the case of a Gaussian field, by direct calculations, we obtain EJT (φ) = I1 + I2 with

I1 = 2
∫
φ(λ)

∫
f(γ)ΦT

2 (γ − λ)dγ
∫
f(µ)ΦT

2 (µ− λ)dµdλ

= 2
∫ ∫ [∫

φ(λ)f(γ − λ)f(µ− λ)dλ
]

ΦT
2 (γ)ΦT

2 (µ)dγdµ,

I2 = (2π)dH4,T (0)
H2,T (0)2

∫
Λ3
φ(λ)f(γ)f(µ)ΦT

4 (γ − λ,−γ − λ, µ+ λ)dγdµdλ,

and, in particular, following the same arguments as in Sakhno (2012) (see the proof of Lemma
4) one can show that under the conditions of Theorem 3 it holds:

I1 → Ĵ (φ) = 2
∫

Λ
φ (λ) f2 (λ) dλ and I2 → 0, as T → ∞. (2.21)

However, we need the convergence with the normalizing factor T d/2 as in (2.20). We can
apply the analogous approach to that used in Alomari et al. (2017) (the proof of Lemma 4.1)
and show that I1 − Ĵ (φ) = O(T−2), as T → ∞, imposing the similar conditions on f and φ
and the taper as those in Alomari et al. (2017). The rate of convergence of I2 to 0 is still to
be investigated separately and some additional conditions will be necessary. We address this
problem in future research. We believe this can be achieved by introducing conditions which
prescribe, for example, some fast power decay of tapers near the ends of the intervals where
they are defined, in particular, using such kind of tapers as those in the paper Ludeña and
Lavielle (1999).

Appendix
We present here some facts used in the proofs (see, e.g., Dahlhaus (1983), Guyon (1995)).
Firstly, we note that in the general case of stationary random field X(t) the following formula
for the cumulants of its finite Fourier transform dT (λ) = dh

T (λ), λ ∈ Λ, can be deduced:

cum (dT (α1) , ..., dT (αk)) =
∫

Λk−1
fk (γ1, ..., γk−1)H1,T (γ1 − α1) ...H1,T (γk−1 − αk−1)

×H1,T

(
−Σk−1

1 γj − αk

)
dγ1...dγk−1,

where fk (γ1, ..., γk−1) is the k-th order cumulant spectral density (provided that fk ex-
ists). Recall that the cumulant spectral densities of orders k = 2, 3, . . . are the functions
fk (λ1, ..., λk−1) ∈ L1(Λk−1), k = 2, 3, ..., such that the cumulant function of the k-th order of
the random field X (t) is representable as

ck (t1, ..., tk−1) =
∫

Λk−1
fk (λ1, ..., λk−1) eiΣk−1

1 λjtjdλ1...dλk−1.
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If
∑k

j=1 λj = 0, and Hk,T (0) ̸= 0, then

ΦT
k (λ1, ..., λk−1) =

(
(2π)d(k−1)Hk,T (0)

)−1 k∏
j=1

H1,T (λj)

is a multidimensional kernel of Fejér type over Λk−1, which is an approximate identity for
convolution, that is, the following properties hold:

sup
T ∈N

∫
Λk−1

|ΦT
k (λ1, ..., λk−1) |dλ1...dλk−1 < ∞;

lim
T →∞

∫
Λk−1

ΦT
k (λ1, ..., λk−1) dλ1...dλk−1 = 1;

lim
T →∞

∫
Λk−1\{|λ|<ε}

ΦT
k (λ1, ..., λk−1) dλ1...dλk−1 = 0 for all ε > 0.

The above properties imply

lim
T →∞

∫
Λk−1

ΦT
k (u1, ..., uk−1)G (u1 − v1, ..., uk−1 − vk−1) du1...duk−1 = G(v1, ..., vk−1), (2.22)

for every function G which is bounded and continuous at the point (v1, ..., vk−1).
In the case under consideration in the present paper, where the taper factorizes, and the
domain of observation is a cube LT = [−T, T ]d, the above facts follow as straightforward
generalizations of the corresponding results stated for dimension d = 1 by Dahlhaus (1983)
(see also Guyon (1995)).
For

∑k
j=1 αj = 0, we have

cum (dT (α1) , ..., dT (αk))

= (2π)d(k−1)Hk,T (0)
∫

Λk−1
ΦT

k (γ1 − α1, ..., γk−1 − αk−1) fk (γ1, ..., γk−1) dγ1...dγk−1

= (2π)d(k−1)Hk,T (0)
∫

Λk−1
ΦT

k (u1, ..., uk−1) fk (u1 + α1, ..., uk−1 + αk−1) du1...duk−1.
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