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Abstract

The paper focuses on the Vasicek model driven by a tempered fractional Brownian
motion. We derive the asymptotic distributions of the least-squares estimators (based on
continuous-time observations) for the unknown drift parameters. This work continues the
investigation by Mishura and Ralchenko (Fractal and Fractional, 8(2:79), 2024), where
these estimators were introduced and their strong consistency was proved.
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1. Introduction

The main goal of this paper is to establish the asymptotic distributions of the estimators
of the drift parameters in the tempered fractional Vasicek model, or, in other words, in the
Vasicek model involving tempered fractional Brownian motion (TFBM) of the first kind, as
the driver. This tempered process was introduced and studied by Meerschaert and Sabzikar
(2013, 2014). Concerning the estimators, we use the estimators constructed in Mishura and
Ralchenko (2024), where we established their strong consistency. Moreover, we applied the
main results about asymptotic normality of the drift parameter’s estimators in the Vasicek
model with the Gaussian driver of the unspecified form, but satisfying several assumptions,
proved in Theorem 3.2 of Es-Sebaiy and Es.Sebaiy (2021). However, not all conditions of
the specified theorem are satisfied for our model; therefore, direct application of results from
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Es-Sebaiy and Es.Sebaiy (2021) was impossible, and we had to significantly modify the main
proofs. More information about the relation between our assumptions and those of Es-Sebaiy
and Es.Sebaiy (2021) is provided in Appendix A.

The tempered fractional Vasicek model is described by the following stochastic differential
equation:
dift:(a+bﬁ)dt+0dBH7>\(t), t>0, Yy=uyo, (1.1)

where a € R, b > 0, 0 > 0, yo € R are constants, and By y = {Bg,t > 0} is a tempered
fractional Brownian motion introduced in Meerschaert and Sabzikar (2013).

We focus on the case where b > 0 and continue to investigate the asymptotic behavior of the
least squares estimator of the unknown parameters (a,b). In Mishura and Ralchenko (2024),
the strong consistency of the estimator was proved. In the present paper, we determine its
asymptotic distribution. The main result indicates that, similar to the non-ergodic fractional
Vasicek model studied in Es-Sebaiy and Es.Sebaiy (2021), the estimator of a is asymptotically
normal, whereas the estimator of b follows a Cauchy-type asymptotic distribution. However,
in the model (1.1), the estimators of a and b are not asymptotically independent.

Our proofs rely on the asymptotic behavior of the variance of TFBM and the asymptotic
growth with probability one of its sample paths. These properties were established in Az-
moodeh, Mishura, and Sabzikar (2022) and Mishura and Ralchenko (2024), respectively.

Parameter estimation for a model similar to (1.1) but driven by fractional Brownian motion,
known as the fractional Vasicek model, has been extensively studied for over 20 years. The
case a = 0, known as the fractional Ornstein—Uhlenbeck process, has been particularly well-
studied. Drift parameter estimation for this case began in 2002 with the maximum likelihood
estimation (MLE) discussed in Kleptsyna and Le Breton (2002); Tudor and Viens (2007), and
the asymptotic and exact distributions of the MLE were later investigated in Tanaka (2013,
2015).

Alternative approaches to drift parameter estimation for the fractional Ornstein—Uhlenbeck
process are found in Belfadli, Es-Sebaiy, and Ouknine (2011); Hu and Nualart (2010); Hu,
Nualart, and Zhou (2019); Kubilius, Mishura, Ralchenko, and Seleznjev (2015). Since the
asymptotic behavior of this process and the estimators is significantly affected by the sign of
the drift parameter, hypothesis testing methods for it were developed in Kukush, Mishura, and
Ralchenko (2017); Moers (2012). For a comprehensive survey on drift parameter estimation in
fractional diffusion models, see Mishura and Ralchenko (2017), and for a detailed presentation,
we refer to the book Kubilius, Mishura, and Ralchenko (2017).

Drift parameter estimation for Ornstein—Uhlenbeck processes driven by more general and re-
lated Gaussian processes was considered in Chen and Zhou (2021); El Machkouri, Es-Sebaiy,
and Ouknine (2016); Shen, Yin, and Yan (2016); Mendy (2013); Mishura, Ralchenko, and
Shklyar (2023). A similar problem for complex-valued fractional Ornstein—Uhlenbeck pro-
cesses with fractional noise was investigated in Chen, Hu, and Wang (2017). In Shen and Yu
(2019), the least squares estimator for the drift of Ornstein-Uhlenbeck processes with small
fractional Lévy noise was constructed and studied.

In the general case of a fractional Vasicek model with two unknown drift parameters, the least
squares and ergodic-type estimators were studied in Lohvinenko, Ralchenko, and Zhuchenko
(2016); Xiao and Yu (2019a,b), while the corresponding MLEs were investigated in Lohvinenko
and Ralchenko (2017, 2018, 2019); Tanaka, Xiao, and Yu (2020). In Li and Dong (2018), the
least squares estimators of the Vasicek-type model driven by sub-fractional Brownian motion
were studied. The same problem for the case of more general Gaussian noise (including
fractional, sub-fractional, and bifractional Brownian motions) was investigated in Es-Sebaiy
and Es.Sebaiy (2021). Least squares estimation of the drift parameters for the approximate
fractional Vasicek process was investigated in Wang, Xiao, and Li (2023).

Several papers are devoted to the model (1.1) with non-Gaussian noises. In particular, drift
parameter estimation for a Vasicek model driven by a Hermite process was studied in Nourdin
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and Tran (2019); Vasicek-type models with Lévy processes were considered in Es-Sebaiy, Al-
Foraih, and Alazemi (2021); Kawai (2013).

It is worth mentioning that the theory of parameter estimation for stochastic differential
equations driven by a standard Wiener process, especially for classical Ornstein—Uhlenbeck
and Vasicek models, is now well-developed. For comprehensive resources, see the books
Bishwal (2008); Iacus (2008); Kutoyants (2004); Liptser and Shiryaev (2001). More recent
results in this direction can be found in Kubilius et al. (2017) and the papers Jiang and Dong
(2015); Jiang, Liu, and Zhou (2020); Prykhodko and Ralchenko (2024); Shimizu (2012); Tang
and Chen (2009). Additionally, parameter estimation for the reflected Ornstein-Uhlenbeck
process was studied in Zang and Zhang (2019), and for the threshold Ornstein—Uhlenbeck
process in Hu and Xi (2022).

The structure of this paper is as follows. In the beginning of Section 2, we recall the defini-
tion and properties of the TFBM. Subsequently, we introduce the tempered fractional Vasicek
model and the least-squares-type estimators for the drift parameters, and we formulate the
main result concerning the asymptotic distributions of these estimators. All proofs are pro-
vided in Section 3. In Subsection 3.1, we express our estimators in terms of three Gaussian
processes, which are three different integrals involving TFBM. Next, in Subsection 3.2, we
determine the joint asymptotic distribution of these Gaussian processes. This enables us to
derive the proof of the main theorem, which is detailed in Subsection 3.3. The paper is sup-
plemented with two appendices. In Appendix A, we discuss the relation between our model
and the conditions presented in Es-Sebaiy and Es.Sebaiy (2021). Appendix B provides brief
information on the special functions that arise in the calculation of the asymptotic variances
of the estimators.

2. Model description and main result

2.1. Tempered fractional Brownian motion

Let W = {W,,z € R} be a two-sided Wiener process, H > 0, A\ > 0. According to Meer-
schaert and Sabzikar (2013), a tempered fractional Brownian motion (TFBM) is a zero mean
stochastic process By x = {Bm (t),t > 0} defined by the following Wiener integral

BHW):/R{exp{—x(t—x)g(t—x)f5—exp{—A(—x)+}<—x>f5 AW,

Its covariance function has the following form Meerschaert and Sabzikar (2013)
1
Cov[Bra(t), Bua(s)] = 5 (CtthH +C2sP - O It - s|2H> , (2.1)
with

o2 2(H) 20(H + 1)
ETa) T (2a)E

where K, (z) is the modified Bessel function of the second kind, see Appendix B.

Ku(At), (2.2)

The variance function of TFBM with parameters H > 0 and A > 0 satisfies

2T (2H
lim E[By,(t)]* = lim C2* = (2H)

t—+o0 t—=+oo (2X)2H 7 (2:3)

see (Azmoodeh et al. 2022, Proposition 2.4).

Furthermore, it was proved in (Mishura and Ralchenko 2024, Theorem 3) that for any 6 > 0,
there exists a non-negative random variable £ = £(0) such that for all ¢ > 0

sup |Bma(s)| < <t5 v 1) ¢ as., (2.4)
s€[0,t]
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and there exist positive constants C; = C;(0) and Cy = C3(d) such that for all u >0

P(¢ > u) < Cre” %,

2.2. Parameter estimation in the tempered fractional Vasicek model

We focus in this paper on the drift parameter estimation for the tempered fractional Vasicek
model, which is described by the following stochastic differential equation:

t
V=gt [ (a+0)ds+oBun®), >0, Yo—u. (2.5)
0
where a € R, b > 0, 0 > 0, yp € R. The solution Y = {Y;,¢ > 0} is given explicitly by
t
Y; = (yo + Z) M- Z 4o / ) dB (), (2.6)
0

where the integral is defined by the integration by parts:
t ¢
/ e!0=9)dByy \(s) == Bya(t) + b / e!=5) By (s)ds. 2.7)
0 0

Let us consider the estimation of unknown drift parameter § = (a,b) € R x (0,00) in the
model (2.5). Following Mishura and Ralchenko (2024), we define the estimator 67 = (ar, br)
as follows

(Yr — o) (foT Y2dt — 3 (Yr + o) foT Ytdt)
2
T (T y2dt — ( i Ytdt)
 (r—yo) (3T (Yo +90) — [ Yidt)

br = 5 : (2.9)
T g Y2t (Jo Yet)

: (2.8)

ar =

According to (Mishura and Ralchenko 2024, Theorem 6), (ar,br) is a strongly consistent
estimator of the parameter (a,b) as T — oo. The purpose of the present paper is to find
asymptotic distributions of G, and br. More precisely, we shall prove that dp is asymptotically
normal, and br has asymptotic Cauchy-type distribution.

2.3. Main result

Let us introduce the notations

, _ 2T(2H)
aH,A - (2/\)2]{

b )
and ﬂ%{%b = 5/0 exp{—bu}C2u*" du. (2.10)

The following theorem is the main result of the paper.

Theorem 2.1. The estimators ar and by from (2.8) and (2.9), respectively, have the follow-
ing asymptotic properties.

(i) The estimator ar is asymptotically normal:

T (ar — a) 4N (0, 0'204%{)\) as T — 0. (2.11)

(ii) The estimator br has asymptotic Cauchy-type distribution:

ebT(lA)T—b)gg, as T — oo,

where 1y ~ ./\/'(0,4b2026%{7)\7b) and 2 ~ N(yo + %,02@2{)\7,)) are independent normal
random variables.
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Remark 2.2 (Joint distribution of the estimators). Unlike the case of the Vasicek model
driven by fractional Brownian motion (see (Es-Sebaiy and Es.Sebaiy 2021, Proposition 4.1)),
the estimators ar and by are not asymptotically independent. More precisely, the following

convergence holds
(a7 — bo&y — o€
( b — )> S ( ot ) (212)
( ) yo+§+bo&y
)

where the random vector ({1, &2, &3) has a Gaussian distribution A/(0, X) with the covariance
matrix ¥ defined in Proposition 3.9 below. The normal random variables & ~ A (0,5~ QBHM\’b)

and & ~ N(0, 8}, ,) are independent, and so are & ~ N(0,07%(af; \ — B, ,)) and &3.
However, there is a correlation between &; and &2, namely Cov(&1,&2) = b~ 5%{’ Ab-
Remark 2.3 (Representation for Bl%l)\,b via hypergeometric function). The constant B%i)\,b

can be represented in an alternative form, which may be more suitable for its numerical
computation. Using formula (2.2) for Cy, we can rewrite it in the following form

00 1\ H
/31%1,,\,17 = Z/o exp{—0bt} <2(gf\§£{) - 21}1;[(;\2)1; KH()\t)> dt
_ T(2H) I(H+3)
IR ACIENE

Furthermore, by (Gradshteyn and Ryzhik 2007, formula 6.621-3),

/0 - exp{ —bt}t? K (\t)dt. (2.13)

/ exp{—bt 3" Ky (\t)dt
0

VTN T(2H +1)
(b N T(H + D)

b—A
2F1<2H+1H+27H+§,b A) (2.14)

where 9F) denotes the Gauss hypergeometric function, see Appendix B. Hence, combining
(2.13)-(2.14) and using the relation I'(H + 3) = (H + $)T'(H + 3), we arrive at

I'(2H) 20I'(2H + 1) ( 1 3 b— A)
2H+1,H+5;H+ 2, ——
/BH)\b (2A)2H  (b+ N\2AH(2H + 1) 2 /1 + 1,0+ 53 +27b+)\ 2.15)
1 o2 20I'(2H + 1) ( 1 3 b—A) ’
2H+1,H+5H+ 3%, —— .
= 5% b+ AN)2H(2H 4+ 1) 2k tLAE +27b+)\
3. Proofs
Let us introduce the following processes
t t
Z :2/ e Bpa(s)ds, U = e_bt/ ¢” B a(s)ds, (3.1)
0 0
t
Vi= e_bt/ e”dBp(s) = Bu(t) — bU;. (3:2)
0

The proof of the main result will be conducted according to the following scheme. First,
in subsection 3.1 we express T'(ap — a) and " (by — b) via the processes Z, U and V and
remainder terms, vanishing at infinity. Then in subsection 3.2 we find the joint asymptotic
distribution of the Gaussian vector (Zr,Ur, V) as T — oo. Finally, using these results along
with the Slutsky theorem, we derive the limits in distribution for T'(ar — a) and T (by — b)
as T' — oo in subsection 3.3.
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3.1. Representation of the estimators

Let us recall some well-known facts about the convergence of integrals involving tempered
fractional Vasicek process Y. It was proved in Mishura and Ralchenko (2024) that the random
variable

Zo ::/ e_bSBHM\(s) ds (3.3)
0
is well defined and the following convergences hold a.s. as T' — oc:
e Yp — ¢, (3.4)
T 1
e*bT/ Yidt = 3¢, (3.5)
0
—oor [T L
e Yo dt — —(°, (3.6)
0 2b
T 1
T*le*bT/ Yitdt = o, (3.7)
0
where a
C=uyo+ 7 + b0 Z o, (3.8)

see (Mishura and Ralchenko 2024, Lemma 6).

Now we are ready to formulate and prove an auxiliary lemma, which is crucial for the proof of
the main theorem. The lemma provides a representation of the estimator by via the integrals

Zp and Vr defined in (3.1)—(3.2).

Lemma 3.1. For allT >0

. Vi & +boZ
ey 39)
T
where
2
—or [ [T 2 1 4 L o
Dp=e / Y odt — — / Yidt — —C* a.s., as T — oo, (3.10)
0 T \ Jo 2b
and
Rr—0 a.s., asT — oo. (3.11)

Proof. By the definition (2.9) of the estimator by,

~ F
bT — = 7T
" (bp — b) Do (3.12)

where the denominator Dy is defined by (3.10), and the the numerator Fr has the following
form

b 1 1T T 1" i
FT =e (YT — yo) (2(YT + yo) - T 0 Y;dt) —be™ /0 Y; dt — T (/0 ndt)

=M+ Fr+Fr+ Fyr, (3.13)

where

1 1 T
Fir = 3o (Ve = o) (Vs + o), Far =~ (Ve =0) [ vt

2
Fypr = —be T TY2dt Fyr= b vt TYth
3T = € ¢ at, 4T = Te ¢ .
0 0
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Let us consider each of F; r separately. Substituting the right-hand side of the equation (2.5)
instead of the process Y, we rewrite the term Fj 7 as follows:

1 T T
Fir = §€—bT (aT + b/ Y.dt + aBH,A(T)> <2yo +aT + b/ Yidt + aBH,A(T)>
0 0

bT T bT r 1 2 _—bT r ’
= abTe™ /0 Yidt + yobe™ /O Yidt + Sb%e” /O Y, dt
—bT T 1 —bT
+boe " By A(T) /0 Yidt + g™ (T + 0By a(T))(2y0 + aT + 0By a(T)). (3.14)

Note that it follows from (2.6), (2.7), and (3.1) that the process Y has the following repre-
sentation:

Yr = (yo 4 Z) I~ boe 2 + 0By (T). (3.15)

Moreover, expressing b fOT Yidt from the equation (2.5) and using (3.15), we get

T
b/ Yidt =Yr —yo —al — 0By \(T) = (yo + Z) T + boe?T Zp — Yo — % —aT. (3.16)
0

Now we insert (3.16) into the fourth term in the right-hand side of (3.14) and obtain

a

T T
Fir=abTe " /O Yydt + yobe T /0 Yidt + o <y0 +3

) By \(T)

+b0?Zr By A(T) + Ry, (3.17)

where
N Y T a
RI,T = 26 (CLT—I— UBHA(T))(QyO + CLT—I—O'BH)\(T)) oe Yo + b +aT BH)\(T).

In view of (2.4)
Rir—0 as,asT — oo. (3.18)

Let us consider Fy 1. By (2.5),
1 T T
For = —7e aT + b/ Yidt + o By \(T) / Yidt
0 0
2

T b T
= —ae T / Yidt — —e 0T / Yidt | + Rar, (3.19)
0 T 0
where .
Royr = —%e_bTBHM\(T)/ Y;dt -0 a.s.,asT — oo, (3.20)
0
due to (2.4) and (3.5).

Further, we transform Bs 7 using (2.5) as follows:

T t
Fyr = —be_bT/ Y; (yo + at + b/ Yids + aBH,A(t)) dt
0 0

T T T t
= —byge T / Yidt — abe T / tYydt — b2e 0T / Y; / Y,dsdt
0 0 0 0

T
—bo'e_bT/O Y;Bux(t)dt

= F3110+ Fsor+ Fs30 + Fsa7. (3.21)
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Integrating by parts and applying (3.16) we get

T t T T rt
Fior = —abe™ T / td( / st3> = —abTe T / Y,dt 4+ abe™"T / / Y dsdt
0 0 0 0 JO

T T
= —abTe_bT/O Y,dt + ae_bt/o (Y: —yo —at — 0B \(t))dt

T T
= —abTe T / Yidt 4 ae T / Yydt + R ., (3.22)
0 0
where .
Ryp = —ae_bT/O (yo+at+oBya(t)dt -0 as.,asT — o0 (3.23)
by (2.4).
Due to symmetry of the integrand, it is not hard to see that [J [ V;Vidsdt = %(fOT Y, dt)?,
whence )
b2 T T
F337T = —56 / Y%dt . (324)
0

In order to transform F34 7, we use (3.16) and get

T
Fayr = —bae_bT/O Bpa(t) (<yo + Z) et — % + boe?Z, + aBHv,\(t)>

T T
= —bo(yo + %)e_bT / " By A(t)dt 4 ace T / By a(t)dt
0 0

T T
—b2o2e T /0 " By A(t) Zydt — bo?e T /0 B A (t)dt.

Using integration by parts, we obtain

T T t
/ estH,,\(t)tht:/ Zyd (/ ebSBH7>\(s)ds>
0 0 0
T T pt
= Zp / "' By a(t)dt — / / ’s By A (s)dsdZ;.
0 0 Jo
Hence,
a\ e [T n 2 2 —bT T /"
F347T = —bo <y()+ b) e /0 e BHM\(t)dt—b o’e ZT/() e BH’)\(t)dt-l-Rg’T,
where
T T
Ry p = ace” " /0 B A(t)dt — b*o?e =T /0 B A(t)dt
T t
+ b2o2e T / / e* By A(s)dsdZ;. (3.25)
0 Jo
Recall that by (3.1)—(3.2)

T 1
e_bT/ estH’)\(t)dt =Ur = *BH)\(T) - =Vr.
0

b

S| =

Therefore, we can rewrite F34 7 as follows:

a a
F347T = —0 (yo + b) BH)\(T) — bO'2BH’,\(T)ZT + JVT(yo + g + bJZT> + Rgﬂw. (3.26)
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Note that the first two terms in the right-hand side of (3.25) converge to zero a.s., as T'— oo
due to (2.4). The last term in (3.25) also vanishes, because

I& JE e B a(s)dse " By A (t)dt

T t
lim e_bT/ / ebSBHM\(s)dstt = lim
0 J0

T—o0 o T—o0 ebT
_ oy Jo € Bya(s)dse T By A(t) 0
= iz, bt S0 e
in view of (2.4).
Hence,
Rip =0 as.,asT — oco. (3.27)

Combining (3.13), (3.17), (3.19), (3.21), (3.22), (3.24), and (3.26), we arrive at

Fr = oVi(yo + % +boZ7) + Ry, (3.28)
where N
Ry = Ry7+ Ro + Ré,T + Rg,T —0 a.s.,asT — oo, (3.29)
by (3.18), (3.20), (3.23), and (3.27).
We complete the proof by inserting (3.28) into (3.12) and noticing that Ry := % — 0 a.s.,
as T' — oo in view of (3.29) and (3.10). O

In the next lemma, we express the estimator ar via the integrals Ur and Vr defined in (3.1)—
(3.2). This representation also contains random variables Pr and Qr, converging a.s. to the
constants 1 and 0 respectively.

Lemma 3.2. For all T >0

T(ar —a) = boUr — oVrPr + Qr,

where o T
+ &+ boZr)e” Y, dt
Pr = (vo + 3 UDT) ¢ o Yidt 1—=1 as., asT — oo. (3.30)
T
and T
Qr = —RTe*bT/ Yidt -0 a.s., as T — co. (3.31)
0

Proof. Using (2.8) and (2.9) we rewrite T'ar as follows

(¥ — o) (7 40 Y2t — (7 vide)” + (I Vi) = 47 (v + o) 7 Vit

7 f et~ (f vidr)

Tar =

T
:YT_yO_bT/ Yidt.
0
Now expressing Y7 through (2.5), we get
R T
Tar = Ta+oBu(T) — (br - b) / Y, dt. (3.32)
0

Note that by (3.2), By a(T') = bUr + V. Using this relation and the representation (3.9) we
derive from (3.32) that

V & 1L boZ T
T (ar —a) = oVp + boUp — (U r (vo JrDb +boZr) +RT) ebe/ Yidt
T 0
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=boUpr — oV Pr + Qr.

Note that yo + ¢ +boZr — ¢, Dr — %CZ, e T fOT Yidt — ¢ and Ry — 0 as., as T — oo,
by (3.8), (3.10), (3.5), and (3.11) respectively. This implies the convergences (3.30) and
(3.31). O

3.2. Asymptotic normality of (Zr, Ur, V)

The purpose of this subsection is to find a joint asymptotic distribution of the integrals Zp,
Ur, and Vp as T — oo. This distribution is obviously Gaussian, since Zp, Up, and Vp
are Gaussian processes. Therefore, it suffices to calculate the elements of the asymptotic
covariance matrix. This will be done in the following series of lemmas. The limits contain
the constants oy and g ) defined in Theorem 2.1.

Lemma 3.3. The following convergence holds:

2
Brap
b2

lim EZ7 = EZ% = (3.33)
T—00

Proof. Using the definition (3.3) of Zs, and the formula (2.1) for the covariance function of
TFBM, we may write

00 2 00 oo
EZ: =E (/ e‘stH,A(t)dt) = / / e "UE [Bu(t)Bu(s)] dt ds
0 0 Jo
1 o1 4 ps 2H
_ 5/0 /0 et (CPH 4 22— CR [t — s ds dt

< bt 2,2 L [0 i bs 2 2H
:/ e sds/ e PO dt — 7/ / e *Cli_g [t — 5[ dsdt
0 0 2Jo Jo

A+ A (3.34)

Since [;° e **ds = }, we see that

1o 2
=3 /0 e MOl = o5 B (3.35)

by definition of Bg ) p, see (2.10).

Let us consider As. Due to the symmetry of the integrand, we have

/ / ~bi=bs g2 $)2H ds dt — / / e~ C2 2 gy gt

where we have used the substitution v = ¢ — s in the inner integral. Changing the order of
integration and integrating w.r.t. ¢, we then get

Ag = —/0 </ e2btdt) PO du = —%/0 e ey gy = _ﬁﬁ%’A’b' (3.36)
Combining (3.34)—(3.36), we obtain (3.33). O

Lemma 3.4. The following convergence holds:

1
lim EUf = 5 (i — Bias) (3.37)

T—o0

Proof. Using the definition (3.1) of Ur and the formula (2.1) for the covariance function of
TFBM, we have

T 2
EU? =E (exp{—bT}/O exp {bs} BH)\(S)dS)
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1 T 2,2H 2 2H 2 2H
=5 exp{—2bT}/ / exp{b(s +1t)} [Ctt + Cs™ = Cly_yg [t — 5] } ds dt
0 Jo
T T
:exp{—QbT}/ exp{bs}ds/ exp{bt }CH* at
0 0
1 T 2 2H
—5 exp{—QbT}/ / exp{b(s + )}Cji_g [t — s[7" dsdt
0 Jo
= Bl,T + B27T. (338)
By the I'Hopital rule and (2.3), we have
T bt x242H gy Vro22H o2
lim Jo CtTdt = lim & 1 = 1A (3.39)
T—00 ebT T—oo  betT b
whence T btial )
. _ . 1 —e fo e tCt t dt . aH,)\
L (340

Taking into account the symmetry of the integrand, we can represent By 7 in the following
form:

T rt
By = —exp{—2bT"} / / exp{b(s + 1)}C2__(t — ) ds dt
0 JO
T rt
=— exp{—2bT}/ / exp{b(2t — u)}C2u*! du dt,
0 Jo

where we have used the substitution © = ¢ — s in the inner integral. Changing the order of
integration and integrating w.r.t. ¢, we obtain

T T
By = — exp{—ZbT}/ exp{—bu}C3u2H/ exp{2bt }dt du
0 U

17 1 T
=5 exp{—bu}C2u?" du + % exp{—?bT}/ exp{bu}C2u*" du.
0 0

Note that the last term in the right-hand side of the above equality tends to zero due to
(3.39). Therefore

o

- 1 2 2H L oo
Tlgréo Byr = ~2 J, exp{—bu}Cu"" du = —ﬁﬁH)\’b, (3.41)

by the definition of B 4, see (2.10). Combining (3.38), (3.40), and (3.41), we conclude the
proof. ]

Lemma 3.5. The following convergence holds:
Jim BVE = B . (3.42)
Proof. Using (3.2), we represent the left-hand side of (3.42) in the following form
EV} = E (Bya(T) — bUr)* = EB} ,(T) + b*EUF — 2bE [By A (T)Ur] . (3.43)
Next, we transform the third term in the right-hand side of (3.43) as follows

B By (1)Ur] = espl 47} [ exp (b5} B{Bira (1) Bya(s)ds

T
= Loxp07) [ oxp {bs) [T 4 022 R (T — 527 as
0

[\)

T 1 T
= ~exp{—bT}C2T*! /0 exp {bs} ds + 5 exp{—0T'} /0 exp {bs} C2s*ds

DN | =
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1 T
- §exp{—bT}/ exp {bs} C%_ (T — 5)*Hds
0

1 1 T
=% 2T2H % exp{—bT}CFT*1 + exp{—bT} / exp {bs} C%s*Hds
0

T

1
—5 [ exp {—bz} C22%H . (3.44)
0

Combining this expression with (3.43) and taking into account that C27%7 = E[By ,(T)?]
we arrive at

T
EVZ = b’EUZ 4 exp{—bT}C2T* — pexp{—bT'} / exp {bs} C2s*ds
. 0 (3.45)
+ b/ exp {—bz} C222H d2.
0

Note that according to (2.3) the second term in the right-hand side of (3.45) vanishes as
T — oo, while the limits of other terms are already known, see (3.37), (3.39), and (2.10).
Therefore, we arrive at

. 2 _ 2 2 2 2 — 32
Jim BVr = (O‘H,A - /BH,A,b) =+ 26100 = B =

Lemma 3.6. The following asymptotics holds

. /812'{/\ b
A Bl ==

Proof. Using formula (2.1) for the covariance function of TFBM, we get
T T
E[Z;Ur]) = e "TE / " By A(t)dt / e "By a(s)ds
0 0

1 T pT
= —e_bT/ / elt=bs (C’Et2H + 22 C|2t75| |t — s|2H) dsdt
2 0 Jo

=L+ Ior+I37+ s,

where
L (T oweom g, [T s
Lt =-e e Cit™dt e ¥ds,
’ 2 0 0
1 T T
Y= febe/ efbsCfSQHds/ ebdt,
’ 2 0 0
L = _76—bT/ / b-bsC2 (f — 6)2H ds dt,
Lip=— bT/ / b-bsc2 (s — 1)°H ds dt.
By (3.39),

Taking into account (2.10), we get

_ 2
ot e 1 —bs 2 2H Brag
2,T—§€ . b Oe C2s*"ds — , as T — oo.
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By I'Hopital’s rule and (3.39), we have
fOT e C2uudu a%{)\

} fOTf(f et C2u?udu )
Lip=— 1 u —_ 1 u = __HX
3T = 7 20T e 2bebT oh2

Changing the order of integration, we obtain

1 T ps
Iyt = —fe_bT/ / bi=bsG2 (s —t)?Hdt ds = —ie_bT/ / e uC2u du ds.
0 Jo

By 1‘Hopital’s rule and (2.10),

lim I 1 fOT et C2y2udy,
im = — lim
T—o0 4T = T—o0 2bebT’

Collecting all the limits completes the proof.

=0.

Lemma 3.7. The next value is asymptotically negligible:

T—o0

Proof. Tt follows from (3.2) that
E [ZrVr| = E[Zr By A(T)) — bE [Z7Ur] .
By (2.3), (2.10), and (3.39), we obtain the next equalities

E[ZrBux(T)]=E [BH,A(T) /0 ' e_stH,)\(t)dt]

1 T
-3 /O =0T (C%TQH +O2H 02 (T —t)2H ) dt

1 ooog 1—e ™ 1T 0 on N e
_lo2r +f/ M2 dt—f/ e UT=9) 02 2H g
2 b 2 Jo 2 Jo
2 2 2 2
2529 ﬁHAﬁ Q7 A /BH)\B
) 17\y _ 3y — 17\ T% .
2 b % p >

Combining (3.46), (3.47) and Lemma 3.6, we conclude the proof.
Lemma 3.8. The following value is also negligible:

lim E [UrVy] = 0.
T—o00

Proof. From the representation (3.44) we derive using (2.3), (3.39), and (2.10) that
2

o2 2 o2« — B2
, HA Brap _ YH) Brap — b lim EU2,
2b 2b b b T—o0

where the last equality follows from Lemma 3.4. Taking into account that by (3.2),
E[UrVr] = E [Bu(T)Ur] - bEUY,

lim E[By\Ur] =
T—s00 ’

we complete the proof.

Proposition 3.9. As T — oo,

Zr
Ur | % N(0,3),
Vr
where 5 5
b B ap b B ap 0
Y= biQ/Bl%I,)\,b b2 (a%{,/\ - 5?{)\,17) 0
0 0 B%{,)\,b

In particular,

(3.46)

(3.47)

(3.48)
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o Z7 and Vp are asymptotically independent;

o Ur and Vr are asymptotically independent.

Proof. Lemmas 3.3-3.8 together give us the value of the asymptotic covariance matrix. Tak-
ing into account the normality of the random vector (Zr, Vr, UT)T, we obtain the desired
convergence. ]

3.3. Proof of Theorem 2.1 and convergence (2.12)

Let (&1,&2,&3) ~ N(0,Y), where the matrix X is defined in Proposition 3.9.
(7) By Lemma 3.2 and Proposition 3.9,

T (ar — a) = boUp — oVrPr + Qr % boéy — 03, as T — o0,
where & ~ N (0, b*Q(a%{M\ - B%L/\’b)) and &3 ~ N(0, /B%J,A,b) are uncorrelated (hence, indepen-

dent) Gaussian random variables. Therefore, the limiting distribution bo{y — o3 is zero-mean
Gaussian with variance

2 2,-2/ 2 2 2 22 2 2
b°o b (g x — Biap) T 0 By = 0 Qf -

Thus, (2.11) is proved.

(7i) According to Lemma 3.1, one has the following representation

. ¢ 4 boZr)?
e (br —b) = (o + § +boZr) AU

DT y0+%+bO'ZT

where Ry — 0 a.s. when T'— oco. By (3.8) and (3.10),

(yo + & + bo Zr) ¢2
Dy — L2
2b

=2b as.,asT — o0.

Therefore, we derive from Proposition 3.9 and the Slutsky theorem that

ot (ZA?T _ b) A 22053 _ 771’
Yo+ 5 +bok1 Mo

where 1, == 2b0é3 ~ ./\/'(0,4()2026%{)\’1)) and ny == yo + ¢ + bo&y ~ N(yo + %,026%{9\’1)) are
uncorrelated, hence, independent. ]

A. Asymptotic behavior of drift parameters estimator

for the Vasicek model driven by Gaussian process
In this appendix we formulate the main result of Es-Sebaiy and Es.Sebaiy (2021) concerning
the asymptotic distribution of the parameter estimators in the Gaussian Vasicek-type model
and give the comments which conditions of this paper are satisfied and which are not, therefore

it was necessary to modify the respective proofs. So, let G := {Gy,t > 0} be a centered
Gaussian process satisfying the following assumption

(A1) There exist constants ¢ > 0 and v € (0,1) such that for every s,t > 0,

Go=0, E[(Gi—Gy)’| <clt—s.
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The Gaussian Vasicek-type process X = {X;,t > 0} is defined as the unique (pathwise)
solution to
X() = O, dXt = (CL + bXt) dt + th, t> 0.

where ¢ € R and b > 0 are considered as unknown parameters. The corresponding least-
squares estimators have the form

T
b sTX2 — Xr [y Xods 2
T fy X2ds — (J) X.ds)

_ Xrfy X2ds - 1Xx2 [T Xds
and ar = o - -
T [y X2ds — (f§ Xqds)

The following additional assumptions are required:

(Az) There exist A\g > 0 and n € (0,1) such that, as T — oo

E (G7)
T2

— A\, (A1)

(As) There exists a constant o > 0 such that

T 2
(ebT / ebsdGs>
0

lim E = ol

T—o0

(A4) For all fixed s > 0,
T
lim E <Gse_bT / edeGr> = 0.
T—o0 0
(As) For all fixed s > 0,

T
lim w =0, lim E <GT6bT/ ebrdGr> =0.
0

T—oc0 N T—oc0 Tn

Theorem A.1 (Es-Sebaiy and Es.Sebaiy (2021, Theorem 3.2)). Assume that (A1)—(A4) hold.
Suppose that Ny ~ N (0,1), No ~ N (0,1) and G are independent. Then as T — oo,

O (b —8) S 52

TV (Gr — a) % AgNy,

where (oo = b [5° e P Gyds. Moreover, if (As) holds, then as T — oo,

(ebT (ET _ b) i (ar — a)) EN <2bO'GN2 7 /\GN1> '

b TG

Let us analyze whether the conditions (A;)—(As) are satisfied for our tempered fractional
Vasicek model (2.5). We start with the basic condition (A;). The behavior of the variogram
function E(Bg(t) — Bua(s))? of TFBM was recently studied in Mishura and Ralchenko
(2024), where the following upper bounds have been established (see Mishura and Ralchenko
2024, Lemma 2):

(1) If H € (0,1), then for all ¢,s € Ry
E|Bg(t) — Baa(s)? < C (!t —s*H A 1) .
(1) If H =1, then for all ¢,s € R

E[Ba(t) = Bua(s) < C (|t — s log [t — sl A1)
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(737) If H > 1, then for all t,s € Ry

E|Bya(t) — Bua(s)]? < C(|t — s|* A 1).

Comparison of these bounds with the assumption (.A4;) shows that this assumption holds
only for H € (0,1). For H > 1 one should choose v = 1 in this assumption, which is
impossible. More careful analysis of the proofs in Es-Sebaiy and Es.Sebaiy (2021) shows that
the condition v < 1 is substantial for (Es-Sebaiy and Es.Sebaiy 2021, Lemma 2.2), which
provides the almost sure convergences

GT e—bt T
— =0 -
) T 0

T |Gt X¢|dt — 0, T — oo, (A.2)
5

for any v < § < 1. Based on this convergence, Es-Sebaiy and Es.Sebaiy (2021) derive the
convergences of the form (3.4)—(3.7), on which the subsequent study of the estimators is
based. Thus, we cannot apply the results of Es-Sebaiy and Es.Sebaiy (2021) directly to the
case G = By, when H > 1. However, the almost sure upper bound (2.4) allows us to obtain
the first convergence in (A.2) for any § > 0. This bound also makes it possible to derive the
second convergence (see the proof of (Mishura and Ralchenko 2024, Lemma 7)) as well as the
convergences (3.4)—(3.7) (Mishura and Ralchenko 2024, Lemma 6), which in turn lead to the
strong consistency of the estimators (Mishura and Ralchenko 2024, Theorem 6).

Furthermore, for the case G = By ), the condition (A) is also violated (for any H > 0).
Indeed, in view of (2.3), the convergence (A.1) in (Az) holds with n = 0 instead of € (0, 1).
This affects on the behaviour of the estimator ar, which has the following representation:

1 » T
T "(ar - a) = — " (br — b) e_bT/ X,dt + %
0

If n > 0, then the first term of this representation vanishes as T' — oo, and the second
one converges to a normal distribution N'(0,A%). If n = 0, then both terms have non-trivial
limits (in fact, they both converge to normal distributions); hence, the study of the asymptotic
behavior of their sum becomes more involved.

The conditions (As) and (A4) are satisfied when G is a TFBM. Namely, (As3) is verified in
Lemma 3.5, and (A4) can be checked in a similar way.

Finally, the condition (As) does not hold in the case of TFBM (for all H > 0). In particular,
for any s > 0,

1
lim E[By(s)Bua(T)] = =C2s*1 £,
T—00 ’ ’ 2

and, moreover,

T
lim E [BH,A(T)ebT / eb’“dBH,A(r)] = lim E[By,(T)Vr]
T—o0 0 T—o0

= lim (EB%{,A(T) —bE [BH,A(T)UT]) = Bhap # 0.
T—o00

where the limit is computed by (2.3) and (3.48). Thus, both equalities in (As) are not valid.

Consequently, the asymptotic independence of the estimators is not guaranteed in the case

of TFBM. In Remark 2.2 we explain the correlation between estimators in more detail.

Additionally, compared to Es-Sebaiy and Es.Sebaiy (2021), we do not restrict ourselves with
zero initial condition allowing it to be any non-random constant Yy = yg € R.
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B. Special functions K, and [}

In this appendix, we present the definitions of the function K, which appears in the repre-
sentation of the covariance function of TFBM (see (2.1)—(2.2)), and the function 9y from
the representation (2.15) for the constant *B%L ap- For further information on this topic, we
refer to the book Andrews, Askey, and Roy (1999).

The modified Bessel function of the second kind K, (x) has the integral representation
[e.e]
K,(x) = / e~ Tt cosh pt dt,
0

where v > 0, > 0. The function K, (x) also has the series representation

K (.73‘) — z I*V('CL') — IV(:E)
v 2 sin(mv)
lx 2n
where I, (z) = (]z])” 202, % is called the modified Bessel function of the first kind.

The Gauss hypergeometric function oF1(a,b;c;x) can be defined for complex a, b, ¢ and
x. Here, we restrict ourselves to the case of real arguments. Moreover, we assume that
¢ > b > 0. In this case, we may define 2F}(a,b;c;z) for x < 1 by the following Euler’s
integral representation (Andrews et al. 1999, Theorem 2.2.1):

1
oF1(a,byc;x) = F(b)l"(c—b)/o tb_l(l _ t)c_b_l(l _wt) " dt.
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