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Abstract

This paper investigates the simultaneous estimation of two drift parameters of a Cox–
Ingersoll–Ross (CIR) model, for which observations can be made either continuously or at
discrete time instants. For continuous-time observations, we establish the joint asymptotic
normality of the strongly consistent parameter estimators introduced in Dehtiar et al.
(Comm. Statist. Theory Methods, 51(19):6818–6833, 2022). Additionally, we study the
discrete counterparts of these estimators and prove their strong consistency and joint
asymptotic normality.

Keywords: CIR model, continuous observations, discrete observations, strong consistency,
joint asymptotic normality.

1. Introduction
To improve the modeling of short-term interest rate evolution, compared to the Vasicek model,
Cox, Ingersoll, and Ross (1985) proposed the following equation for the dynamics of the short
interest rate:

rt = (a − brt) dt + σ
√

rt dWt, t ≥ 0, (1.1)

where W = {Wt, t ≥ 0} is a Wiener process modeling the random market risk factor, a, b
and σ are positive constants. The parameter b corresponds to the speed of adjustment to the
mean a/b, and σ represents volatility. It is well-known that this model has several empirically
relevant properties. Notably, in this model, r never becomes negative, and the randomly
moving interest rate is elastically pulled towards the long-term constant value a/b. Currently,
the model (1.1) is widely used in mathematical finance, particularly for valuing interest rate
derivatives.
In this paper, we investigate the estimation of the drift parameters (a, b) by observations
of a solution r. The diffusion parameter σ is assumed to be known, a typical assumption in
parameter estimation for diffusion models, as explained in Remark 2.1 below. It is worth men-
tioning that the theory of parameter estimation for stochastic differential equations driven by
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a standard Wiener process, especially homogeneous ones, is well-developed. Comprehensive
resources on this topic can be found in the books Bishwal (2008); Iacus (2008); Kutoyants
(2004); Liptser and Shiryaev (2001). However, standard approaches for such models usually
assume that the diffusion coefficient is Lipschitz continuous. For the coefficient σ

√
x of the

CIR model, this assumption does not hold, and moreover, this coefficient is not bounded
away from zero. Therefore, the parameter estimation in the CIR model requires a special
investigation.
The case of continuous-time statistical inference in the CIR model (when the entire sample
path {rt, t ∈ [0, T ]} is observed) was studied by Ben Alaya and Kebaier (2013). They proved
the consistency and asymptotic normality of the maximum likelihood estimator (MLE), which
has the following form:

âmle
T =

∫ T
0 rtdt

∫ T
0

drt
rt

− T (rT − r0)∫ T
0 rtdt ·

∫ T
0

dt
rt

− T 2
, b̂mle

T =
(r0 − rT )

∫ T
0

dt
rt

+ T
∫ T

0
drt
rt∫ T

0 rtdt ·
∫ T

0
dt
rt

− T 2
. (1.2)

Note that the maximum likelihood estimator is well-defined only if 2a ≥ σ2, as it includes
the integral

∫ T
0

1
rt

dt, which exists with probability one if and only if 2a ≥ σ2, see (Ben Alaya
and Kebaier 2012, Prop. 4).
To overcome this restriction, Dehtiar, Mishura, and Ralchenko (2022) proposed an alternative
estimator that does not require the assumption 2a ≥ σ2. This estimator is based on the
ergodic properties of the CIR model and is presented in subsection 2.2 below, see (2.4)–(2.5).
Dehtiar et al. (2022) proved the strong consistency of this estimator. In this paper, we further
study their approach and establish the asymptotic normality.
Furthermore, since in practice the data is discrete, we focus significantly on the estimation of
the parameter (a, b) of the CIR model from discrete-time observations. We concentrate on the
case of high-frequency sampling, where the sampling step tends to zero, and the observation
horizon increases.
A similar problem was addressed in the recent paper Chernova, Dehtiar, Mishura, and
Ralchenko (2024), where a discretized version of the continuous-time MLE (1.2) was in-
troduced. The authors found the conditions for weak and strong consistency and asymptotic
normality of the estimators and established the rate of convergence of these estimators in
probability. A similar approach was studied by (Ben Alaya and Kebaier 2013), where the
continuous maximum likelihood estimators were first transformed by the Itô formula and
then discretized. Both approaches require the additional condition a > σ2, which arises when
the integral

∫ T
0

1
rt

dt is approximated by the corresponding Riemann sum. An alternative
method was proposed by Tang and Chen (2009). Rather than discretizing continuous-time
MLEs, they considered a discretization of the CIR model and constructed MLEs by maxi-
mizing a discrete-time pseudo-likelihood function. Notably, this approach also requires the
condition a > σ2. Recently, parameter estimation under high-frequency sampling was studied
by Cheng, Hufnagel, and Masuda (2022) using a Gaussian quasi-likelihood approach, where
an even more restrictive assumption 2a > 5σ2 was required.
In this paper, we investigate the discrete analog of the strongly consistent estimator proposed
in (Dehtiar et al. 2022, Thm. 5). As detailed in subsection 2.3, we prove the strong consistency
and asymptotic normality of this estimator. We also present a comparison of our approach
with alternative approaches for similar sampling schemes. The main advantage of our method
is its validity for any positive a and b, in contrast to other known approaches.
The problem of drift parameter estimation for the CIR model in discrete-time settings for
different observation schemes was studied in De Rossi (2010); Kladívko (2007); Overbeck
and Rydén (1997), where various methods were proposed. Moreover, the case b = 0 was
explored by Ben Alaya and Kebaier (2013), where they derived the consistency and asymptotic
distribution of the maximum likelihood estimator. Additionally, it is important to note there
is no consistent estimator for a when b < 0, as demonstrated by Overbeck (1998, Thm. 2(v)).
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The paper is organized as follows. In Section 2, we describe the statistical problem and
formulate the main results. Section 3 contains some simulation experiments. All the proofs
are collected in Section 4.

2. Main results

2.1. Model description: the CIR process and its properties

Let (Ω, F , P) be a probability space. We analyze the following stochastic differential equation

rt = r0 +
∫ t

0
(a − brs) ds + σ

∫ t

0

√
rs dWs, t ≥ 0, (2.1)

where W = {Wt, t ≥ 0} is a Wiener process, and

a, b, σ and r0 are positive constants. (2.2)

Under assumption (2.2) the equation (2.1) possesses a unique non-negative strong solution.
This solution is called the Cox–Ingersoll–Ross (CIR) process.
If the additional assumption 2a > σ2 (often referred to as Feller’s condition) is satisfied, then
the CIR process r remains strictly positive. For 0 < a < 2σ2, it almost surely hits zero, with
the state 0 being instantaneously reflecting.
When 2a > σ2, the CIR process is ergodic, and its stationary distribution is a Gamma
distribution with the following density:

p∞(x) = (2b/σ2)2a/σ2

Γ(2a/σ2) x2a/σ2−1e−2bx/σ2
1x>0. (2.3)

Ergodicity implies that for any function f ∈ L1(p∞), the time average 1
T

∫ T
0 f(rt)dt converges

a.s. to the space average
∫
R f(x)p∞(dx), as T → ∞.

More details on the properties of the CIR process can be found, for example, in Göing-Jaeschke
and Yor (2003) or Alfonsi (2015).
The primary focus of this paper is the estimation of the unknown drift parameter (a, b)
through observations of the trajectory of the CIR process r. We investigate two scenarios for
the observations:

1. Continuous observations: The process r is observed continuously over the interval [0, T ]
(see Subsection 2.2).

2. Discrete observations: The process r is observed at deterministic and equidistant time
points, under the conditions of high frequency and infinite horizon (see Subsection 2.3).

Further details are provided in the respective subsections below.
Remark 2.1. In both continuous and discrete frameworks, we assume that the diffusion pa-
rameter σ is known. This assumption is standard in the context of parameter estimation for
diffusion models (see, e.g., Kutoyants (2004); Sørensen (2002)) because there are straightfor-
ward estimators, such as those utilizing Lp-variation of rt, which converge much more quickly
than the estimators for the parameters a and b.
For example, the parameter σ can be estimated independently of the drift parameters as
follows. For any fixed t > 0, let {tk, k = 0, . . . , n}, n ≥ 1, be a sequence of partitions of the
interval [0, t], with diameter δn → 0 as n → ∞. It is well known that as n → ∞,

∑
tk≤t

(
rtk

− rtk−1

)2 → σ2
∫ t

0
rt dt a. s.
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(see, e.g., (Jacod and Shiryaev 1987, p. 52)). Therefore, by substituting the integral with a
Riemann sum, we derive the following strongly consistent estimator for σ2:

σ̂2
n =

∑
tk≤t

(
rtk

− rtk−1

)2
δn
∑

tk≤t rtk

.

Additional methods for estimating the diffusion coefficient of the CIR process are available in
Cheng et al. (2022); Dokuchaev (2017); Mishura, Ralchenko, and Dehtiar (2022); Tang and
Chen (2009).

2.2. Estimation by continuous observations

Assume that we observe a sample path {rt, t ∈ [0, T ]} continuously. The following strongly
consistent estimator of the parameter (a, b) was constructed in (Dehtiar et al. 2022, Thm. 5):

ãT = σ2

2 ·

(∫ T
0 rt dt

)2

T
∫ T

0 r2
t dt −

(∫ T
0 rt dt

)2 , (2.4)

b̃T = σ2

2 · T
∫ T

0 rt dt

T
∫ T

0 r2
t dt −

(∫ T
0 rt dt

)2 . (2.5)

In the following theorem, we establish its asymptotic normality. This theorem represents the
first main result of our paper.

Theorem 2.2. The estimator (ãT , b̃T ) is asymptotically normal:

√
T

(
ãT − a

b̃T − b

)
d−→ N (0, Σ), as T → ∞,

where

Σ =
(

a
b

(
2a + σ2) 2a + σ2

2a + σ2 2b
a

(
a + σ2)

)
.

Remark 2.3 (Comparison with MLE). Let us compare the estimator (ãT , b̃T ), as defined by
(2.4)–(2.5), with the maximum likelihood estimator, studied in Ben Alaya and Kebaier (2013).
On one hand, the maximum likelihood estimator is well-defined only under the additional
condition 2a > σ2. In contrast, the estimator (ãT , b̃T ) is suitable for all a > 0, which is a
crucial advantage. On the other hand, according to (Ben Alaya and Kebaier 2013, Thm. 5),
the maximum likelihood estimator is asymptotically normal with the following covariance
matrix:

Σmle =
(

a
b

(
2a − σ2) 2a − σ2

2a − σ2 2b

)
. (2.6)

Comparing Σ and Σmle, we see that when the maximum likelihood estimator is well-defined,
it is always more efficient than the estimator (ãT , b̃T ).

2.3. Estimation by discrete observations

Now let us introduce a discrete counterpart of the estimator (ãT , b̃T ). Following Chernova
et al. (2024), we adopt the following observation scheme, which enables the construction of a
consistent estimator. Let n be a positive integer. We consider an equidistant partition of the
interval [0, n] with a step size of δn = n−β, where β > 0. Observations are made at the times
tk = kδn = kn−β. Consequently, the total number of observations is mn = nβ+1.
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We define the estimator of (a, b) based on the discrete observations {rtk
, k = 0, . . . mn − 1} as

follows:

ân = σ2

2 ·

(∑mn−1
k=0 rtk

)2

mn
∑mn−1

k=0 r2
tk

−
(∑mn−1

k=0 rtk

)2 , (2.7)

b̂n = σ2

2 ·
mn

∑mn−1
k=0 rtk

mn
∑mn−1

k=0 r2
tk

−
(∑mn−1

k=0 rtk

)2 . (2.8)

Our second main result states that (ân, b̂n) is a strongly consistent and asymptotically normal
estimator of the parameter (a, b).

Theorem 2.4. 1. For any β > 0,

ân → a, b̂n → b, a.s. as n → ∞,

i.e. (ân, b̂n) is a strongly consistent estimator of the parameter (a, b) respectively.
2. Let β > 1. Then the estimator (ân, b̂n) is asymptotically normal:

√
n

(
ân − a

b̂n − b

)
d−→ N (0, Σ), as n → ∞, (2.9)

where Σ is defined in Theorem 2.2.

Remark 2.5 (Comparison with discretized MLE). Recently, Chernova et al. (2024) studied
a discretized version of MLE and established the conditions for its (strong) consistency and
asymptotic normality. Notably, compared to our estimator (ân, b̂n), the discretized MLE
requires the additional condition a > σ2, which is even more restrictive than the condition
2a > σ2 needed for the continuous-time MLE, see (Chernova et al. 2024, Thm. 2.2).
Furthermore, the discretized MLE is strongly consistent for β ≥ 2, whereas our estimator
(ân, b̂n) is strongly consistent for all β > 0. However, if the condition a > σ2 is satisfied, then
the discretized MLE is asymptotically normal with the asymptotic covariance matrix Σmle,
see (2.6). This implies that, under these condition, the discretized MLE is more efficient than
(ân, b̂n).
Remark 2.6 (Comparison with pseudo-MLE). Tang and Chen (2009) proposed an alterna-
tive method for parameter estimation in the CIR model using discrete observations. Their
approach is based on a discrete-time approximation of the CIR model, followed by the maxi-
mization of the discrete-time pseudo-log-likelihood function. They utilized a different parame-
terization of the drift coefficient, specifically κ(α−rt) instead of a−brt. Within this framework,
they also examined the parameter estimation problem using an observation scheme where the
observation horizon increases while the interval between observations tends to zero.
In particular, their estimator for the drift parameters (κ, α) is asymptotically normal with
the following asymptotic covariance matrix:(

2κ 2
2 ασ2

κ2

)
,

as presented in (Tang and Chen 2009, Thm. 3.2.4).
By setting a = κα and b = κ, defining the estimator for (a, b) accordingly, and applying the
delta method, it can be shown that their estimator for (a, b) is asymptotically normal with
the following asymptotic covariance matrix:

Σpseudo =
(

a
b (2a + σ2 + 4b) 2(a + b)

2(a + b) 2b

)
.
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Comparing Σpseudo with Σ, we observe that our estimator (2.7) for the parameter a is more
efficient than that proposed by Tang and Chen (2009). Conversely, their estimator for b has
the same asymptotic variance as the discretized MLE and is more efficient than our estimator
(2.8).
It should also be noted that Tang and Chen (2009) assume the condition a ≥ σ2 is satisfied.
This restriction is similar to the one described for the discretized MLE in Remark 2.5. We
emphasize that our approach does not require such a restriction.
Remark 2.7 (Comparison with Gaussian quasi-MLE). Cheng et al. (2022) proposed an al-
ternative approach for parameter estimation in the CIR model, based on Gaussian quasi-
likelihood estimation. Similar to our approach, they considered the case of high-frequency
sampling, where the observation horizon approaches infinity while the observation step size
approaches zero. As a result, Cheng et al. (2022) constructed an asymptotically efficient
estimator of the drift parameters, characterized by an asymptotic covariance matrix Σmle
(see (2.6)). Additionally, they formulated a practical two-stage method that avoids numer-
ical optimization. However, their approach imposes a rather restrictive assumption on the
parameters, specifically 2a > 5σ2 (see condition (1.2) in Cheng et al. (2022)).

3. Simulations
To demonstrate the quality of the constructed discretized estimators, we conducted a simula-
tion experiment using the R programming language. We selected the initial value r0 = 1 and,
for certain fixed parameter values, generated 1000 trajectories for the process r as a solution
to the stochastic differential equation (2.1) through Euler–Maruyama approximations.
To investigate the influence of a, b, and σ on the behavior of the estimator (ân, b̂n), we
considered 12 different sets of model parameters, namely (a, b, σ) ∈ {1, 2} × {1, 2} × {1, 2, 3}.
We set the parameter β equal to 1.5. For each set, we computed the estimates for various
horizons of observations, namely n = 24, 26, 28. The biases of the estimators are reported
in Table 1. The theoretical and empirical standard deviations of ân and b̂n are reported in
Tables 2 and 3, respectively.

Table 1: Biases of ân and b̂n

µ(ân) − a µ(b̂n) − b

a = 1 a = 1 a = 2 a = 2 a = 1 a = 1 a = 2 a = 2
b = 1 b = 2 b = 1 b = 2 b = 1 b = 2 b = 1 b = 2

σ = 1

n = 24 0.3679 0.1924 0.5203 0.3644 0.4219 0.3593 0.3298 0.3908
n = 26 0.1087 0.0569 0.1596 0.1005 0.1286 0.1175 0.0990 0.1116
n = 28 0.0254 0.0121 0.0365 0.0211 0.0301 0.0249 0.0226 0.0235

σ = 2

n = 24 0.4927 0.3115 0.7356 0.4717 0.7497 0.7945 0.5377 0.5981
n = 26 0.1670 0.1008 0.2412 0.1442 0.2438 0.2635 0.1686 0.1843
n = 28 0.0450 0.0247 0.0596 0.0320 0.0623 0.0627 0.0407 0.0409

σ = 3

n = 24 0.6350 0.4189 0.9386 0.6109 1.2819 1.3760 0.8269 0.9225
n = 26 0.2322 0.1424 0.3320 0.2014 0.4110 0.4447 0.2632 0.2928
n = 28 0.0709 0.0415 0.0912 0.0503 0.1107 0.1161 0.0673 0.0697

We observed that the numerical results confirm our theoretical results. Namely, the biases
and the standard deviations of the estimators approach zero as n increases. Moreover, the
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empirical standard deviations are close enough to the corresponding theoretical values. This
fact serves as confirmation for the asymptotic normality stated in Theorem 2.4.

Table 2: Empirical and theoretical standard deviations of ân

a = 1 a = 1 a = 2 a = 2
b = 1 b = 2 b = 1 b = 2

emp theor emp theor emp theor emp theor

σ = 1

n = 24 0.4427 0.4330 0.2916 0.3062 0.7988 0.7906 0.5696 0.5590
n = 26 0.2039 0.2165 0.1461 0.1531 0.3819 0.3953 0.2740 0.2795
n = 28 0.1047 0.1083 0.0763 0.0765 0.1937 0.1976 0.1410 0.1398

σ = 2

n = 24 0.4965 0.6124 0.3445 0.4330 0.8797 1.0000 0.6232 0.7071
n = 26 0.2481 0.3062 0.1856 0.2165 0.4375 0.5000 0.3239 0.3536
n = 28 0.1384 0.1531 0.1028 0.1083 0.2358 0.2500 0.1732 0.1768

σ = 3

n = 24 0.5780 0.8292 0.3947 0.5863 0.9795 1.2748 0.6907 0.9014
n = 26 0.2909 0.4146 0.2244 0.2932 0.5047 0.6374 0.3801 0.4507
n = 28 0.1728 0.2073 0.1317 0.1466 0.2846 0.3187 0.2124 0.2253

Moreover, we observed that among the considered parameter values, the estimator ân demon-
strates the best performance when a = 1 and b = 2, while the estimator b̂n performs best
when a = 2 and b = 1. This observation holds true from both bias and standard deviation
perspectives. More generally, we notice the following pattern: a decrease in the parameter
a and an increase in b result in improved performance of the estimator ân. Conversely, the
estimator b̂n exhibits the opposite behavior.
The increase of the volatility parameter σ negatively affects the performance of both estima-
tors.
The mentioned facts align perfectly with the formulas for asymptotic variances in Theorem 2.4.
Moreover, our estimators indeed work regardless of whether Feller’s condition 2a > σ2 is
satisfied or not. In the case when it is satisfied, we can compare our results with the corre-
sponding results for discretized MLEs from the paper Chernova et al. (2024). The discretized
MLEs slightly outperform our estimators ân and b̂n. However, our estimators still seem quite
reasonable.

4. Proofs
In the following proofs, let C denote a generic constant whose value may change from one
occurrence to another.

4.1. Asymptotic behavior of the integrals

In this subsection we investigate the properties of the integrals
∫ T

0 rtdt and
∫ T

0 r2
t dt, which

are involved into the estimator (ã, b̃). In particular, we express the above-mentioned integrals
through the Itô martingales

∫ T
0 r

1/2
t dWt and

∫ T
0 r

3/2
t dWt. The joint asymptotic normality of

these martingales is established as well.
For further reference, let us recall some well-known facts about the CIR process from the
papers Ben Alaya and Kebaier (2013); Chernova et al. (2024); Deelstra and Delbaen (1995);
Dehtiar et al. (2022).
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Table 3: Empirical and theoretical standard deviations of b̂n

a = 1 a = 1 a = 2 a = 2
b = 1 b = 2 b = 1 b = 2

emp theor emp theor emp theor emp theor

σ = 1

n = 24 0.5152 0.5000 0.6408 0.7071 0.4608 0.4330 0.6230 0.6124
n = 26 0.2455 0.2500 0.3422 0.3536 0.2173 0.2165 0.3057 0.3062
n = 28 0.1245 0.1250 0.1807 0.1768 0.1084 0.1083 0.1573 0.1531

σ = 2

n = 24 0.8386 0.7906 1.0524 1.1180 0.6360 0.6124 0.8448 0.8660
n = 26 0.3827 0.3953 0.5312 0.5590 0.2968 0.3062 0.4213 0.4330
n = 28 0.1923 0.1976 0.2832 0.2795 0.1513 0.1531 0.2213 0.2165

σ = 3

n = 24 1.3543 1.1180 1.6015 1.5811 0.9300 0.8292 1.1789 1.1726
n = 26 0.5647 0.5590 0.7581 0.7906 0.4064 0.4146 0.5631 0.5863
n = 28 0.2680 0.2795 0.3944 0.3953 0.2016 0.2073 0.2969 0.2932

1. The following convergences hold a.s. as T → ∞:

1
T

∫ T

0
rtdt → a

b
, (4.1)

1
T

∫ T

0
r2

t dt → a(a + σ2/2)
b2 . (4.2)

The convergences (4.1) and (4.2) were proved in (Deelstra and Delbaen 1995, Thm. 1)
and (Dehtiar et al. 2022, Thm. 4) respectively. Note that under additional condition
2a > σ2 (when the process r is ergodic with stationary density (2.3)), (4.1) and (4.2)
follow from the ergodic theorem, see, e.g., (Dehtiar et al. 2022, Cor. 2).

2. For any q ≥ 1 there exists a constant Cq > 0 such that

E
∣∣∣∣∣ 1T
∫ T

0
rtdt − a

b

∣∣∣∣∣
q

≤ CqT −q/2. (4.3)

This inequality was proved in (Chernova et al. 2024, Lemma 4.3 (1)). It is worth noting
that the statement of that lemma includes an additional condition, 2a > σ2. However,
a detailed analysis of the proof indicates that this condition is necessary only for the
second part of the lemma, and not for the bound (4.3).

3. For any p > −2a/σ2

sup
t≥0

Erp
t < ∞, (4.4)

see (Ben Alaya and Kebaier 2013, Prop. 3).

Lemma 4.1. For any p > 0 and q ≥ 1 there exists a constant C = Cp,q > 0 such that

E
∣∣∣∣∣ 1T
∫ T

0
rp

s dWs

∣∣∣∣∣
q

≤ CT − q
2 . (4.5)

Proof. In view of Lyapunov’s inequality between Lq-norms for different q, it suffices to prove
the lemma for q ≥ 2. Using successively the Burkholder–Davis–Gundy and Hölder inequalities
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we derive that for any q ≥ 2,

E
∣∣∣∣∣
∫ T

0
rp

s dWs

∣∣∣∣∣
q

≤ CE
(∫ T

0
r2p

s ds

) q
2

≤ CT
q
2 −1

∫ T

0
Erpq

t dt ≤ CT
q
2 , (4.6)

where the last inequality follows from (4.4). Dividing both sides of (4.6) by T q, we get
(4.5).

Remark 4.2. For the particular case p = 1
2 , Lemma 4.1 was proved in (Chernova et al. 2024,

Lemma 4.2).

In the following lemma we express the integrals
∫ T

0 rtdt and
∫ T

0 r2
t dt via

∫ T
0 r

1/2
t dWt and∫ T

0 r
3/2
t dWt. As usual, we denote by Lq−→ the convergence in the space Lq = Lq(Ω, F , P).

Lemma 4.3. Let q ≥ 1.

(i) For any T > 0,

T − 1
2

∫ T

0
rtdt = a

b
T

1
2 + σ

b
T − 1

2

∫ T

0
r

1/2
t dWt + ρ1(T ), (4.7)

where
ρ1(T ) := r0 − rT

b
√

T

Lq−→ 0, as T → ∞. (4.8)

(ii) For any T > 0,

T − 3
2

(∫ T

0
rtdt

)2

= a2

b2 T
1
2 + 2aσ

b2 T − 1
2

∫ T

0
r

1/2
t dWt + ρ2(T ), (4.9)

where

ρ2(T ) := σ2

b2 T − 3
2

(∫ T

0
r

1/2
t dWt

)2

+ ρ2
1(T )√

T
+ 2a

b
ρ1(T )

+ 2σ

b
T −1ρ1(T )

∫ T

0
r

1/2
t dWt

Lq−→ 0, as T → ∞. (4.10)

(iii) For any T > 0,

T − 1
2

∫ T

0
r2

t dt = a(a + σ2/2)
b2 T

1
2 + σ(a + σ2/2)

b2 T − 1
2

∫ T

0
r

1/2
t dWt

+ σ

b
T − 1

2

∫ T

0
r

3/2
t dWt + ρ3(T ), (4.11)

where
ρ3(T ) := r2

0 − r2
T

2b
√

T
+ (a + σ2/2)

b
ρ1(T ) Lq−→ 0, as T → ∞. (4.12)

Proof. (i) The representation (4.7) is a direct consequence of the equation (2.1); the conver-
gence (4.8) follows immediately from (4.4).
(ii) By squaring (4.7), we get the representation (4.9). The convergence (4.10) is derived from
the bound (4.5) together with (4.8).
(iii) By application of the Itô formula with the function H(x) = x2, we derive from (2.1) that

r2
T − r2

0 =
∫ T

0

(
(a − brt) · H ′(rt) + σ2rt

2 H ′′(rt)
)

dt +
∫ T

0
σ

√
rsH ′(rt)dWt



Austrian Journal of Statistics 91

=
∫ T

0

(
(a − brt) · 2rt + σ2rt

)
dt + 2σ

∫ T

0
r

3
2
t dWt

= (2a + σ2)
(∫ T

0
rtdt − aT

b

)
− 2b

∫ T

0
r2

t dt + a(2a + σ2)T
b

+ 2σ

∫ T

0
r

3
2
t dWt.

We express the integral
∫ T

0 r2
t from this equality and get

∫ T

0
r2

t dt = a(a + σ2/2)
b2 T + r2

0 − r2
T

2b
+ 2a + σ2

2b

(∫ T

0
rtdt − aT

b

)
+ σ

b

∫ T

0
r

3
2
t dWt. (4.13)

Now in order to establish (4.11), it suffices to substitute the representation (4.7) for
∫ T

0 rt dt
into the right-hand side of (4.13). The convergence (4.12) follows from (4.4) and (4.8).

In the next two lemmas we estimate the rate of convergence of the normalized integrals
1
T

∫ T
0 r2

s ds and 1
T

∫ T
0 r3

s ds to their limits. As a corollary of (4.11) we get the following result.

Lemma 4.4. For any q ≥ 1 there exists a constant Cq > 0 such that

E
∣∣∣∣∣ 1T
∫ T

0
r2

s ds − a(a + σ2/2)
b2

∣∣∣∣∣
q

≤ CqT − q
2 . (4.14)

Proof. By (4.11), we have

E
∣∣∣∣∣ 1T
∫ T

0
r2

t dt − a(a + σ2/2)
b2

∣∣∣∣∣
q

≤ C

(
σq(a + σ2/2)q

b2q
E
∣∣∣∣∣ 1T
∫ T

0
r

1/2
t dWt

∣∣∣∣∣
q

+ σq

bq
· E
∣∣∣∣∣ 1T
∫ T

0
r

3
2
t dWt

∣∣∣∣∣
q

+ T − q
2 E |ρ3(T )|q

)
.

Now the proof follows from (4.5) and (4.12).

The following lemma deals with the integral
∫ T

0 r3
t dt. Although it is not directly included in

the estimators, it represents the quadratic variation of the martingale intT
0 r

3/2
t dWt. Therefore,

it is essential for subsequent proofs, which rely on the central limit theorem for martingales.

Lemma 4.5. (i) The integral
∫ T

0 r3
t dt admits the following representation:

1
T

∫ T

0
r3

t dt = a
(
a + σ2) (a + σ2/2

)
b3 + r3

0 − r3
T

3bT

+ a + σ2

b

(
1
T

∫ T

0
r2

t dt − a(a + σ2/2)
b2

)
+ σ

bT

∫ T

0
r

5
2
t dWt.

(4.15)

(ii) Moreover, for any q ≥ 1 there exists a constant C = C(q) > 0 such that

E
∣∣∣∣∣ 1T
∫ T

0
r3

t dt − a
(
a + σ2) (a + σ2/2

)
b3

∣∣∣∣∣
q

≤ CT − q
2 . (4.16)

Proof. (i) Similarly to the proof of Lemma 4.3(iii), we apply the Itô formula with the function
H(x) = x3 to the stochastic differential equation (2.1). We obtain

r3
T − r3

0 =
∫ T

0

(
(a − brt) · H ′(rt) + σ2rt

2 H ′′(rt)
)

dt +
∫ T

0
σ

√
rsH ′(rt)dWt

= 3
∫ T

0

((
a + σ2

)
r2

t − br3
t

)
dt + 3σ

∫ T

0
r

5
2
t dWt
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= 3
(
a + σ2

)(∫ T

0
r2

t dt − a(a + σ2/2)
b2 T

)
− 3b

∫ T

0
r3

t dt

+ 3σ

∫ T

0
r

5
2
t dWt + 3a(a + σ2)(a + σ2/2)

b2 T,

whence ∫ T

0
r3

t dt = a(a + σ2)(a + σ2/2)
b3 T + r3

0 − r3
T

3b

+ a + σ2

b

(∫ T

0
r2

t dt − a(a + σ2/2)
b2 T

)
+ σ

b

∫ T

0
r

5
2
t dWt.

Thus (4.15) is proved.
(ii) The bound (4.16) is derived from (4.15) similarly to the proof of Lemma 4.4. The equality
(4.15) implies

E
∣∣∣∣∣ 1T
∫ T

0
r3

t dt − a
(
a + σ2) (a + σ2/2

)
b3

∣∣∣∣∣
q

≤ C

(
r3q

0 + Er3q
T

(3bT )q
+
(

a + σ2

b

)q

E
∣∣∣∣∣ 1T
∫ T

0
r2

t dt − a(a + σ2/2)
b2

∣∣∣∣∣
q

+
(

σ

b

)q

E
∣∣∣∣∣ 1T
∫ T

0
r

5
2
t dWt

∣∣∣∣∣
q)

.

(4.17)

The first term in the right-hand side of (4.17) can be bounded using (4.4). For the second
term, we use the bound from Lemma 4.4, and for the third term, we apply Lemma 4.1. This
completes the proof of (4.16).

Remark 4.6. It is possible to establish the convergence

1
T

∫ T

0
r3

t dt → a
(
a + σ2) (a + σ2/2

)
b3 a.s., as T → ∞, (4.18)

in addition to Lq-convergence, which follows from (4.16) (and is sufficient for further proofs).
The proof of (4.18) is derived from (4.16) by a standard application of the Borel–Cantelli
lemma, similarly to the proof of the convergence (4.32) in Lemma 4.12 below. Note that in
the case 2a > σ2 (when the process r has ergodic properties), (4.18) follows from the ergodic
theorem.

Lemma 4.7. As T → ∞

1√
T

 ∫ T
0 r

1/2
t dWt

−
∫ T

0 r
3/2
t dWt

 d−→ N (0, Γ),

where

Γ =

 a
b − a

b2

(
a + σ2

2

)
− a

b2

(
a + σ2

2

)
a
b3
(
a + σ2) (a + σ2

2

) .

Proof. Note that the vector process

MT :=

 ∫ T
0 r

1/2
t dWt

−
∫ T

0 r
3/2
t dWt

 , T ≥ 0,

is a two-dimensional Brownian martingale with the quadratic variation matrix

⟨M⟩T =
( ∫ T

0 rtdWt −
∫ T

0 r2
t dWt

−
∫ T

0 r2
t dWt

∫ T
0 r3

t dWt

)
.
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According to (4.1), (4.2) and Lemma 4.5, we have

1
T

⟨M⟩T
P−→ Γ, as T → ∞.

Hence, the required convergence

1√
T

MT
d−→ N (0, Γ), as T → ∞,

follows from the central limit theorem for multidimensional martingales, see, e.g., Heyde
(1997, Thm. 12.6).

4.2. Proof of Theorem 2.2

We split the proof into several steps. Denote

DT := 1
T

∫ T

0
r2

t dt −
(

1
T

∫ T

0
rt dt

)2

. (4.19)

It follows from (4.1) and (4.2) that

DT → aσ2

2b2 a.s. as T → ∞. (4.20)

Further, in the following two lemmas we express
√

T (ãT − a) and
√

T (b̃T − b) via
∫ T

0 r
1/2
t dWt

and
∫ T

0 r
3/2
t dWt.

Lemma 4.8. For any T > 0,

√
T (ãT − a) = aσ

bDT

√
T

(
a + σ2/2

b

∫ T

0
r

1/2
t dWt −

∫ T

0
r

3/2
t dWt

)
+ R1(T ), (4.21)

where
R1(T ) P−→ 0, as T → ∞. (4.22)

Proof. By the definition (2.4) of the estimator ãT , taking into account the notation (4.19),
we have

√
T (ãT − a) =

√
T

σ2

2 ·

(∫ T
0 rt dt

)2

T
∫ T

0 r2
t dt −

(∫ T
0 rt dt

)2 − a


=

(
σ2

2 + a
)

T −3/2
(∫ T

0 rt dt
)2

− aT − 1
2
∫ T

0 r2
t dt

DT
. (4.23)

Next, we transform (4.23) by expressing the integrals in the numerator according to Lemma 4.3
(ii)–(iii). We get

√
T (ãT − a) = 1

DT

[
a2 (a + σ2/2

)
b2 T

1
2 + 2aσ

(
a + σ2/2

)
b2 T − 1

2

∫ T

0
r

1/2
t dWt

+
(

a + σ2

2

)
ρ2(T ) − a2(a + σ2/2)

b2 T
1
2

− aσ(a + σ2/2)
b2 T − 1

2

∫ T

0
r

1/2
t dWt − aσ

b
T − 1

2

∫ T

0
r

3/2
t dWt − aρ3(T )

]
= 1

DT

[
aσ
(
a + σ2/2

)
b2 T − 1

2

∫ T

0
r

1/2
t dWt − aσ

b
T − 1

2

∫ T

0
r

3/2
t dWt
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+
(

a + σ2

2

)
ρ2(T ) − aρ3(T )

]
.

Hence, (4.21) holds with the following remainder

R1(T ) := 1
DT

[(
a + σ2

2

)
ρ2(T ) − aρ3(T )

]
,

for which the convergence (4.22) is valid due to (4.10), (4.12) and (4.20).

Lemma 4.9. For any T > 0,
√

T
(
b̃T − b

)
= σ

DT

√
T

(
a

b

∫ T

0
r

1/2
t dWt −

∫ T

0
r

3/2
t dWt

)
+ R2(T ), (4.24)

where
R2(T ) P−→ 0, as T → ∞. (4.25)

Proof. From (2.5), (4.19) and Lemma (4.3), we derive the following representation

√
T
(
b̃T − b

)
=

σ2

2 T − 1
2
∫ T

0 rt dt − bT − 1
2
∫ T

0 r2
t dt + bT − 3

2
(∫ T

0 rt dt
)2

1
T

∫ T
0 r2

t dt −
(

1
T

∫ T
0 rt dt

)2

= 1
DT

[
aσ

b
T − 1

2

∫ T

0
r

1/2
t dWt − σT − 1

2

∫ T

0
r

3/2
t dWt + σ2

2 ρ1(T ) − bρ3(T ) + bρ2(T )
]

,

whence we obtain the formula (4.24) with

R2(T ) := 1
DT

[
σ2

2 ρ1(T ) − bρ3(T ) + bρ2(T )
]

.

The convergence (4.25) follows from (4.20) and Lemma 4.3.

Proof of Theorem 2.2. According to Lemmas 4.8 and 4.9, we have the following representation

√
T

(
ãT − a

b̃T − b

)
= σ

DT

(
a
b2

(
a + σ2

2

)
a
b

a
b 1

) 1√
T

∫ T
0 r

1/2
t dWt

− 1√
T

∫ T
0 r

3/2
t dWt

+
(

R1(T )
R2(T )

)
. (4.26)

Taking into account the convergence (4.20), Lemma 4.7, and the Slutsky theorem, we derive
that the right-hand side of (4.26) converges to the bi-variate normal distribution N (0, Σ)
with

Σ =
(

2b2

aσ

)2( a
b2

(
a + σ2

2

)
a
b

a
b 1

) a
b − a

b2

(
a + σ2

2

)
− a

b2

(
a + σ2

2

)
a
b3
(
a + σ2) (a + σ2

2

)( a
b2

(
a + σ2

2

)
a
b

a
b 1

)

=

2a
b

(
a + σ2

2

)
2
(
a + σ2

2

)
2
(
a + σ2

2

)
2b
a

(
a + σ2)

 .

This completes the proof.

4.3. Approximation of integrals by sums. Asymptotic behavior of sums
In this subsection, we focus on the sums

∑mn−1
k=0 rtk

and
∑mn−1

k=0 r2
tk

, which are part of the
discrete-time estimators (2.7)–(2.8). Our objective is to estimate the difference between these
sums and the corresponding integrals

∫ T
0 rtdt and

∫ T
0 r2

t dt discussed in subsection 4.1. Sub-
sequently, we will utilize the asymptotic properties of these integrals and continuous-time
estimators to establish the corresponding properties of the discrete-time estimators.
Let us recall the following facts from Ben Alaya and Kebaier (2013); Chernova et al. (2024):
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1. Let 0 ≤ s < t such that 0 < t−s < 1. Then for all q ≥ 1, there exists a constant Cq > 0
such that

E |rt − rs|q ≤ Cq(t − s)
q
2 , (4.27)

see (Ben Alaya and Kebaier 2013, Prop. 4).

2. According to (Chernova et al. 2024, formula (4.17)), for any q ≥ 1,

E
∣∣∣∣∣ 1n
∫ T

0
rtdt − 1

n

mn−1∑
k=0

rtk
δn

∣∣∣∣∣
q

≤ Cn− βq
2 (4.28)

for some constant C > 0.

3. By (Chernova et al. 2024, Lemma 4.6),

1
n

mn−1∑
k=0

rtk
δn → a

b
a.s., as n → ∞. (4.29)

To prove Theorem 2.4, in addition to the cited results for the process r, we need their analogs
for the process r2. These analogs are stated in the following three lemmas.

Lemma 4.10. Assume that 0 ≤ s < t, such that 0 < t − s < 1. Then for any q ≥ 1 there
exists a constant C = C(q) > 0 such that

E
∣∣∣r2

t − r2
s

∣∣∣q ≤ C(t − s)q/2 (4.30)

Proof. Applying the Cauchy–Schwarz inequality, we obtain

E
∣∣∣r2

t − r2
s

∣∣∣q = E [(rt + rs)q |rt − rs|q] ≤
√

E(rt + rs)2q · E |rt − rs|2q.

The first term under the square root is bounded due to (4.4), and the second term, according
to (4.27), admits the upper bound E |rt − rs|2q ≤ C(t − s)q, which completes the proof.

Lemma 4.11. For any q ≥ 1,

E
∣∣∣∣∣ 1n
∫ T

0
r2

t dt − 1
n

mn−1∑
k=0

r2
tk

δn

∣∣∣∣∣
q

≤ Cn− βq
2 . (4.31)

Proof. For q = 1 using (4.30) we get

E
∣∣∣∣∣ 1n
∫ n

0
r2

t dt − 1
n

mn−1∑
k=0

r2
tk

δn

∣∣∣∣∣ = 1
n

E
∣∣∣∣∣
∫ n

0

mn−1∑
k=0

(r2
t − r2

tk
)1t∈(tk,tk+1)dt

∣∣∣∣∣
≤ 1

n

mn−1∑
k=0

∫ tk+1

tk

E
∣∣∣r2

t − r2
tk

∣∣∣ dt ≤ n−1 · C · nβ/2 · n = Cn−β/2.

For q > 1 we apply Hölder’s inequality and obtain

E
∣∣∣∣∣ 1n
∫ n

0
r2

t dt − 1
n

mn−1∑
k=0

r2
tk

δn

∣∣∣∣∣
q

= 1
nq

E
∣∣∣∣∣
∫ n

0

mn−1∑
k=0

(r2
t − r2

tk
)1t∈(tk,tk+1)dt

∣∣∣∣∣
q

≤ 1
nq

E
∫ n

0

∣∣∣∣∣
mn−1∑
k=0

(
r2

t − r2
tk

)
1t∈(tk,tk+1)

∣∣∣∣∣
q

dt

(∫ n

0
dt

)q−1

≤ 1
nq

nq−1
mn−1∑
k=0

∫ tk+1

tk

E
∣∣∣r2

t − r2
tk

∣∣∣q ≤ n−1 · C · n−βq/2 · n = Cn−βq/2.

Thus, (4.31) is proved.
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Lemma 4.12. One has the following convergence:

1
n

mn−1∑
k=0

r2
tk

δn → a(a + σ2/2)
b2 a.s., as n → ∞. (4.32)

Moreover, for any q ≥ 1

E
∣∣∣∣∣ 1n

mn−1∑
k=0

r2
tk

δn − a(a + σ2/2)
b2

∣∣∣∣∣
q

≤ Cn− (β∧1)q
2 . (4.33)

Proof. Combining Lemmas 4.4 and 4.11, we establish the bound (4.33). Moreover, Lemma
4.11 and Markov’s inequality reveal that for any ε > 0 and any q ≥ 1 the following inequality
holds:

P(An) := P
{∣∣∣∣∣ 1n

∫ n

0
r2

t dt − 1
n

mn−1∑
k=0

r2
tk

δn

∣∣∣∣∣ ≥ ε

}
≤ C

εq
n− βq

2 .

Choosing sufficiently large q, we can guarantee that the condition
∑

n≥1 P(An) < ∞ is satis-
fied. Then the Borel–Cantelli lemma yields the convergence

1
n

∫ n

0
r2

t dt − 1
n

mn−1∑
k=0

r2
tk

δn → 0, a.s., as n → ∞.

Combining this convergence with (4.2) we obtain (4.32).

Lemma 4.13. Let β > 1. Then

n− 1
2

mn−1∑
k=0

rtk
δn = n− 1

2

∫ n

0
rtdt + τ1(n), (4.34)

n− 3
2

(
mn−1∑
k=0

rtk
δn

)2

= n− 3
2

(∫ n

0
rtdt

)2
+ τ2(n), (4.35)

n− 1
2

mn−1∑
k=0

r2
tk

δn = n− 1
2

∫ n

0
r2

t dt + τ3(n), (4.36)

where
τi(n) P−→ 0 as n → ∞, i = 1, 2, 3. (4.37)

Proof. The asymptotic relations (4.34) and (4.36) follow from the bounds (4.28) and (4.31)
respectively.
The formula (4.35) is derived from (4.34) as follows:

n− 3
2

(
mn−1∑
k=0

rtk
δn

)2

= n− 1
2

(
n− 1

2

∫ n

0
rtdt + τ1(n)

)2
= n− 3

2

(∫ n

0
rtdt

)2
+ τ2(n),

where
τ2(n) = 2τ1(n) 1

n

∫ n

0
rtdt + n− 1

2 τ2
1 (n) P−→ 0 as n → ∞,

because τ1(n) P−→ 0 and 1
n

∫ n
0 rtdt

P−→ a
b by (4.1).
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4.4. Proof of Theorem 2.4

Proof of strong consistency. In order to prove the strong consistency of ân, we divide both
the numerator and the denominator of (2.7) by n2, and use (4.29) and (4.32):

ân = σ2

2 ·

(
1
n

∑mn−1
k=0 rtk

δn

)2

1
n

∑mn−1
k=0 r2

tk
δn −

(
1
n

∑mn−1
k=0 rtk

δn

)2 → σ2

2 ·
(

a
b

)2
a2

b2 + aσ2

2b2 −
(

a
b

)2 = a a.s. as n → ∞.

The strong consistency of b̂n is derived from (2.8), (4.29) and (4.32) in the same way.

Proof of asymptotic normality. Let us denote

D̂n := 1
n

mn−1∑
k=0

r2
tk

δn −
(

1
n

mn−1∑
k=0

rtk
δn

)2

.

Then (see the proof of strong consistency)

D̂n → aσ2

2b2 a.s. as T → ∞, (4.38)

and
√

n (ân − a) can be represented as follows

√
n (ân − a) =

√
n

 σ2

2

(
1
n

∑mn−1
k=0 rtk

δn

)2

1
n

∑mn−1
k=0 r2

tk
δn −

(
1
n

∑mn−1
k=0 rtk

δn

)2 − a


= 1

D̂n

(a + σ2

2

)
n−3/2

(
mn−1∑
k=0

rtk
δn

)2

− an−1/2
mn−1∑
k=0

r2
tk

δn

 .

Then using Lemma 4.13 and the representation (4.23), we get

√
n (ân − a) = 1

D̂n

[(
a + σ2

2

)
n− 3

2

(∫ n

0
rtdt

)2
− an−1/2

∫ n

0
r2

t dt

+
(

a + σ2

2

)
τ2(n) − aτ3(n)

]
= Dn

D̂n

√
n (ãn − a) + Q1(n), (4.39)

where

Q1(n) :=

(
a + σ2

2

)
τ2(n) − aτ3(n)

D̂n

P−→ 0 as n → ∞,

by (4.37) and (4.38). Similarly, we can prove that

√
n
(
b̂n − b

)
= Dn

D̂n

√
n
(
b̃n − b

)
+ Q2(n) (4.40)

with

Q2(n) :=
σ2

2 τ1(n) − bτ3(n) + bτ2(n)
D̂n

P−→ 0 as n → ∞.

Note that Dn/D̂n
P−→ 1 as n → ∞, by (4.20) and (4.38). Thus, now the convergence (2.9)

follows from representations (4.39)–(4.40) and Theorem 2.2 by the Slutsky theorem.



98 Discretization and Asymptotic Normality of Drift Parameters Estimator in CIR Model

Acknowledgment
The second author is supported by the Research Council of Finland, decision number 359815.

References

Alfonsi A (2015). Affine Diffusions and Related Processes: Simulation, Theory and Applica-
tions, volume 6 of Bocconi & Springer Series. Springer and Bocconi University Press.

Ben Alaya M, Kebaier A (2012). “Parameter Estimation for the Square-root Diffusions:
Ergodic and Nonergodic Cases.” Stochastic Models, 28(4), 609–634.

Ben Alaya M, Kebaier A (2013). “Asymptotic Behavior of the Maximum Likelihood Estimator
for Ergodic and Nonergodic Square-root Diffusions.” Stochastic Analysis and Applications,
31(4), 552–573. doi:10.1080/07362994.2013.798175.

Bishwal JPN (2008). Parameter Estimation in Stochastic Differential Equations, volume 1923
of Lecture Notes in Mathematics. Springer, Berlin. doi:10.1007/978-3-540-74448-1.

Cheng Y, Hufnagel N, Masuda H (2022). “Estimation of Ergodic Square-root Diffusion under
High-frequency Sampling.” Econometrics and Statistics. doi:10.1016/j.ecosta.2022.
05.003.

Chernova O, Dehtiar O, Mishura Y, Ralchenko K (2024). “Rate of Convergence of Discretized
Drift Parameters Estimators in the Cox–Ingersoll–Ross Model.” Communications in Statis-
tics. Theory and Methods, 53(13), 4857–4879. doi:10.1080/03610926.2023.2196591.

Cox JC, Ingersoll Jr JE, Ross SA (1985). “A Theory of the Term Structure of Interest Rates.”
Econometrica, 53(2), 385–407. doi:10.2307/1911242.

De Rossi G (2010). “Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using
Particle Filters.” Computational Economics, 36(1), 1–16.

Deelstra G, Delbaen F (1995). “Long-term Returns in Stochastic Interest Rate Models.” Insur-
ance: Mathematics & Economics, 17(2), 163–169. doi:10.1016/0167-6687(95)00018-N.

Dehtiar O, Mishura Y, Ralchenko K (2022). “Two Methods of Estimation of the Drift Pa-
rameters of the Cox-Ingersoll-Ross process: Continuous Observations.” Communications
in Statistics. Theory and Methods, 51(19), 6818–6833. doi:10.1080/03610926.2020.
1866611.

Dokuchaev N (2017). “A Pathwise Inference Method for the Parameters of Diffusion Terms.”
Journal of Nonparametric Statistics, 29(4), 731–743.

Göing-Jaeschke A, Yor M (2003). “A Survey and Some Generalizations of Bessel Processes.”
Bernoulli, 9(2), 313–349. doi:10.3150/bj/1068128980.

Heyde CC (1997). Quasi-likelihood and Its Application. A General Approach to Optimal
Parameter Estimation. Springer Series in Statistics. Springer-Verlag, New York. doi:
10.1007/b98823.

Iacus SM (2008). Simulation and Inference for Stochastic Differential Equations. With
R Examples. Springer Series in Statistics. Springer, New York. doi:10.1007/
978-0-387-75839-8.

Jacod J, Shiryaev AN (1987). Limit Theorems for Stochastic Processes, volume 288 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin.

http://dx.doi.org/10.1080/07362994.2013.798175
http://dx.doi.org/10.1007/978-3-540-74448-1
http://dx.doi.org/10.1016/j.ecosta.2022.05.003
http://dx.doi.org/10.1016/j.ecosta.2022.05.003
http://dx.doi.org/10.1080/03610926.2023.2196591
http://dx.doi.org/10.2307/1911242
http://dx.doi.org/10.1016/0167-6687(95)00018-N
http://dx.doi.org/10.1080/03610926.2020.1866611
http://dx.doi.org/10.1080/03610926.2020.1866611
http://dx.doi.org/10.3150/bj/1068128980
http://dx.doi.org/10.1007/b98823
http://dx.doi.org/10.1007/b98823
http://dx.doi.org/10.1007/978-0-387-75839-8
http://dx.doi.org/10.1007/978-0-387-75839-8


Austrian Journal of Statistics 99

Kladívko K (2007). “Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Process:
the Matlab Implementation.” Technical Computing Prague, 7.

Kutoyants YA (2004). Statistical Inference for Ergodic Diffusion Processes. Springer Series
in Statistics. Springer-Verlag London, Ltd., London. doi:10.1007/978-1-4471-3866-2.

Liptser RS, Shiryaev AN (2001). Statistics of Random Processes. II. Applications, volume 6
of Applications of Mathematics. Springer-Verlag, Berlin.

Mishura Y, Ralchenko K, Dehtiar O (2022). “Parameter Estimation in CKLS Model by
Continuous Observations.” Statistics & Probability Letters, 184, Paper No. 109391, 10.
doi:10.1016/j.spl.2022.109391.

Overbeck L (1998). “Estimation for Continuous Branching Processes.” Scandinavian Journal
of Statistics. Theory and Applications, 25(1), 111–126. doi:10.1111/1467-9469.00092.

Overbeck L, Rydén T (1997). “Estimation in the Cox–Ingersoll–Ross Model.” Econometric
Theory, 13(3), 430–461.

Sørensen H (2002). “Estimation of Diffusion Parameters for Discretely Observed Diffusion
Processes.” Bernoulli, 8(4), 491–508.

Tang CY, Chen SX (2009). “Parameter Estimation and Bias Correction for Diffusion Pro-
cesses.” Journal of Econometrics, 149(1), 65–81. doi:10.1016/j.jeconom.2008.11.001.

Affiliation:
Olha Prykhodko
Department of Probability, Statistics and Actuarial Mathematics
Taras Shevchenko National University of Kyiv
64/13, Volodymyrs’ka St., 01601 Kyiv, Ukraine

Kostiantyn Ralchenko
Department of Probability, Statistics and Actuarial Mathematics
Taras Shevchenko National University of Kyiv
64/13, Volodymyrs’ka St., 01601 Kyiv, Ukraine
E-mail: kostiantynralchenko@knu.ua

School of Technology and Innovations
University of Vaasa
P.O. Box 700, Wolffintie 34, FIN-65101 Vaasa, Finland
E-mail: kostiantyn.ralchenko@uwasa.fi

Austrian Journal of Statistics http://www.ajs.or.at/
published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 54 Submitted: 2024-06-08
2025 Accepted: 2024-06-20

http://dx.doi.org/10.1007/978-1-4471-3866-2
http://dx.doi.org/10.1016/j.spl.2022.109391
http://dx.doi.org/10.1111/1467-9469.00092
http://dx.doi.org/10.1016/j.jeconom.2008.11.001
mailto:kostiantynralchenko@knu.ua
mailto:kostiantyn.ralchenko@uwasa.fi
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Main results
	Model description: the CIR process and its properties
	Estimation by continuous observations
	Estimation by discrete observations

	Simulations
	Proofs
	Asymptotic behavior of the integrals
	Proof of Theorem 2.1
	Approximation of integrals by sums. Asymptotic behavior of sums
	Proof of Theorem 2.2


