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Abstract

A time-continuous model of multiple chirp-like signal observed against the background
of strongly or weakly dependent stationary Gaussian noise is considered in the paper.
Strong consistency and asymptotic normality of the least squares estimates for such a
trigonometric regression model parameters are obtained.
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1. Introduction and main results

The problem of detecting hidden periodicities, that is the problem of estimating unknown
angular frequencies and amplitudes of the sum of harmonic oscillations, which make up a
sinusoidal signal, observed on the background of a random noise, has a long history and
massive bibliography. We refer here only to Artis et al. (2004), Quinn and Hannan (2012),
Ivanov et al. (2015), Nandi and Kundu (2020), where a lot of links to theoretical and applied
publications on this topic can be found.

We write the sinusoidal signal in the form
N
Xt =% (A(; cos(¢t) + BY sin(¢;?t>) te(t), N>1; (1)
j=1

t € N, if a discrete time model is considered, or t € Ry = [0;+00), if the model is with
continuous observation time. In the formula (1) A?, B;-) are amplitudes, qﬁg are frequencies,
stochastic process €(t), t € Z or t € R, is a random noise masking the sum of harmonics.

Another important model in signal processing is, so called, chirp signal, that is a linearly
frequency modulated signal. Signals of this type are used in radio and echolocation as a
method of generating and processing a probing pulse.
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Chirp signal can be written in the form:

N/
Xt =% (CJO cos(¢0t + 2t?) + DY sin(¢0t + z/;?t?)) +e(®), N >1, (2)
j=1

time ¢, as in the model (1), can be discrete or continuous. Compared to model (1), there are
additional parameters zpo called chirp rates. These parameters control the rate at which the
initial oscillation frequenc1es gZ)O increase.

Over the past 20 years for discrete time ¢ and random noise which is a linear time series of
MA(c0) type many results were obtained on consistency and asymptotic normality of the
least squares estimate (LSE) and some other estimates of signal (2) parameters. Among a
large number of works on this topic we point to publications Nandi and Kundu (2004), Kundu
and Nandi (2008), Lahiri (2011), Lahiri, Kundu, and Mitra (2015), Kundu and Nandi (2021).

For continuous time ¢ and Gaussian stationary strongly or weakly dependent random noise
LSE strong consistency and asymptotic normality of multiple chirp signal unknown parame-
ters were obtained in Ivanov and Hladun (2023), Ivanov and Hladun (2024).

Grover, Kundu, and Mitra (2021) considered, in particular, the LSE properties of discrete
signal parameters in the model that occupies an intermediate position between signal models
(1), (2) and called it "chirp-like model". The mathematical expression of chirp-like signal is
of the form:

N N/
t=> (A? cos(¢Jt) + BY sin((b?t)) +> (C,g cos(ypt?) + D)) sin(w,th)) +e(t), (3)
j=1 k=1

N,N' > 1, A?, B;), C’,g, D2 are amplitudes, qb? are frequencies, ¢2 are chirp rates. The authors
of the cited article convincingly substantiated the feasibility of using the trigonometric model
(3) in signal processing. Each term of the 1st sum in (3) is an ordinary harmonic oscillation,
and each term of the 2nd sum in (3) can itself be included in the so-called elementary chirp
model:

X(t) = CYcos(¥1?) 4+ Dsin(¢°t?) + £(2), (4)
considered earlier in the papers Casazza and Peter (2006), Mboup and Adali (2012).

Next we consider a special case of time continuous model (3) with N = N’ and prove the
strong consistency and asymptotic normality of the LSE of its parameters.

Assume we observe a stochastic process

X(t) = g(t,0°) +e(t), teRy, (5)
where
N
g(t,0%) = Z (  CoS ¢J + B0 sm(qﬁj )+ CO cos(1; %2 + DY sm(zpot2)) (6)
00: (A?,B?,¢?,C?,D wla" BN’QZ)N?CNMDN”(Z)N) ) (7)

2 2 2 2
(A?) + (B?) > 0, (C]Q) + (D?) > 0, j = 1, N; the symbol a* denotes the transposition of
a matrix or vector a. € = {e(t),t € R} is a stochastic process on probability space (2, F, P)
and satisfying the following condition.

A1l. ¢ is a sample-continuous stationary Gaussian process with zero mean and covariance
function B(t) = Fe(t)(0), having one of the properties:

(2) B(t) = L(Jt|)|t|”*, a € (0,1), with non-decreasing slowly varying at infinity function L;
(i) B(:) € L1(R).
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Let’s assume that the true values of amplitudes AO B0 C’O DO, 7 =1, N, are different numbers

and the true values of frequencies (;Sj, j=1,N, and ChlI‘p rates 1/)?, j = 1, N, are different
positive numbers which form monotonically increasing sequences. For some fixed numbers
0<¢ <9< +00,0 <1 <1 < +oo consider the sets

V(e P) = {¥ = (W1, ¥n) €RY 1 <ty <o <y <Y,

B(6,6) = {6 = (61,,6n) ERY : 9 < 61 < ... < o < B}, (8)
such that ¢° = (¢1, ..., ox) € (¢, ), 0 = (1, .., bx) € U(, D).

Consider monotonically non-decreasing families of open sets &7 C @ ( ¢, qS) Ur C \Il P, ,

C
T > Ty > 0, containing vectors ¢%,¢°, such that ( U <I>T> = ¢° (gzﬁ b)), < U \IJT>
T>To T>To

e (@, @), with the following properties.

B(¢) lim inf T (¢j41 —¢j) =+oo, lim 1nf Tor =

T—oo1<j<N-1 T—00 gD
peds,
T2 (i — abs) —
B Jim, ok T2 W —g) = voo, i ol T =+
7,!16\110

Here and below in the text, we use the symbol ®¢ to denote the closure of a set ®.

Definition 1. Any random vector

Or = (Avr, Bir, é17, Cir, D, 17, -, ANTy BT, ONT, ONTs DN ONT) ™ 9)

that minimizes the functional
T 2
Qr(o) = [ 1X(0) - g(t.0) at (10)

on the parametric set ©. C RSN where amplitudes A;j,Bj,C;,Dj,5 = 1,N, can take any
values and parameters ¢;,1;,j = 1, N, take values in the set ®5 x W, T > Ty > 0, is called
LSE of the parameter 6°.

Theorem 1. Let the conditions A1 and B be satisfied. Then LSE 01 is a strongly consistent
estimate of parameter 80 in the sense that Ajr — Ag, Bjr — B?, T (qﬁjT — ¢9) — 0, Cjr —

C9, Djr — DY, 2(¢jT—¢§?)—>0a.s., asT — 00,7 =1, N.

The proof of Theorem 1 is given in section 2.

In order to formulate the theorem on asymptotic normality of LSE 67, we introduce an
additional assumption.

A2(i) The process ¢ satisfying condition A1(%) with parameter o € (3,1) has a spectral
density f(\) = L (ﬁ) IA|*~1, where L is a slowly varying at infinity function, and f

has the 4th spectral moment.

A2(ii) The spectral density of the process e satisfying the condition A1(4) has the 4th
spectral moment.

In Ivanov and Hladun (2024) an example of the Bessel covariance function that satisfies
condition A2(%) is given.

35



36 Asymptotic Properties of LSE for Chirp-Like Signal Parameters

Theorem 2. Let the conditions A1, A2 and B be fulfilled. Then the normed LSE (T1/2 (A — AY),
T2 (Bir — BY), T%? (¢1r — 8Y). T (Cir — CF), T (Dir — DY),

T3 (P17 — )., T2 (AnT — AY), TY2 (Byr — BY), T%? (51 — %), T (Cnr — C%),

T (Dnt — DY), T3 (N1 — Lb?\,)> is asymptotically, as T — oo, normal N(0,X), where the
covariance matriz X is given by the formulas (106)-(109).

The proof of Theorem 2 is given in section 3.

2. Strong consistency

In the proofs of Theorem 1 and 2, the properties of Fresnel integrals

T x

C(z) = /COS(tg)dt, S(x) = /sin(tQ)dt, xr € R, (11)
0 0

play an important role. In particular from Lemma 1 in Ivanov and Hladun (2023) it follows
for any bounded functions ap, Bp, T > 0, such that 8 — 400, as T — oo,

1
sin 9 1
< .
1)/ oy (BrE)t < o =0, 4T — oo (12)
0
1 . . 4
sin sin 9
<
2) / o (@71) S0n (Bt € e 0, as T oc, (13)
0

for all combinations of factors in (13).

From Theorem 1 in the same paper when condition A1 is met, we get the following uniform
laws of large numbers:

T
Ztelg Tfl/ :2 (pt)e(t)dt| — 0 a.s., as T — oc; (14)
0
T .
zlé% Tfl/ zg; (Yt*)e(t)dt| — 0 a.s., as T — oo. (15)
0

Proof of Theorem 1. Consider a system of linear equations for amplitudes estimates A;r,
Bjr, Cjr, Djr, j = 1, N, that is a subsystem of the normal equations system for the LSE 07:

9
04,

9
0B,

9
ac,

9
oD,

T'Qr(0r) = T7'Qr(0r) = T7'Qr(0r) = T7'Qr(6r)=0, p=1,N,

and rewrite it in more detail:

é (Ajral,) (T) + Bigb) (1) + Circl)(T) + Dyrd() (1)) = (1),

2 (Ayra (1) + By (T) + Cire) (D) + Dyndy) (1)) = 7). 16
jé (Ajmgj;) (T) + Byrb® () + CyrN(T) + Dypd?) (T)> — (1), (16)
> (A7alf)(T) + Byrby (T) + Cir (D) + Dyrdiy (1)) = (1), p=TN;

<.
Il
-
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with
al)) =< cos(¢;1t), cos(dprt) >, al) =< cos(¢;rt), sin(yrt) >
aéz) =< Cos(gﬁjTt),cos(prtQ) >, ag-p) =< cos(gbjTt),s1n(1/;th )
b(- ) =< sin(¢;rt), cos(dprt) >, bﬁ) =< sin(¢jrt), sin(gprt) >
b( =< sin(g;rt), cos(yprt?) >, bl =< sin(¢;rt), sin(¢yrt?) >
511, =< cos(¢7t?), cos(pprt) >, cg-? =< cos(¢j7t?), sin(pprt) >
gi =< cos(jrt?), cos(prt?) >, cﬁ) =< cos(¢;rt?), sin(Pyrt?) >,
d') =< sin(r1?), cos(dyrt) >, d') =< sin(yrt?), sin(dprt) >
) =< sin(r1?), cos(Wprt?) >, d\y) =< sin(y;rt?), sin(Gyrt?) >
el =< X (1), cos(gprt) >, eP) =< X(t),sin(¢prt) >
el =< X (1), cos(ypyrt?) >, eV =< X(t),sin(¢yrt?) >, (17)
where
T
< ut),o(t) >= T / u(tyv(t)dt.
0

Denote by or(1), T > 0, possibly, different stochastic processes such that or(1) — 0 a.s., as
T — oo. Using condition B and (12), (13), we get

aO(T) = or(1),5 £ af(T) = £ +or(1), a@(T) = (T) = a(T) = 0r(1),

2 Ljp Ljp ip

b(T) = or(1),j £, BE(T) = % For()), B(@) =3 (T) = (T = 0p(1),

NT) = or(1), 5 #p, (T = % +or(l), (1) =2(T) = c(T) = or(1),

d(T) = or(1),j #p, d(T)= % +or(l), d\)(T)=d(T)=d)(T)=or(1),
J,p=1N. (18)

Consider further the values eg),i = 1,4, and set

sin T(wg — Q/JpT)_ a 1—cos T<¢2 - ¢pT)_

(1
TWO —dpr) T T T —dpr)
1

~—

8
3
!

CoS (TQ(@ZJS - 1j}pT)t2) dt; yfT) = /sin (T2(¢2 - ¢pT)t2> dt. (19)

0

"@/\
’ﬂ\_/
D\H

Using relations (12)-(15) and condition B we get

N
eél)(T) =< &(t), cos(pprt) > + Z(Ag < Cos(qﬁgt),cos(gprt) >+
j=1

B;) < sin(é?t),cos(@gt) > —i—C;) < cos(w?tQ), cos(pprt) > +DJQ < sin(w?tz), cos(pprt) >)

= Ag < cos(qﬁgt) cos(cf)th) > +Bg < sin(gbgt),cos(qﬁp;rt) > +or(1)
_A o

1
=5 pT+7y,§T)+0T(1>;
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N
eP(T) =< £(t),sin(yrt) > + 3 (A < cos(@ft), sin(yrt) > +
j=1

B;-) < sin(gb?t), sin(¢prt) > +CJQ < cos(¢?t2),sin(¢th) > —i—D? < sin(@b?tQ), sin(¢prt) >)
= Ag < cos(qbgt), sin(¢prt) > —I—Bg < sin(¢gt), sin(¢prt) > +or(1)

=St = 5 ur +or(1)

N
61(73) (T) =< &(t), cos(prt?) > + Z(A? < cos(¢2t),cos(¢th2) > +
j=1

B? < sin(qf)gt), cos(Yyrt?) > —I—C? < cos(@b?tQ), cos(Pyrt?) > —I—D? < sin(d)?tQ), cos(¢yrt?) >)
= Cg < cos(¢0t2) cos(Pyrt?) > —i—Dg < sin(¢2t2),cos(d}pgpt2) > +or(1)

0 o DY
= Jayr + Ly +or(1);

61()4) (T) =< 6(t),sin(¢th2) >+ Z(A(; < Cos(qﬁgt), Sin(¢th2) > 4
j=1
BJO- < sin(gﬁ?t), sin(¢yrt?) > —i—C]Q < cos(v,b?tQ), sin(¢rt?) > —|—D? < sin(w?tQ),sin(prtQ) >)
= CO < cos(wth), sin(Y,rt?) > —l—Dg < sin(wgtz),sin(prtZ) > +or(1)
Do oo

Applying relations (18), (20) to the system (16) we obtain the following relations for the LSE
of amplitudes:

AjT = Aolé? + BOyJ(T) + or (1) BjT = BO (1) AOyJ(IT) + or (1)

35T
Cjr = CPaly) + D°y§T> +or(1); Dy =Dl —ClyD +or(1); j=TN. (21)
Since |z (1 ) ]T <1, j=1,N, then from (21) it follows that

[ Ajrl, |Bjr| < |AG]+ 1B | +or(1);  |Cyrl, [Djr| < |CF| +|Dj| +or(1),j =1, N.  (22)

Write

T
Cr(61,02) = T~ 1/ (£,61) — g(t,02))2 dt, 01, 65 € O
0

From LSE definition we get

T
0> T7'Qr(07) — T-'Qr(6°) = G(6r,0°) + 27 / e(t) [g(t,0°) — g(t,0r)| dt.  (23)
0
From (14), (15) and (22) it follows that
T
271 /e(t) {g(t,@o) —g(t, GT)} dt — 0 a.s., as T — 0. (24)
0

Thus, taking into account (24), from (23) we obtain

G(67,60°) — 0 a.s., as T — oo. (25)
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Using notation

gi7(t) = Ajr cos(¢jrt) + Bjrsin(¢;rt) + Cjr Cos(ijtZ) + Djr Sin(l/)jTtQ)
— A? cos(¢?t) - B;-) sin(gb?t) - C]Q cos(wgz‘?) - D? sin(wjo-tQ),

we derive .
G(0r,0° Z ‘ / gir(t)dt +2) T~ / gjr () gpr (t)dt. (26)
0 J<p 0

From (12), (13), condition B and (22) we deduce that the 2nd sum in (26) vanishes a.s., as
T — oco. On the other hand,

T
T [ @)t = (A1) < cos(ért),cos(jrt) > +(Byr)? < sin(oyrt).sin(dyrt) >

0

+(Cj1)? < cos(yrt?), cos(rt?) > +(Djr)? < sin(y;rt?), sin(yrt?) >

+ (A?)2 < cos(qb?t), cos(qﬁgt) > +(B§])2 < sin(gb?t),sin(gb?t) >

+ (C']Q)2 < cos(w?tQ),cos(wgtz) > 4—(D?)2 < sin(w?tQ),sin(w]QtQ) >

— 2AjTA? < cos(gbjTt),cos(qﬁ?t) > —2AjTB;-) < cos(gjrt), sin(qb?t) >

- QBjTA(} < sin(¢;7t), cos(qb?t) > —2BjTB? < sin(gzbjTt),sin(ngt)

= ZC]-TCJQ < cos(zpjTtQ),cos(zp?t2) > —QC]-TD? < cos(¢7t?), 81n(1/10t2)

- 2DjTC]Q < sin(y;rt?), cos(w?t2) > —2DjTD? < sin(y7t ),sm(wth) > +or(1)

= % (Aj2) + (Bjr) + (A)? + (B)?| - |40 A9 + ByrBY| iy
- [AjTB? - BjTAO} yj(lT)

5 ()% + (D) + (€9 + (D9?] = 02 € + DyrDY] 2l

N —

— {C]TD? — CJTD?} y](;) + OT(l). (27)

Substitution of equalities (21) into (27) gives the relation

N
Glor. 6" =) % (492 +(BY2) (1 - @ - i)?)

j=1
N
>

Expression (28) converges to zero a.s. if and only if for j =1, N

( DO) ) ( - (xng))z - (y](?)Q) +or(l) > 0as.,as T —oo. (28)

l\D \

@2+ D2 =1, @2+ B2 = Las, as T — oo (29)

Consider in more detail each expression in (29). First of all

(@)2 4 ()2 = (SinT(ébg - ¢jT)>2 N <1 —cos T(¢] — ¢jT)>2 _ (Sln 5 () — ¢jT)>2
Lir Yir T(¢? — ¢ir) T(d)? — éir) 1 (¢2 - .

So, ( élT)) (yj(lT))2 — 1, 7 =1, N, if and only if

T(gﬁ? —¢j7) > 0as,asT — o0, j=1,N. (30)

Using notation \jr = TQ(w? —r), j =1, N, we have

1 2 1 2
(222 4 (422 = ( / cos()\jTtQ)dt> + ( / sin()\jTt2)dt) . (31)
0 0

39
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Let Qo C Q, P(Qp) = 1, is a random event for which (mg?)Q + (y](?)2 = 1,a3s T — o0,
j=1,N. If for any elementary event w € ()

Ajir =0, asT —o00,j=1,N, (32)

then (:cggf))Q + (y](?p))2 — 1,as T — 00, j = 1, N, by Lebesgue dominated convergence theorem.
Suppose that (32) is not true for some wy € Qo and consider all the possible options of Aj7,
j =1, N, behavior. Let for some j € {1,..., N} Aj7 - 0, as T'— co. Then there exist gy > 0
and sequence {T},,n > 1}, T, — oo, as n — oo, such that |\j7, | > €9, n > 1. Let the set of
values {\;7,,,n > 1} is bounded, then there exists a subsequence {T},,,k > 1}, T,,, — o0, as
k — oo, such that Ajr, — A; # 0. If the set of values {\j,,,n > 1} is unbounded, then for
some subsequence {15,k > 1} Ajp,, — —oco or + 00, as k — oco.

Using notation /\ank = Njks xéQT)nk = ﬁ), y](T)nk = g(k)7 consider the possible options of Ajj

convergence, as k — 00o:
(1) Ajr, = —00 or + o0; (7i) Nj = Aj # 0.

Let’s show that for the options (%) and (%i)

Really,

1 2 1 2
(D)2 + (422 = ( / cos<\Ajkrt2>dt) + (/ Sin(“f"f’tz)dt)
0

0

1 2
702 i P ( i ) < — 34
Aji] ( | Jk‘) - Ajil Al ) < RYE (34)

that is for the option (7) the relation (33) is true.

For the option (%) using Lebesgue theorem and Cauchy-Schwarz inequality we arrive at
relation

1 2 1 2
lim (@2 + wih?) = ( / cos()\jt2)dt) + ( / sin()\jt2)dt) <1 (35)
0 0
Thus, taking into account all the points discussed after formula (31), we get
AN =T?() —bjr) — 0 as., as T — oo, j = 1, N. (36)

From (21), (30), (36) it follows the strong consistency of the estimates A;r, Bjr, Cjr, Djr,
j=1,N. O

3. Asymptotic normality

The proof of Theorem 2 is preceded by 2 lemmas, and they are formulated after their proofs.

Set
2

0 .

20,7
and write down the system of normal equations for fp:

6N

T
0= Q(6r) = ( / g(t, 00)] it HT)d) . (38)
0

=1
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Consider the Hesse matrix
T T 6N
( / 9(t,0)] g (1, 0)dt + 2 / (£, 0)g;(t, 9)dt> (39)
0 0 i,j=1
and Taylor expansion of each row (38) with its own value of 6:
1 / 0 1 / 0 0
_§QT(9 ) = iQT(QT) QT(9 ) *QT( )(9T -0 ) (40)

Let’s introduce a block-diagonal matrix dp, which contains N blocks, and each such a block,
in turn, is diagonal matrix

dr = diag (T"/2, T2, T3/2, /2, 712 75/) (41)
Using diagonal matrix dr we rewrite (40) as
7 0 (Lo N =\ T (100
dr(0r — 07) = { dy iQT(G) dp dr _§QT(9 ) ) dr (42)
Let’s first study the asymptotic behavior of the matrix

6N

T
< QT()) ol =d;! (/ {g(t,g)—g(t,eo)} gij(t,e)dt) ;!
T g T w:éN
(/e i (t,0)d ) e (/gi(t,Q)gj(t,H)dt) 7!
0 ij=1 0 ij=1
= JO(T,8) — J(T,9) + JON(T,9). (43)

Consider matrices JM(T',0), J®)(T,0) and show that these matrices tend to zero a.s., as
T — co. Matrices JM(T,0) and J?)(T,8) are block-diagonal and contain N blocks of the
form

T 6k
J(T,9) = d7! ( / (9(4,8) - g(1,60°)] gz-j<t,e>dt) dr*, (44)
0 i,j=6k—5
T 6k
J(T,8) = dy! (/s(t)gij(t,e)dt) Al k=T,N. (45)
0 i,j=6k—5

Since the proof of convergence to zero matrix is the same for any k, we take just the case
_\6
k = 1. Consider the matrix d;l (gij (t, 0)) - d;l that is block-diagonal with blocks
Z7j:

0 0 —tsin(¢ )T 2
0 0 tcos(¢t)T—2 ’
—tsin(¢t)T—? tcos(pyt)T—2 —t2 (Zl cos(¢it) + By sin(@lt)) T3
0 0 —t2sin (¢ t3) T3
0 0 t? cos(,t2) T3 . (46)

—2sin(¢, )73 2cos(P t)T3 —t4 (élcos(%t%+Esin@1t2)) T

41
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From Theorem 1 it follows for ¢ € [0, T]

N
9(6,9) — g(t,0%)] < z(rAkar+|Bkar+<\A\+!Bk|>|¢kf¢k|t

N
+[Ck = CRI+ D = DRL+ (ICR] + IDRDI — vf12) < S (1Akr — AR| + | Byr — BY)
k=1

+ (JAY] + |BRD|dwr — 4| T + |Crr — CR| + | Dir — Dp| + (|CR| + | DRI |[wr — ¢k|T2)

=nr —+0as.,as T — oo. (47)
Then . nr
1 a 1 a T a
@) R0 < T I (0.8)], |4 5(.0)] < L
_ 1/ _ _
@0 < 5 (Al + Bil)ms %@ < (Tl+Dul)nr, (@49)
and due to (47) and (48)
JO(T,0) = 0 as., as T — oo. (49)
Consider then the elements of matrix J®) (T, 6):
T T
‘J{% 0)| = |72 / e(t)tsin(p t)dt| < T2 / e(t)t (sin(6yt) — sin(@ft) ) dt
0 0
T
U / e(#)tsin(@0t)dt| = I (T) + Io(T); (50)
0

T
/ t)|dt|drr — &2T.
0

As follows from A1l
T

T

1 1

7! / (t)ldt < 5 (1 T /52(t)dt) — {1+ B(0)) as, a5 T = oo,
0

and therefore I;(T) — 0 a.s., as T — o0.
On the other hand, under condition A1(%)

T T T T
EIZ(T) =T~ 4//tsB (t — s) sin(¢0t) sin(¢Vs)dtds < T~ 2//B (t — s)dtds
00 00

1 1 1 1
2
://B (t —s) dtds—/(l—\t\ B(Tt)dt < 2 BTtdt<1_aB(T).
0 0 -1

Let T}, = n”, and Ba > 1. Then I5(T},,) — 0 a.s., as n — oo. Consider the sequence of random

variables
Tn+1 2
sup |12(T) — I2(T,)| < T — 1| Ix(Ty,) + I3(T3),

Tp<T<Tpi1 n

— T /|g )\dt.
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As far as
Tn+1 Tn+1 T T 2
EIX(T,) < T / / Ele(t)=(s)|dtds < B(0) (”“T_”) — 0(n™?),
Tn Tn "

then I3(7,,) — 0 a.s., as n — oo, and J1(,21)3(T7 0) = 0as., as T — co.

Under condition A1(Z) we obtain also that J1(,21)3(T7 0) — 0 a.s., as T — oo. The proof of
this fact is similar to the previous one, since

T T
T2 |B(t — s)|dtds = O(T™1).
[

Similarly we get J1(?2)3(T, 0), 1(724)6(T, ), 1(’25)6(T, 0) — 0, a.s., as T — oo. Taking into account

that the proofs of J1(,23?3(T7 #) and J1(,26)6(T= ) convergence to zero are identical, we will prove
the fact for J1(,26)6 (T, 6) only. Obviously,

T
] = 17 [ et0] (€1 )@ (B0 1)
0

c? (cos(@th) - cos(¢?t2)) + DY (sin(@ltz) — sin(z/z?tg)) + O cos(yt?) + DY sin(z/J?tQ)} dt

T
< (i = 31+ D1z = DY+ (C91 + DS e — w172 7 [ fete)lat
0

+ - (51)

T
C’?T‘5/5(t)t4 cos(t?)dt
0

T
D75 / e(t)tt sin(21)dt]
0

where the 1st summand tends to zero a.s. according to Theorem 1; convergence to zero of
the 2nd and the 3rd summands is proved similarly to convergence of I5(T"). Thus

JO(T,8) = 0 as., as T — oco. (52)
We will consider further the matrix J®)(T,8). This matrix consists of blocks

61,65

T
Ji(f)(Tﬁ) = d;' (/ gm(t,H)gn(t,G)dt) Ay, i j=T,N. (53)
0 m=6i—5n=6j—5

First examine the blocks Ji(f) (T,0), i # j, and write down the elements of these blocks,
dividing them into 3 natural types.

The 1st type.

cos(¢;t) cos(¢;t)dt; Ji(ﬁ)m(T, )y =1" -/cos(qbit) sin(¢;t)dt;
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Ji(;:)zss(T, 0) =172 [ sin(¢;t)t ( Ajsin(¢;t) + Bj cos(qﬁjt)) dt;

Jz(g?)?n (T,0)=T72 [t (—ZZ- sin(¢;t) + B; cos(ait)) cos(¢;t)dt;
Th(1,8) = T2 [t (= A;sin(6;t) + Bi cos(@;t) ) sin(;t)dt; (54)

JZ@ (T,0) =T | 12 (—A;sin(@;t) + B;cos(d;t)) (—A;sin(¢;t) + Bjcos(p;t)) dt
3,33 J J

O\ﬂ O\ﬂ O\ﬂ O\,ﬂ

The 2nd type.

T
cos(¢;t) cos(@jz‘?)dt; Jig%)lf)(T, O =1" /cos(ait) sin(Eth)dt;
0

cos(¢g;t)t? ( Cjsin(yt %) + D cos(@b]t2)) dt;

T
sin(¢;t) cos(@th)dt; JZ-(]%%5(T, 0)=1" /sin(@it) sin(ath)dt;
0

sin(¢;t)t* (—Cjsin(vp.t%) + D, cos(i ;1)) dt;
J j J

t (—Zi sin(¢;t) + B; cos(@it)) cos(1h;t*)dt;

cos(1);t%) sin (¢;t)dt

@)
o
o)

—
<
~
Do
SN—
@)
o
)
—
;&
S~—
=
S
e
no
—~
~
|
S~—
Il
~
—
O\H

cos(1;t%)t ( Ajsin(¢;t) + B cos(@t)) dt;
T

sin(,12) cos(@;t)dt; IO, (1,0) = T / sin(;£2) sin(3,t)dt
0

sin(v,t?)t ( Ajsin(¢;t) + B cos(ajt)) dt

t2 (—61' sin(Y;t?) + D; cos(@itQ)) cos(¢p;t)dt



Austrian Journal of Statistics
T
T (T,8) = T2 / £ (—a sin(¢;t2) + D; cos@.ﬁ)) sin(¢;t)dt; (55)
0
T
T (T,0) =T / £ (= Cisin(;12) + Di cos(9;1?) ) (—A;sin(;t) + B cos(@,1) ) di;
0
The 3rd type.
T T
J-(‘-g’) T.0) =T~ [ cos(i,t?) cos(ib .2 dt; J.(S) T.0) =T [ cos(i,t?) sin(e).£2)dt;
17,44\ d}l ¢J ’ 17,45\ ¢1 1/)] )
0 0
T
Ji(ﬁzm(T, 0y =13 / cos(1p;t2)t? (—éj sin(ath) + D cos(@th)) dt;
0
T T
J(g) T,0) =T~ ' [ sin(y,t?) cos( . t2)dt; J@ T,0) =T~ [ sin(,t?) sin( . t?)dt;
15,5437 Yi 1/’] ) i7,55\1 s (Ch @DJ ;
0 0
T
J©) T,0) =T73 [ sin(y;t*)t? (=C,;sin(¢;t?) + D; cos(¥,;t2) ) dt;
14,56 7 J J J J
0
T
T(T,8) =T / 2 (—a sin(¥;2) + D; cos@.t?)) cos(P,1%)dt;
0
T
JZ-(J%%E)(T, f) =13 /t2 (—61' sin(y,;t?) + D; cos(%tQ)) sin(@jtz)dt; (56)
0
T
JZ(]%%(S(T, 0) = T*5/t4 (—6i sin(y,t%) + D; cos(%tQ)) (—éj sin(@jt2) + D cos(@jt2)> dt.
0

Let us show that due to the LSE 61 consistency each element of all 3 types in the formulas
(54)-(56) tends to zero a.s., as T — oco. Moreover, each element in (54)-(56), being multiplied
by T for any v € (0,1), also tends to zero a.s., as T — oo. For elements of the 1st type it is
obvious. For elements of the 2nd and 3rd types it follows, for example, from formulas 2.655,
p. 226, of Gradshteyn and Ryzhik (2007), namely: for any bounded function ar, T' > 0, and
bounded function by, T' > 0, with the following property: there exists a neighborhood of zero
Vo such that for sufficiently large T Sr € R\Vj, we have for n € N

T
/t” ig; (art + Brtd)dt = O(T™ ), as T — . (57)
0

In the matrix J®)(T,0) it remains to consider a diagonal submatrix with blocks Ji(?) (T,0),
1 =75 =k, k=1, N. Note that in the blocks J,ii)(T, ) all the elements of the 2nd type still

converge to zero. Non-zero are those limits of the remaining elements of the blocks J,Ei) (T,0)
that contain the squares of sines and cosines under the integral signs. Thus we can formulate
the following statement.

Lemma 1. Under conditions A (i) and B

~ 1 v - ~
dt (QQT(9)> dt — H a.s., as T — oo, (58)
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where H = diag(Hq, ..., Hy) is a block-diagonal matriz with blocks Hy, = diag(H,gl),HlE?)),
kE=1,N,

1 0 = 1 1 0 -
0 0
B =0 1 A B =5] 0 ~% (59)
By Ay (ADPHBY? Dy 0y (OD*HDY?
2 2 3 3 3 5
Introduce a block-diagonal matrix sp with N blocks
sp = diag(1,1,1, T2, T2 T3/2) (60)
and consider the random wvector §Tdv}1 ( 1QT(90)) =Zr,
- =(1) =(2 —=(1) —=(2 =(1) =(2)\*
=r = (:gT), :gT), ey :ECT, :IE:T)’ . :g\,)T, :SV%“) , (61)

T T
=) = (T—W / £(t) cos(¢t)dt, T~1/2 / £(t) sin(¢00)dt
0 0

T *
0

T T
=7 = ( [ ctycostupyat, [ etysinuiear
0

0

T *
71 /8( )t2 ( CP sin(yRt?) + DY) cos(wth)) dt) ({kT,fkT,é(ﬁ)) . (63)
0

The normalization (60) of the vector (61) is necessary to ensure that vectors (63) do not
converge to zero, as T — 0.

The problem is to find the limiting covariance matrix of the vector (61) as T — oo.
1) We'll start with the vector

=(1) 2) (3 3
=0 = (662,62, .. 600, 00600 (64)
and take in the regression function (6) the sum of harmonics

N

h(t, ™) = 3 (A9 cos(6t) + B sin(ft) ), (65)

J=1

0_ (40 RO 40 0 p0 o0\_(o0.0.0 0 .0 _0\*
T —(Al,Bl,qSl,...,A ,BN,ng) —(7’1,7'1,7'1,...,7’3N_2,’7'3N_1,T3N) .

Set
0 ) P
h](ta T) = %h(thL bT(T) = dZCLg (b]T(T)7] = ]-7N> 3

T T
= [#e i W) = [Ny,
0 0
R

and introduce a family of matrix measures pr(dA, 7) on (R, B), where B is o-algebra of Borel

subsets, with matrix densities
(7).

gi=1"
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o 0 -1/2
WO T) = (A TR, 7) (/ ]hg(A,T)fdA/ ’th()\,T)‘2d>\) . (66)

Note that by Plancherel identity

e}

b2r(r) = (2m)” /‘h] (A T‘ dA.

—00

For the function (65), the family of matrix measures (66) converges weakly to a positive
definite matrix measure p(d\, 7)|;=r,, that is its elements p/!(d\, 7) are complex signed mea-
sures, the matrices u(B,7), B € B, are non-negatively definite, and matrix u(R, 7) is positive
definite.

Definition 2. (Grenander (1954), Ibragimov and Rozanov (2012), Ivanov and Leonenko
(1989)). The measure p(dA, 7) is called the spectral measure of the function h(¢, 7), or, which
is the same, the spectral measure of vector function Vh(t, 7).

For the function (65) the spectral measure u(dA, %) is a block-diagonal matrix with blocks
(see, for example, Ivanov et al. (2013), Ivanov et al. (2015))

ok ipr B
B Y Ok
0 i 0 0 i
with 8, = V3B +idior) V(AR +iBior) measure 0 = 0x(d\) and signed measure

o/ ADZ (B2 F T o JAEr (B
pr = pr(dA) are concentrated at the points £¢?, and 0x({£¢2}) = %, pr({£e2}) =
k=T N

Consider a random vector

T
b (7") [ (TRt Tt (65)
0

with function h(t,7°) specified in (65). Using the definition of spectral measure, formulas
(67) and condition A2 we find the limit, as ' — oo, of covariance matrix of vector (68) as a
block-diagonal matrix

o=2r / FN) (X, 7° (Uk)ivzl

. 0 _ vy N\
2V/(A)2+(B))?
0 1 — V34
I P 0 T - (69)
V3B) —V343 1
2/(A0)2+(BY)?  2,/(A})2+(BY)? k=1

When the conditions A2(%) is met the spectral density f(\) has a singularity at zero, that
is, it is not continuous and bounded on the real line. However it can be proved (see Ivanov
et al. (2013)) that f(A) is p-admissible, namely:

[e.e]

/f Y (d, 7°) —>/f p(d\, 7%, as T — oo. (70)

Note also that for function (65)

T1/2 0 T1/2

bgg—2(7") ~ Nk bag—1(7") ~ 75 (AR)? + (B)?

bar(7°) ~ T2
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Introduce the block-diagonal matrix ) with blocks

Qk:diag(<\[ \1f (AO)(B](“))Z)), k=1,N. (72)

Taking into account (68)-(72), the limiting covariance matrix of the vector (64)

G = lim E"(l) (~g}))*

T—o0

consists of the elements (see formula (59))

BY
10 5
(1) 0y 1 S10 0y (1)
Gij ' =QioiQi=2nf(¢)5 | 0 1 —5 =2nf(¢;)H,
B (B
2 2 3
GiV =0, i#j ij=1N. (73)

2) We will find next the limiting covariance matrix of the vector

- 2) 5 6 4 5 6
( (§1T7££7}a55727 agj(\f%‘aé.](\f’;“vg( ) ) . (74)

To do this, it is sufficient to analyze the limiting behavior of vectors H(T) and H(T), ,7=1,N,

covariance matrices. The problem is that the function

N
m(t) = Z (C;J COS(¢?t2) + D? Sin(@b?t?)) , (75)
j=1
unlike the function (65), does not have a spectral measure, and we are forced to carry out
rather tedious calculations.
It is convenient for us to write down —CJQ sin(l/;?tQ) + D? cos(q/)?tQ) = a? cos(@)t2 + 6?) with

co _
;= ﬁ/(C'O) (D?)Q, tan 5]0- = 50, J = 1, N. We will also use the notation with variable
j

a?
A>
4 Y w42\ g0
wir(X, B9) = l &(A’ﬁg) u@Tm(A’ﬁ%)
U]T ()\,5]) ujT (AHB])
T T
J cos(At) cos(99t? + B9)dt [ cos(At) sin(¢Jt* + B7)dt
=10 0 (76)
Ofsin()\t) cos(§t* + BY)dt gsin()\t) sin(y§t* + B9)dt
We get further
A9 7 17
(jlrl) A B / wj 042 _ N\t + /30 dt + 5 / ¢0t2 + M+ 50)
ujr (A, B 0 0
T 2 2
1 0 A )‘2 0 1 0 A )\2 v
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W2 80 1 17
T AP 5/ <¢0t2+)\t+ﬁ0 dt 5/ thZ /\t+52) dt =
) J /

17 PR AP L 17 A\ (N
20/sm 1/)j<t—i—‘> —<4¢?—BJ> dtiQO/sin w] (t—21/)0> —<4¢?—

= 1 ' / sin <32 — (4/\1;;) — 5?)) ds

( -C( )
) 2\/179 2, /49
+ cos <)\2 - 6?) (S T\/JJQ_ : )xzpo

J

[N A A

where C(x), S(z), © € R, are Fresnel integrals (11).

Obviously,

49

(78)
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uﬁll)(A,ﬁﬁ?) 1 COS<)\2 O) \/;
uf”(hﬁ?) _2\/17? 40 2\/»

s (3 -) (Vi () == (-2 (Vi< ()
(i) (Vs (7))

w3 Al o= (<55
(i -1) (- (7))

From (77), (78) and Fresnel integral properties it follows that uniformly in 7" and A
o) < (51)

‘“J‘ \r

Besides for any A > 0 and k,l =1,2
24/90 sup ‘uJT ﬂo) (kl (A, ﬁo)’ < sup
X€[0, A]

A€[0,A]
+ sup
AGOA}

+ sup (T\r 2\/7) \/>
— 0, as T — oo. (82)

A€[0,A]

EACCE M)

Expressions (79), (80) can be written in a more compact form, bringing similar terms and
using the oddness of functions C'(z) and S(x):

e A2 T | (12) . A2 T\
1( A BY) = ,¢OCOS<4¢O ?—4)7 ujl (A,ﬂ?)—\/;s (4%)_ ;.)_4>7
( 1 N A N A ,
21( 60) \/77‘5) <COS (411}?_&‘?>S(2\/J§)> — Sin <41}Z}‘(Y)_ 2)0(2\/@)>7
A ER TR

N (02 4 9)dt and ft2 "N (M) cos(ut2 + 30)dt. The

We also need integrals f t ()\t)

next equalities follow from Appendlx in Ivanov and Hladun (2024).

T
1) /tcos(/\t) cos(Yt* + B)dt = 2;} [sm(poT2 + B87) cos(AT) — sin(5) + Au 22)( ,80)}

0 J
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2) [ tsin(AL) cos(y9¢® + B2)dt [sin()T? + 89) sin(AT) — Ml (A, 89) |

270

T
/
T
3) / tcos(A) sin(ugt” + B))dt = 1/}0 [ cos(u)T? + B2) cos(AT) + cos(8) — Ml (X, B)] ;
0T
0) [ tsin(n)sin(ue? + )t = 2¢° [~ cos(0T2 + 59) sin(AT) + i (1, 89)]
0T
5) /t2 cos(\t) cos(wot2 + 50) 2¢0 [T sm(wOT2 + ﬁo) cos(A\T) — u 12)( BO)
" T
—i—)\/tsin()\t) sin(l/)?t2 + ﬂ?)dt] ;
0
T
6) /t2 sin(\t) cos(wot2 + 60) 2¢0 {T Sll’l(?,ZJOTQ + BO) sin(A\T') — u ( ﬁo)
0

T
i\ / tcos(At) sin (6042 + ﬁ?)dt] L (34)
0

Note also that integrals 1)-4) are bounded in 7" by the value

1 4 1 A
20 <2+)\\/@) 0 + W (85)

Set G,(;JQ»Z) (T) = E"(Q) ( (2)) . Taking into account condition A2 we’ll use the standard

formula B(t) = 2 f f(X) cos(At)d\. Then by Lebesgue dominated convergence theorem
0

00 T T
%11 2/f //COS (t — 5)) cos(¢t?) cos(; %) dtdsd\
0 0 0
=2 [ 1) [ulfP P ) + w0 ()] ax
0
=9 / SO [u0ud I ) + P uPI )] dh =GR as T 0o, (86)

J

Here and bellow we use the notation ul(-kl)(A, 0) = ugkl)()\) (M)()\ 0) = gkl)()\), k,l=1,2.
Similarly to (86)

G =2 [ £ [ 000 + ulP el ()] ax
0
Gl =2 / ) [uy”(k)ul(”)(x) + u§21><A>u§22><A>} d\:
0
Gz =2 / FO [ )ud? ) + u ()P ()] da. (87)

o
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‘We have further
[es) T

T
GE(T) = 2000072 / £V / / cos(A(t — £))12s% cos(01> + BY) cos(vls® + B2)dtdsdA
0 0 0

T

00 T
= Za?a?T_Q / fN) [/ t2 cos(\t) cos(VPt? + ﬁ?)dt/tQ cos(At) cos(wjot2 + B?)dt
0 0 0

T T 0.0 0o
+ O/ 12 sin(At) cos(¥0e2 + B9)dt 0/ sin(\t) cos(¢3t2+ﬁo)dt] ) = ;Z;Z?TQ 0/ £V

_ T
X (T sin(0T?% 4 8Y) cos(A\T) — u ( A BY) + /\/tsm (At) sin(2t% 4 89)dt )
0

T
x | T sin( ?TQ —i—ﬁo) cos(AT) —u ( 60 +)\/tsm At) sin( ?tQ—i-B?)dt
0

+ | Tsin(YT? + BY) sin(AT) — ( B0 = X [ tcos(Mt) sin(¢Pt? + Y)dt

X Tsm(zp?T2 + 50) sin(AT) —u 22)( BO) A

O\,ﬂ O\ﬂ

t cos(At) sin(¢?t2 + ﬂ?)dt ] dA

040040

N 4w?w?

sin(OT?% 4 8Y) Sm(@bOT2 + BO) +O(T™), as T — oc. (88)

Taking into account formulas (84) we see it is precisely the derivation of formula (88) that
uses the existence of the 4th spectral moment stipulated by condition A2.

On the other hand,

0o T T
G§]221)3(T) = 29T~ /f //cos (t — 5))t* cos(Pt? +ﬁ0)cos( 9s%)dtdsd\
00

0 T T
= 229771 /f()\) [/ t2 cos(\t) cos(¢Pt? + B?)dt/cos()\t) cos(¢?t2)dt

0 0 0
T T 00
o0
+/t2 sin(\t) cos(¢Pt? + 5?)dt/sin(/\t) cos(1/1?t2)dt] d\ = —6 /
0 0 Vi 0

T
(Tsm( P72 1 90)cos(AT) — (0, 99+ A [ sin()sin(02F + >df) i)
0

T
+ (Tsin(w?TQ + B89 sin(AT) — ulZP (X, 89) — A / tcos(\t) sin(¢91? + ﬁo)dt) u( )(/\)] d\
0

a? 7 . _
= sin(¢9T2 + 59) / FOV [l () cosAT) + uf) (0) sin(AT) | dA + O(T 1) = 0, (89)
¢ 0
as T' — oo.
Similarly,

22 22 22
G§j,2)3 = Gz(j,S)l = Gz(j,S)Z =0. (90)
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0,0

Tlgréo [GZ(??) (T') — diag < 40;/}01/}0 sin(0T2% 4 8Y) s1n(¢0T2 + 60))]

) G(zz) 0
— 2
0 0 0

with functions G( k)l, k.l =1,2, given by formulas (86) and (87).

3) Finally we examine the limits of vectors E(T) and "gT), 1,7 = 1, N, covariance matrices.

Write ng )( T)= EHET) ( g?) , and show that the integrals
Gz(jl-i)l (T) =T"1/? B(t — s) cos(¢t) cos(v,b?sz)dtds;

04 ain (1,0 o2 .

B(t — s) cos(¢;t) sin(}s”)dtds;

T
/B(t — 5) cos(pVt)s> cos(v,b?s2 + ﬁjo-)dtds;
0

B(t — s)sin(¢Vt t) cos(¢); 952)dtds;

T

/B(t — ) sin(¢Vt)s® cos( ?82 + ﬁ?)dtds;

0

B(t — s)t (—A? sin(¢%t) + BY cos(gb?t)) cos(zb?sQ)dtds;

B(t —s)t (—A? sin(p)t) + BY cos(gzﬁ?t)) sin(1); 0s2)dtds; (92)

Glah(T) = afT =/

T
/
T
/
T
/
T
/
T
— 5) sin(¢¥t) sin(y)%s? s;
0/ B(t — s) sin(6)¢) sin(40s”)dtd
T
/
T
/
T
/
T
/

T
/B(t — s)t (—A? sin(¢%t) + BY cos(g[)?t)) s cos(qb?sQ + ﬁ?)dtds,
0

tend to zero, as T — oo.

Let F(t,s) be some continuous function. Consider the change of variables in the integral
—Uu

T T T T
I— / / B(t — s)F(t, 5)dtds — / B(u) /
0 0 0 0

T
+ /B(u)
0

which generalizes the standard change of variables in the integral I for F'(t,s) = 1. Make also

F(u+wv, v)dv] du

T—u

/ F(v,u+v)dv

0

du =1 + I,
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in the inner integral I» the change of variables u + v — v. Then we get

T
b:/mm
0

u T—u
/F(v—uv /Fv—uvdv—i—/F(v—}—u,v)dv]du. (93)
0 0

/F(v —u, v)dv] du and

T
I:/Bu
0

Note that according to formulas (76)-(85) we obtain

(Tyu,T—u) 4
[ @ o @ B <
9
0 J
(Tyu,T—u)

1 20
/ sin (¢o ) sin WO 2_1_50) 1/}0 + (¢0(§3/2;

0

(Tyu,T—u) < < T 9 ¢O (¢O)2
2 in 0 in 0 2 0 . % i .

0/ os (910) cas (V307 000 = 30 Ty * 3y a7
(Tl 3 sin sin 0.2 0

[t @) o @+

0

272 )T 1 3) | (#)? (&)
= ot e ety ar @Y

Since the proofs that elements (92) converge to zero, as T — oo, are similar, we will focus

only on the most inconvenient element GSZB):S( ). Using (93) and (94), we get

T

/mm

0

G121 = 12

T
X [/(v —u) (—A? sin(qb?v — qb? )+ B0 cos(¢ov — (bo )) v* cos( ?’1)2 + B?)dv
0

_ /(v —u) (_AQ sin(¢Yv — ¢pYu) + B0 Cos(¢0v — qbo )) v cos( ?vZ + ﬁ?)dv

(T—u)
+ / (v+u) AYsin(¢dv + ¢Yu) + BY cos(¢fv + ¢Yu )) v* cos( ?112 + 5?)dv du
T
< af (1491 + |BY) 772 [ |B(w)
0
T T
/US sin(¢; v)cos(wov2 —I—BO /v cos(¢?v) cos(v,/JOU2 +BO)
0 0
T T
+u /v2 sin(¢Yv) cos( ;-)112 +ﬂ?)dv +u /02 cos(¢Yv) cos( 21}2 —i—ﬁjo-)dv
0 0
+ /v3 sin(¢Yv) cos( ?1)2 —i—,@’?)dv + /1)3 cos(¢Yv) cos( ?UQ —i—ﬁ?)dv

0 0
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+u /v sin(¢Yv) cos(¢?v2 + ﬂ?)d /v cos(¢?v) cos(¢ov2 + 60)
0 0
+ / v3 sin(¢v) cos( ?v2+ﬁ?)dv + / v3 cos(¢Yv) cos( j1)2+,6’?)dv
0 0
T—u T—u
+u / v? sin(¢Yv) cos(¢?v2 + Bjo)dv +u / v? cos(¢v) COS(?[)?UQ + 5?)(111] du
0 0
272 T 1 3¢7 | (9))?
< 6 A0+B0 5/2/3 - + + —geg + ot
) (11 B e e Ay
(¢Q) r 2 ¢} (4)?
T/ P ? ] d
R R N IO T e |
T
1805 (|47 + |BY)) . _
< 0 1/2/|B(u)|du+O(T 12y, (95)
J 0
Under condition A2(7)
1
/2 L(T)
T—W/B :TW/BT < B(T)= —— X T :
(u)du (Tu)du < T a (T) (1= a)To172 =0, as T — oo. (96)
Under condition A2(%%), obviously,
7172 / B(u)|du — 0, as T — oc. (97)

Thus, G823)3(T) — 0, as T — oo. Similarly to (95), each element in (92) is bounded in

T
modulus by ¢;;T~Y2 [ |B(u)|du + O(T~'/?), with some constant c;;. So,
0

EJ)( g?) 50, asT — 00, i,j=1,N. (98)
Lemma 2. Under condition A (i)
(1)

(i) the limiting, as T — oo, covariance matriz of the vector =3’ is given by formulas (73);

(ii) the limiting, as T — oo, covariance matriz of the vector Eg?) can be described by relations
(86), (87) and (91);
(iii) joint covariance matriz of the vectors E(Tl) and E(T2) tends to zero matriz, as T — oo.

Proof of Theorem 2. Using results of Lemmas 1 and 2 we move on to LSE asymptotic
normality proof of the parameters of our multiple chirp-like signal.

Consider the matrix H from Lemma 1. Elementary calculations show that

02 02 0)2 0)2
det (ngl)> _ (A" + (By) . det (H’g?)) _ (CR)"+(Dy) ’
96 90

and H~! = diag (Hfl, ey H&l) is block-diagonal matrix with blocks

H' = diag ((ngl))l | (ngz)>1)

(A2 +a(BY?  -3AIB) 6B
SSAVBY A(AD?+(BY? oA) |,

Nt
) (4Q)2 + (BR)? —6BY 6A9 12

55
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- 0.5 4(CP)? + 9(DY)? —5CY DY ~15D¢
(CR)?*+ (Dy) ~15D9 15CY 45

Set
Kr = (Kij)¥_, = (J;l (;Q;ﬁ(e)> J;)_l —H'>0as.,as T — oc. (100)
Consider also block-diagonal matrix ér with NV blocks
cr = diag (1, 1,1, 72 71/2 T1/2) (101)
Using notation (60), (61), (100), (101), rewrite (42) in the form
erdy (0r — 0°) = erKpsp'Er + er H 57 20 = ViV + v, (102)

First of all we show that Vél) R 0, as T — oo. Each coordinate of vector Vél) is a
linear combination of elements of the matrix ETKT§}1 and coordinates of the vector Er.
In accordance with formulas (73) and (91), the processes 5,(;?, g = 1,5, converge weakly,
as T — oo, to Gaussian random variables with zero mean and variances 7f(¢), mf(4?),
s f(0%) (A2 + (BY)?), G,(jj)n, G,(€2k2%2 Denote these random variables by {,(Cq), q = 1,5.
Processes T*1§£? converge to zero in mean square.

Matrix K elements tend to zero a.s., as T — oco. However, the matrix ETKTE';I contain
elements

T2 Ky, m=6i—2,6i,n=6j —5,6j —3,i,7=1,N, (103)

whose convergence to zero requires additional explanation. Elements K, in (103) are
cofactors of elements symmetrical to K,,, relatively to the main diagonal of the matrix

Hp = cj;l (%Q;(?)) J}l divided by the det Hy. Every such a cofactor is an algebraic sum of
products of 6/N — 1 elements of specified matrix. We state that each such product contains
at least one of the elements described before formula (57) with the following property: it will

converge to zero a.s., as T — 0o, being multiplied by T/2.

Indeed, when we begin to calculate the specified cofactor, we remove one row from one
diagonal 3 x 3 block and one column from another diagonal 3 x 3 block.

A product in cofactor with the maximum number of factors that do belong to 3 x 3 diagonal
blocks will contain 6(N —1)+4 = 6N — 2 elements. The last factor necessarily be an element
from a non-diagonal 3 x 3 block, which, when multiplied by 7"/2, converges to zero a.s., as
T — 0.

Besides, Hy — H, and then det(Hr) — det(H) a.s., as T — co. Thus, elements TV/2K,,,, — 0
a.s., as T — oo, m = 6i — 2,61, n = 65 — 5,6j — 3, i,j = 1, N, and ¢r K735 — 0 as., as
T — 0.

The above considerations show that vector V( ) converges to zero at least in probability.

On the other hand, the vector V:ﬁ ) = (Vl(T), ey Vk(j%), e V]E,%D* with

Vi = ((H,i”) (e 62.62)" ( ,f)) (642, €070, 7€) )) : (104)

Thus, erdr (61 — 6°) weakly converges to the Gaussian random vector
2 2 2 2
VT():(v;(),...,v() V)
2 D\~ 1) 2 B)\* 2\ "L (4) 5 ) "
v = ((a0)7 (€02 0) (1) (60 600) . o
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with covariance matrices that are made of blocks 6 x 6

2= (Z)iet s
[ om () RV 0 } .

T 0 ROE(E) (0.7) (m)

Eij = [ 8 RZ(Q)E (554)’51(5))*0(554)7555)) (Rgz))* ] ¥ ?é Js (106)

zeros denote 3rd order zeros matrices;

0 5 (A9)? +4(B))? —3A)BY —6B)
RY = o | =3AVBY  4(AD)? + (BY)? 6AY |
(42) + (B7)? —6B? 649 12
R = i —5C9D? 9(C%)2 4+ 4(DY)? | ; (107)
(CR)? + (D)? ~15D 159

BePe™ =2 [ 1) [ul™ )ul () + ul ()ul? ()] ax; (108)

(109)

O
Corollary 1. Under conditions A (i), A(ii) and B for any 61 € (0, %), d2 € (0,1) ran-
dom variables T'/*=01 (Ajp — AY), TY20(Bip — BY), T3/2~ (¢yp — @), T*%2(Cir — CY),
T'%(Dyp — DY), T3 % (4hip — 49) 250, as T — o0, i = I, N.

Corollary 2. If rank(R) = 5N (see bellow), then rank(X) = 5N. This means that limiting
Gaussian distribution of normed LSE Ot is singular.
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Proof. The matrix ¥ from (106) can be written as the product of three block matrices as
follows:

kR 0 0 .. O Rii Ri2 Ris ... Rin
0 Ry 0 .. 0 Ro1 Roo Roz ... Ron
X = 0 0 R3 0 X Rgl Rgg R33 R3N
0 0 0 .. Ry Rn1 Rn2 Rns ... Rnn
RI 0 0 0
0 R, 0 0
x| 0 0 R; .. 0 |=RRR" (110)
0 0 0 R%,

where R; = diag (Rgl), Rl@)), i = 1, N, are block-diagonal matrices with blocks from (107)
and matrix R is of order 6N x 5N, R* is of order 5N x 6/N. Matrix R is covariance matrix
of the random vector (59), 5%2), §§3),§§4), %5), v 51(\}),51(3),51(3), 5%),51(\?))* and we assume that
it is not singular. Let’s find the rank of the matrix R.

Consider a square submatrix M of R consisting of all its rows that contain the first five rows
of each matrix R;, ¢ = 1, N. Then

N 02 02 00
_ (1) 05 G+ 9(DY) —5C5 D;
det M = [ [ det 7 det ((0?>2 NGO l SSC0D) 9(Ch)? 4 (DY)’

N
1
=864" [[ 55— =05 >0 (111)
i=1 (Az>2 + (Bz )2
Thus, rank(R) = rank(R*) = 5N, rank(RR) = rank(R) = 5N, and rank(X) =
rank(RRR*) = rank(RR) = 5N. O
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