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Abstract

We review the current state of the spectral theory of random functions of several
variables created by Professor M. Ĭ. Yadrenko at the end of 1950s. It turns out that the
spectral expansions of multi-dimensional homogeneous and isotropic random fields are
governed by a pair of convex compacts and are especially simple when these compacts are
simplexes. Our new result gives necessary and sufficient conditions for such a situation in
terms of the group representation that defines the field.
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1. Introduction
In the 1970s and 1980s, I had the honor to be first a graduate, then a doctoral student by
Professor Mykhăılo Ĭosypovych Yadrenko, the very best teacher, the most benevolent and
responsive person I have ever met in my life, and the creator of the spectral theory of random
fields.
A working mathematician must know everything about something and something about ev-
erything. The theory developed by M. Ĭ. Yadrenko is a nice illustration to this thesis. Below,
we will see numerous links connecting the spectral theory of random fields to various parts
of science including Special Functions, Representation Theory, Invariant Theory, Convex Ge-
ometry, and Continuum Physics.
Let (Ω,F, P) be a probability space, and let (S,S) be a measurable state space. A stochastic
process is a collection { X(t) : t ∈ T } of S-valued random variables X(t) : Ω → S which are
indexed by an index set T and must be measurable with respect to the σ-fields F and S.
In many applications, the index set T is (a subset of) the real line R1, while the state space
S is R1 equipped by the σ-field S = B(R1) of Borel sets.
Starting from the 1920th, several applied physical papers about turbulence introduced stochas-
tic processes, where the index set is not a subset of R1 and the state space is not necessarily
equal to R1. We would like to mention Friedmann and Keller (1924); von Kármán (1937a,b),
among others. This particular case of stochastic processes coined the name random fields.
The term “spectral theory of random fields” will be explained in Section 2. Here, we consider
a motivating example borrowed from Malyarenko and Ostoja-Starzewski (2023).

Example 1. Let D be a domain in an affine Euclidean space Ed filled with a continuous
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medium. Let X : D → U be a physical field (temperature, velocity of a fluid, stress tensor
of a deformable body, . . . ) taking values in a real finite-dimensional linear space U with an
inner product (·, ·). We observe that U can consist of scalars, vectors, tensors, etc. By this
reason we do not use the term “vector space” and do not introduce coordinates in U at this
stage.
Under some physical conditions, the movement of a gaseous or liquid medium may become
turbulent. A spatially random material microstructure may appear in a deformable body.
The medium becomes random, and the function X becomes a random field.
Choose a point O ∈ D and call it the origin. The map Ed → Rd, A 7→ A − O, identifies Ed

with Rd. For simplicity, suppose that the random field { X(x) : x ∈ D ⊂ Rd } is the restriction
to D of another random field with index set Rd. We denote it by the same symbol X.
The physical properties of the random medium do not depend on the choice of the origin.
Mathematically, the random field X is strictly homogeneous, that is, for any positive integer
n, for any n distinct points x1, . . . , xn ∈ Rd, and for arbitrary x ∈ Rd, the Ud-valued random
variables (X(x1), . . . , X(xn)) and (X(x1 +x), . . . , X(xn +x)) (the marginal distributions) are
identical.
In what follows, we assume that the random field X is second-order, that is, E[∥X(x)∥2] < ∞
for every x ∈ Rd. In that case, we have: the mean value m = E[X(x)] is independent of x,
and the correlation tensor (or correlation function when S = C1)

K(x − y) = E[(X(x) − m) ⊗ (X(y) − m)]

is a U ⊗ U -valued function of the difference x − y. We call such a field just homogeneous.
At the macroscopic scale, all the details of the microstructure are lost, all what remains
is the medium symmetry group, say G, a closed subgroup of the group O(d) of orthogonal
d × d matrices. For simplicity, we put G = O(d). For other possibilities, see Malyarenko and
Ostoja-Starzewski (2019); Malyarenko, Ostoja-Starzewski, and Amiri-Hezaveh (2020) and the
literature cited there.
The group G acts in Rd by matrix-vector multiplication, x 7→ gx, and in U by an orthogonal
representation, X 7→ g · X. That is: the identity matrix I acts trivially; I · X = X; g ·
(h · X) = (gh) · X; g · X is a linear function of X and a continuous function of g and X;
(g · X, g · Y) = (X, Y), see Adams (1969). In particular, for the case of the temperature
(resp., the velocity of a turbulent fluid, resp., the stress tensor of a deformable body) we have
U = R1 and g · X = X (resp., U = Rd and g · X = gX, resp., U = S2(Rd), the space of
symmetric d × d matrices, and g · X = gXg−1), and so on.
Under the action of an element g ∈ G, the random field { X(x) : x ∈ Rd } becomes the field
{ g · X(gx) : x ∈ Rd }. We call X strictly isotropic if the marginal distributions of the two
above fields are identical.
It is easy to see that the mean value of a strictly isotropic random field satisfies

m(gx) = g · m(x), (1)

while its correlation tensor satisfies

K(gx − gy) = g · K(x − y), (2)

where g acts on the tensor product X ⊗ Y ∈ U ⊗ U by g · (X ⊗ Y) = (g · X) ⊗ (g · Y). We
call such a field just isotropic.

In particular, Section 2 explains the term spectral expansion of the correlation tensor of a
random field and of the field itself. How to find spectral expansions of homogeneous and
isotropic random fields? For the case of U = R1 and g · X = X, this problem was solved by
M. Ĭ. Yadrenko in his PhD thesis in 1961, see also the book Yadrenko (1983) and the paper
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Buldygin, Kozachenko, and Leonenko (1992), where his contribution to the theory of random
fields is described in details. For the case of a turbulent fluid, the problem was partially
solved in Yaglom (1948). In Malyarenko (1985), the author solved the case, when G acts by
a complex irreducible representation. For the fields described in Example 1, the solution has
been obtained by the author in collaboration with M. Ostoja-Starzewski, see Malyarenko and
Ostoja-Starzewski (2019) and the literature cited there. We give an outline of their solution
in Section 3.
Concerning the spectral theory of random fields, we would like to mention the expository
paper Hannan (1965a), reprinted in book form in Hannan (1965b), devoted to the algebraic
approach to the above theory, as well as Jones (1963) about the spectral expansions of isotropic
random fields on sphere and Ogura (1990) about chaos expansion methods for such fields.
In particular, we will see that the structure of the expansion depends on the two finite-
dimensional convex compact sets which we denote by C0 and C1. The above structure is
especially simple if C1 is a simplex. How to describe this condition in terms of the represen-
tation U?
Recall that a linear subspace U1 of U is called invariant if g · x ∈ U1 for all x ∈ U1. A
representation U is irreducible if {0} and U are the two and only invariant subspaces. Let
U i runs over inequivalent irreducible representations of a compact group G, as i runs over
a set I of indices. For every finite-dimensional representation U , there are uniquely defined
nonnegative integers { mi : i ∈ I } of which all but finitely many are zeroes such that U is the
direct sum over I of direct sums miU

i of mi copies of U i. We say that the representation U
has a simple spectrum if mi ≤ 1 for all i ∈ I.
Our new result is as follows.
Theorem 1. The finite-dimensional convex compact set C0 (resp., C1) is a simplex if and
only if U (resp., the restriction of U to the subgroup O(d − 1)) has a simple spectrum.

2. What is the spectral theory of random fields?
Let V be a finite-dimensional complex linear space with inner product (·, ·), let (Λ,L) be a
measurable space, and let ζ be a measure on (Λ,L) with values in the Hilbert space L2(Ω; V )
of all V -valued random variables X with E[∥X∥2] < ∞. Let j be a real structure on V
(an analogue of the complex conjugation on C1). It is a conjugate-linear map j : V → V ,
j(ζv) = ζj(v) for all ζ ∈ C, satisfying in addition j2v = v. We say that a measure Φ defined
on (Λ,L) and taking values in the cone of Hermitian nonnegative-definite operators in V , is
a control measure for ζ, if E[ζ(A) ⊗ j(ζ(B))] = Φ(A ∩ B) for all A, B ∈ L.
The map L → [0, ∞), A 7→ Φ0(A) = tr Φ(A), is a finite measure on (Λ,L). For a coordinate-
free definition of the trace of a linear operator, see (Adams 1969, Definition 3.29). It is
possible to construct a unitary linear operator

L2(Λ, Φ0) → L2(Ω; V ), f(λ) 7→
∫

Λ
f(λ) dζ(λ),

called the stochastic integral with respect to a stochastic orthogonal measure. For the details
of the construction, see (Gikhman and Skorokhod 2004, Chapter 4, § 4).
For simplicity, assume that the stochastic orthogonal measure ζ is centred: E[ζ(A)] = 0 for
all A ∈ L. Let f : T × Λ → C be such a map, that for every t0 ∈ T , the function f(t0, λ) is
square-integrable with respect to Φ0. Consider the V -valued stochastic process X given by

X(t) =
∫

Λ
f(t, λ) dζ(λ). (3)

We say that Equation (3) is the spectral expansion of the stochastic process X. A simple
calculation shows that the correlation tensor of X is

K(s, t) =
∫

Λ
f(s, λ)f(t, λ) dΦ(λ). (4)
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The converse statement holds true under a mild additional assumption.

Theorem 2 (Karhunen (1946)). Assume that the set of finite linear combinations of the
family { f(t0, λ) : t0 ∈ T } is dense in L2(Λ, Φ0). Then (4) implies (3).

Our answer to the question formulated in the title of this section is as follows. The spectral
theory of random fields is the art of representing either a random field in the form (3) or its
correlation tensor in the form (4).
From now on, we assume that the index set is a topological space, and the stochastic process
X is mean-square continuous, that is, the map T → L2(Ω; S), t 7→ X(t), is continuous.
For example, put S = C1, and let X be a centred second-order random field on an index set
T . Pick n points t1, . . . , tn ∈ T , n arbitrary complex numbers ζ1, . . . , ζn, and consider the
random variable Y = ζ1X(t1) + · · · + ζnXn. We have

E[|Y |2] =
n∑

i,j=1
ζiζjK(ti, tj) ≥ 0,

which means that K(s, t) is a complex-valued positive-definite kernel on T .
Conversely, if K(s, t) is a positive-definite kernel on T , then the classical Kolmogorov Exten-
sion Theorem shows that the system of centred Cn-valued normal random vectors

{ X = (X(t1), . . . , X(tn))⊤ }

with correlation matrices K satisfying Kij = B(ti, tj), determines marginal distributions of
a centred Gaussian random field X with correlation function K(s, t). Thus, there is a link
between the spectral theory of random fields and the theory of positive-definite kernels.
The classical Herglotz Theorem of 1911, reprinted in Herglotz (1991), states that a positive-
definite kernel K(m, n) on the set T = Z of integers, that depends only on the difference
m − n, has the form

K(m, n) =
∫
T

exp(i(m − n)λ) dΦ(λ).

A couple of terms follow. The set Z is the time domain, or the real space. The torus T is
the frequency domain, or the Fourier space. The integrand exp(i(m − n)λ) is the character of
the group Z, or the elementary positive-definite kernel. The finite measure Φ defined on the
Borel σ-field B(T), “glues” the elementary positive-definite kernels indexed by λ ∈ T into the
general one.
We observe that the kernel K(m, n) has the form (4) with Λ = T and f(m, λ) = exp(imλ). If
the set of linear combinations of the family { exp(imλ) : m ∈ Z } is dense in the Hilbert space
L2(T, Φ), then the spectral expansion of a centred homogeneous random field on Z takes the
form

X(m) =
∫
T

exp(imλ) dζ(λ), (5)

where ζ is a centred stochastic orthogonal measure on B(T) with control measure Φ.
Remark 1. In numerous books and papers, Equation (5) is written as

X(m) =
∫ 2π

0
exp(imλ) dζ(λ),

which is wrong.

Similarly, the spectral expansion of a centred mean-square continuous homogeneous random
field on Rd has the form

X(x) =
∫
R̂d

exp(i(p, x)) dζ(p).

This time, Rd is the space domain, R̂d is the wave vector domain or the reciprocal space.
Instead of the Herglotz Theorem, we use another classical result due to Bochner (1932).
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What about the case of a centred mean-square continuous complex-valued homogeneous and
isotropic random field on the space domain? The correlation function of such a field must
be a continuous positive-definite kernel K(x, y) on Rd that depends only on the distance
∥x − y∥. Another classical result by Bochner (1941) says that such a kernel is “glued” of
the elementary kernels indexed by λ ≥ 0 with a finite measure Φ defined on the Borel σ-field
B([0, ∞)) as follows:

K(∥x − y∥) = 2(d−2)/2Γ(d/2)
∫ ∞

0

J(n−2)/2(λ∥x − y∥)
(λ∥x − y∥)(d−2)/2 dΦ(λ),

where Γ is the gamma function, and where J(n−2)/2 is the Bessel function of the first kind of
order (n − 2)/2. We observe another link, this time to Special Functions. But how to write
this equation in the form (3)?
A brilliant solution has been found by M. Ĭ. Yadrenko. The set Λ is the non-intersecting
union of countably many (two, if d = 1) copies Λℓm of the set [0, ∞). The index ℓ runs over
nonnegative integers (ℓ ∈ {0, 1}, if d = 1), for the integer index m we have

1 ≤ m ≤ h(ℓ, d) = (2ℓ + d − 2)(ℓ + d − 3)!
(d − 2)!ℓ!

with convention h(0, 1) = h(1, 1) = h(0, 2) = 1. The same finite measure Φ is defined on
every σ-field B(Λℓm). The function f(x, λℓm) : Rd × Λℓm) → R1 has the form

f(x, λℓm) =
√

2d−1Γ(d/2)πd/2Y m
ℓ (θ1, . . . , θd−2, φ)

Jℓ+(d−2)/2(λℓmr)
(λℓmr)(d−2)/2 ,

where (r, θ1, . . . , θd−2, φ) are the spherical coordinates of the point x ∈ Rd, and we use the
notation Y m

ℓ for the real-valued spherical harmonics, borrowed from Olver, Lozier, Boisvert,
and Clark (2010), the current de facto standard in the area of special functions. For the
exceptional case of d = 1, we have S0 = {−1, 1}, Y 1

0 (±1) = 1√
2 , Y 1

1 (±1) = ± 1√
2 , and the

spectral expansion takes the form

X(t) =
∫ ∞

0
cos(λ01|t|) dζ01(λ01) +

∫ ∞

0
sin(λ11|t|) dζ11(λ11),

where ζ01 and ζ11 are centred uncorrelated stochastic orthogonal measures on B([0, ∞)). To
avoid complications, we exclude the exceptional case of d = 1 from consideration.
How this solution has been found? In the following section, we give an outline of solution for
the more sophisticated case considered in Example 1. In particular, for the case of d = 3 and
when O(3) acts in R3 by matrix-vector multiplication, Robertson (1940), using the Invariant
Theory, proved that there are two functions L1(u) and L2(u) such that

Kij(u) = L1(u)δij + L2(u) uiuj

∥u∥2 .

Yaglom (1948) proved that these functions have the form

Kij(u) =
∫ ∞

0

[(
−3 sin(λ∥u∥)

(λ∥u∥)3 + sin(λ∥u∥)
λ∥u∥

+ 3 cos(λ∥u∥)
(λ∥u∥)2

)
uiuj

∥u∥2

+
(sin(λ∥u∥)

(λ∥u∥)3 − cos(λ∥u∥)
(λ∥u∥)2

)
δij

]
dΦ1(λ)

+
∫ ∞

0

[(3 sin(λ∥u∥)
(λ∥u∥)3 − sin(λ∥u∥)

λ∥u∥
− 3 cos(λ∥u∥)

(λ∥u∥)2

)
uiuj

∥u∥2

+
(sin(λ∥u∥)

λ∥u∥
− sin(λ∥u∥)

(λ∥u∥)3 + cos(λ∥u∥)
(λ∥u∥)2

)
δij

]
dΦ2(λ),

(6)

where Φ1 and Φ2 are two finite measures on B([0, ∞)) satisfying the condition Φ1({0}) =
Φ2({0}). How to write this equation in the form (3)?
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Remark 2. Observe that the above equation is not unique. In both integrals, we may multiply
the integrand by an arbitrary positive real number and divide the measure by the same
number. In that case, the condition Φ1({0}) = Φ2({0}) will be replaced by another one.

Finally, we briefly discuss an alternative approach to the calculations of spectral expansions.
Assume that the space U is not one-dimensional but the group O(d) acts trivially: g · x = x,
g ∈ O(d), x ∈ U . Let { ei : 1 ≤ i ≤ dim U } be an orthonormal basis in U . We would like to
construct a U -valued homogeneous and isotropic random field X(x) in such a way, that the
one-dimensional random fields Xi(x) = (X(x), ei) belong to a prescribed class: for example,
the Matérn one with zero mean and correlation function

E[Xi(x)Xi(y)] = 21−νσ2

Γ(ν) (a∥x − y∥)νKν(a∥x − y∥),

where σ2 > 0, a > 0, ν > 0, and Kν(z) is the Bessel function of the third kind of order
ν. It is not straightforward to specify the off-diagonal correlation functions Kij(x, y) =
E[Xi(x)Xj(y)], 1 ≤ i < j ≤ dim U , because the matrix Kij(x, y) must be positive-definite.
See Leonenko and Malyarenko (2017) for different approaches to this problem.

3. A description of homogeneous and isotropic random fields
It follows easily from Equation (1), that the mean value m of a homogeneous and isotropic
random field is an arbitrary vector of the subspace m0U0 ⊂ U , where U0 denotes the one-
dimensional trivial representation of O(d): g · x = x for all g ∈ O(d) and for all x ∈ R1. In
what follows, we consider only centred random fields with m = 0.
To find all correlation tensors satisfying (2), we use the following strategy: to write down the
general form of a correlation tensor of a homogeneous random field, and to find all of them
that are isotropic.
The first part is easy. The tensor product cU = C1 ⊗R U is a complex linear space with the
scalar-vector multiplication given by ζ1(ζ ⊗ x) = (ζ1ζ) ⊗ x, ζ, ζ1 ∈ C. The space U can be
embedded into cU by x 7→ 1 ⊗ x. The inner product in cU is given by (ζ1 ⊗ x, ζ2 ⊗ y) =
ζ1ζ2(x, y). The now cU -valued random field X is still homogeneous. By the result of Cramér
(1940), the correlation tensor of that field has the form

K(x, y) =
∫
R̂d

exp(i(p, x − y)) dF (p), (7)

where F is a measure on B(R̂d) taking values in the cone of Hermitian nonnegative-definite
linear operators in cU .
The space cU has a natural real structure given by jcU (ζ ⊗ x) = ζ ⊗ x. A cU -valued homoge-
neous random field X takes values in U if and only if the random fields X and jcU X have the
same finite-dimensional distributions. In particular, they have the same correlation tensor,
that is

E[X(x) ⊗ jcU X(y)] = E[jcU X(x) ⊗ X(y)], x, y ∈ Rd.

The left hand side of this equation is equal to the right hand side of Equation (7), while the
right hand side is given by

E[jcU X(x) ⊗ X(y)] =
∫
R̂d

exp(−i(p, x − y)) d(jF )(p), (8)

where j is the real structure on the complex linear space HomC(cU, cU) of all C-linear maps
from cU to itself given by

jK = jcU Kj−1
cU , K ∈ HomC(cU, cU).
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The right hand sides of Equations (7) and (8) are equal, which happens if and only if

F (−IA) = (jF )(A), A ∈ B(R̂d).

We proceed to the second part. Equation (2) shows that X is isotropic if and only if

F (gA) = g · F (A), g ∈ O(d), A ∈ B(R̂d).

In particular, the element −I ∈ O(d) always acts trivially in U ⊗ U , so F (−IA) = F (A) =
(jF )(A). That is, F takes values in the cone of symmetric nonnegative-definite linear opera-
tors on U .
It is well-known that the measure F is absolutely continuous with respect to the positive finite
measure F0 = tr F . Let f(p) be the corresponding Radon–Nikodym density. Equation (7)
takes the form

K(x, y) =
∫
R̂d

exp(i(p, x − y))f(p) dF0(p),

and this time, the measure F0 is O(d)-invariant, F0(gA) = F0(A), while the measurable
function f takes values in the convex compact set C of symmetric nonnegative-definite linear
operators on U with unit trace and satisfies

f(gp) = g · f(p), g ∈ O(d), p ∈ R̂d. (9)

The measure F0 is “glued” of O(d)-invariant measures on the centred spheres of radius λ =
∥p∥ ∈ [0, ∞) with the help of an arbitrary finite measure Φ as follows:

K(x, y) =
∫ ∞

0

∫
Sd−1

exp(i(p, x − y))f(p) dΩ dΦ(λ),

where Ω is the Lebesgue measure on the centred unit sphere Sd−1 ⊂ R̂d.
The space U ⊗ U is the direct sum of subspaces mlU

l. In particular, m0 > 0, because the
space m0U0 includes at least the linear subspace generated by the identity operator in U . In
Equation (9), put p = 0. We obtain: f(0) is an arbitrary element of the convex compact set
C0 = C ∩ (m0U0).
Similarly, put p = (0, 0, . . . , 0, λ)⊤ with λ > 0. The set { g ∈ O(d) : gp = p } for each of
these points is the group O(d − 1) embedded into O(d) as

(
O(d−1) 0⊤

0 1

)
. The restriction of the

representation U ⊗U to O(d−1) is the direct sum of subspaces niU
i. Obviously, n0 ≥ m0. The

function f(0, 0, . . . , 0, λ) is an arbitrary measurable map from (0, ∞) to the convex compact
set C1 = C ∩ (n0U0).
It’s time to introduce coordinates. The space U is the direct sum of subspaces piU

i. In each
subspace, we choose a basis {eijk}, where the index i runs over all inequivalent irreducible
representations U i of O(d) with pi > 0, j runs from 1 to pi, k runs from 1 to dim U i. We
assume that in the chosen basis, the matrix entries of the matrices of the representations U i

are known.
The space U ⊗ U has two natural bases. The first one consists of the matrices Kijki′j′k′ =
eijk ⊗ ei′j′k′ . Our task is to calculate the corresponding matrix entries Kijki′j′k′(x, y). The
second one are the matrices K lqs, where the index l runs over all inequivalent irreducible
representations U l of O(d) with ml > 0, q runs from 1 to ml, s runs from 1 to dim U l.
The matrix entries K lqs

ijki′j′k′ are similar to the famous Clebsch–Gordan coefficients used in
quantum mechanics. For their calculation in the case of d = 2, see (Malyarenko and Ostoja-
Starzewski 2019, Section 3.2), the case of d = 3 is analysed in Homeier and Steinborn (1996)
and several subsequent publications.
On the one hand, the matrix f(0, 0, . . . , 0, λ) takes the form

f(0, 0, . . . , 0, λ) =
n0∑

t=1
ft(λ)K ltqtst ,
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where ft(0) = 0 for m0 +1 ≤ t ≤ n0. Here, the tth copy of the representation U0 of the group
O(d − 1) is the irreducible component of the restriction of the qtth copy of the irreducible
representation U lt of O(d) to O(d − 1) living in the linear span of the stth vector of the basis
of U lt .
On the other hand, by the Carathéodory Theorem, for any λ ∈ [0, ∞) there are at most
dim C1 + 1 extreme points of C1, the matrices

Kn(λ) =
n0∑

t=1
cnt(λ)K ltqtst

such that the matrix f(0, 0, . . . , 0, λ) is the convex combination of the above matrices:

f(0, 0, . . . , 0, λ) =
dim C1+1∑

n=1

n0∑
t=1

un(λ)cnt(λ)K ltqtst ,

where un(λ) ≥ 0 and u1(λ) + · · · + udim C1+1(λ) = 1. Moreover, the above representation is
unique if and only if C1 is a simplex.
The action (9) yields

fijki′j′k′(p) =
dim C1+1∑

n=1

n0∑
t=1

dim U lt∑
v=1

U lt
vst

(g)un(λ)cnt(λ)K ltqtv
ijki′j′k′ , (10)

where g is an arbitrary element of O(d) that rotates the point ((0, 0, . . . , 0, λ)⊤ to the point
p. The matrix entries U lt

vst
(g) depend only on the angular spherical coordinates of the point

p and are proportional to the real-valued spherical harmonics

U lt
vst

(g) =
(

2πd/2

Γ(d/2) dim U lt

)1/2

Y v
lt (θ̂1, . . . , θ̂d−2, φ̂), (11)

in particular, dim U lt = h(lt, d).
Combining everything together, we obtain

Kijki′j′k′(x, y) =
(

2πd/2

Γ(d/2)

)1/2 dim C1+1∑
n=1

n0∑
t=1

(h(lt, d))−1/2
h(lt,d)∑
v=1

K ltqtv
ijki′j′k′

×
∫ ∞

0

∫
Sd−1

exp(i(p, x − y))Y v
lt (θ̂1, . . . , θ̂d−2, φ̂)un(λ)cnt(λ) dΩ dΦ(λ),

(12)

where (λ, θ̂1, . . . , θ̂d−2, φ̂) are the spherical coordinates of the point p ∈ R̂d. The inner integral
can be calculated using the original idea by M. Ĭ. Yadrenko. The degenerate form of the
Gegenbauer addition theorem has the form

exp(i(p, x − y)) = 2νΓ(ν)
∞∑

ℓ=0
iℓ(ℓ + ν)Jℓ+ν(∥p∥ · ∥x − y∥)

(∥p∥ · ∥x − y∥)ν
Cν

ℓ (cos θ),

where ν = (d − 2)/2, θ is the angle between the vectors p and x − y, and Cν
ℓ (cos θ) are the

Gegenbauer polynomials. The addition theorem for spherical harmonics has the form

Cν
ℓ (cos θ)
Cν

ℓ (1) = 2πd/2

Γ(d/2)h(ℓ, d)

h(ℓ,d)∑
m=1

Y m
ℓ (θ1, . . . , θd−2, φ)Y m

ℓ (θ̂1, . . . , θ̂d−2, φ̂)

where (θ1, . . . , θd−2, φ) and (θ̂1, . . . , θ̂d−2, φ̂) are the angular spherical coordinates ow two
vectors and θ is the angle between them. The denominator in the left hand side is

C
(d−2)/2
ℓ (1) = (ℓ + d − 3)!

ℓ!(d − 3)! .
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Combining the two addition theorems together, we obtain the expansion of the plane wave in
spherical harmonics as follows:

exp(i(p, x − y)) = (2π)d/2
∞∑

ℓ=0
iℓ Jℓ+ν(∥p∥ · ∥x − y∥)

(∥p∥ · ∥x − y∥)ν

×
h(ℓ,d)∑
m=1

Y m
ℓ (θ1, . . . , θd−2, φ)Y m

ℓ (θ̂1, . . . , θ̂d−2, φ̂).
(13)

We substitute this expansion to (12). After integration over Sd−1, the one and only term
of the expansion, that corresponds to ℓ = lt and m = v, gives a non-zero contribution. We
obtain

Kijki′j′k′(x, y) = 2(d+1)/2π3d/4√
Γ(d/2)

dim C1+1∑
n=1

n0∑
t=1

ilt(h(lt, d))−1/2

×
∫ ∞

0

Jlt+ν(|λ∥x − y∥)
(λ∥x − y∥)ν

cnt(λ)
h(lt,d)∑
v=1

K ltqtv
ijki′j′k′Y

v
lt (θ1, . . . , θd−2, φ) dΦn(λ),

where Φn is a measure on B([0, ∞)) with the Radon–Nikodym density un(λ) with respect to
the measure Φ.
This equation still does not have the form (4). To overcome this difficulty, we write down
the expansion (13) twice. In the first (resp., the second) expansion, we replace x − y with
x (resp., by −y). The left hand side of Equation (13) becomes the product of the two right
hand sides:

exp(i(p, x − y)) = (2π)d
∞∑

ℓ′,ℓ′′=0

h(ℓ′,d)∑
m′=1

h(ℓ′′,d)∑
m′′=1

iℓ′−ℓ′′ Jℓ′+ν(∥p∥ · ∥x∥)
(∥p∥ · ∥x∥)ν

Jℓ′′+ν(∥p∥ · ∥y∥)
(∥p∥ · ∥y∥)ν

× Y m′
ℓ′ (θ1, . . . , θd−2, φ)Y m′

ℓ′ (θ̂1, . . . , θ̂d−2, φ̂)Y m′′
ℓ′′ (θ1, . . . , θd−2, φ)Y m′′

ℓ′′ (θ̂1, . . . , θ̂d−2, φ̂).

Substitute this equation to (12). We observe that the integral∫
Sd−1

Y v
ℓt

(θ̂1, . . . , θ̂d−2, φ̂)Y m′
ℓ′ (θ̂1, . . . , θ̂d−2, φ̂)Y m′′

ℓ′′ (θ̂1, . . . , θ̂d−2, φ̂) dΩ

should be calculated. Equation (11) gives

Y m′
ℓ′ (θ̂1, . . . , θ̂d−2, φ̂)Y m′′

ℓ′′ (θ̂1, . . . , θ̂d−2, φ̂) = Γ(d/2)
√

dim Uℓ′ dim Uℓ′′

2πd/2 U ℓ′
mw′(g)U ℓ′′

m′w′′(g),

where we suppose that the one-dimensional linear subspace of O(d − 1)-invariant vectors in
Uℓ′ (resp., Uℓ′′) is labelled by the index w′ (resp., w′′). The product of matrix entries in the
right hand side has the form

U ℓ′
m′w′(g)U ℓ′′

m′′w′′(g) = cℓ′ℓ′′vst
m′w′m′′w′′lt

U lt
vst

(g) + · · ·

= cℓ′ℓ′′vst
m′w′m′′w′′lt

(
2πd/2

Γ(d/2) dim Ult

)1/2

Y v
lt (θ̂1, . . . , θ̂d−2, φ̂) + · · · ,

where the dots denote the terms that do not contribute to the integral. Finally, we obtain∫
Sd−1

Y v
lt (θ̂1, . . . , θ̂d−2, φ̂)Y m′

ℓ′ (θ̂1, . . . , θ̂d−2, φ̂)Y m′′
ℓ′′ (θ̂1, . . . , θ̂d−2, φ̂) dΩ

=
(

Γ(d/2) dim Uℓ′ dim Uℓ′′

2πd/2 dim Ult

)1/2

cℓ′ℓ′′vst
m′w′m′′w′′lt

.
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Combining everything together again, we obtain

Kijki′j′k′(x, y) = (2π)d
dim C1+1∑

n=1

n0∑
t=1

∞∑
ℓ′,ℓ′′=0

iℓ′−ℓ′′√
h(ℓ′, d)h(ℓ′′, d)
h(lt, d)

h(ℓ′,d)∑
m′=1

h(ℓ′′,d)∑
m′′=1

×
∫ ∞

0

Jℓ′+ν(λ∥x∥)
(λ∥x∥)ν

Jℓ′′+ν(λ∥y∥)
(λ∥y∥)ν

cnt(λ)
h(lt,d)∑
v=1

cℓ′ℓ′′vst
m′w′m′′w′′lt

K ltqtv
ijki′j′k′ dΦn(λ)

× Y m′
ℓ′ (θ′

1, . . . , θ′
d−2, φ′)Y m′′

ℓ′′ (θ′′
1 , . . . , θ′′

d−2, φ′′),

where (θ′
1, . . . , θ′

d−2, φ′) (resp., (θ′′
1 , . . . , θ′′

d−2, φ′′)) are the angular spherical coordinates of the
point x (resp., y).
The random field X(r, θ1, . . . , θd−2, φ) takes the form

Xijk(r, θ1, . . . , θd−2, φ) = (2π)d/2
dim C1+1∑

n′=1

n0∑
t′=1

∞∑
ℓ′=0

h(ℓ′,d)∑
m′=1

∫ ∞

0

Jℓ′+ν(λr)
(λr)ν

√
cn′t′(λ) dζm′

ijkn′t′ℓ′(λ)

× Y m′
ℓ′ (θ1, . . . , θd−2, φ),

where ζm′
ijkℓ′ are centered orthogonal stochastic measures on B([0, ∞)) satisfying the condition

E[ζm′
ijkn′t′ℓ′(λ)(A)ζm′′

ijkn′′t′′ℓ′′(λ)(B)] = δnn′δt′t′′
iℓ′−ℓ′′√

h(ℓ′, d)h(ℓ′′, d)
h(lt, d)

×
h(lt,d)∑
v=1

cℓ′ℓ′′vst
m′w′m′′w′′lt

K ltqtv
ijki′j′k′Φn(A ∩ B)

for all A, B ∈ B([0, ∞)).

Example 2. Put d = 3. The set of real irreducible representations of the group O(3) is
{ U ℓg, U ℓu : ℓ ≥ 0 }. The indices g and u are the first letter of German words gerade (even)
and ungerade (odd). In even (resp., odd) representations, we have (−g) · x = g · x (resp.,
(−g) · x = −g · x) for all g ∈ O(3). We put U = U1u, which corresponds to the case, when
O(3) acts in Uu

1 = R3 by matrix-vector multiplication. In the basis {eijk} of the space U1u,
the indices i and j take only one value, and we omit them.
The space U1u ⊗ U1u is the direct sum of three irreducible components. The component U0g

(resp., U1g, resp., U2g) acts in the linear space generated by the matrix K00 = 1√
3I (resp., of

skew-symmetric matrices, resp., of symmetric traceless matrices). We omit the index q in the
right hand side of Equation (10), because ml = 1 for all l. Following quantum-mechanical
conventions, we enumerate the basis vectors of the spaces U ℓg and U ℓu by integers running
from −ℓ to ℓ. The convex compact set C0 is a singleton: C0 = {1

3I}.
The restriction of the representation U0g ⊕ U1g ⊕ U2g to the subgroup O(2) contains two
copies of its trivial representation U0+. The first one acts in U0g, the second in the linear
subspace generated by the matrix K20 = − 1√

6e−1 ⊗e−1 +
√

2√
3e0 ⊗e0 − 1√

6e1 ⊗e1. The convex
compact set C1 is the closed interval with extreme points

K1 = e0 ⊗ e0 = 1√
3

K00 +
√

2√
3

K20, K2 = 1
2(e−1 ⊗ e−1 + e1 ⊗ e1) = 1√

3
K00 − 1√

6
K20.

Equations (10) and (11) become

fkk′(p) = 2
√

π

1
3δkk′Y 0

0 (p) +
√

2√
15

2∑
v=−2

K2v
kk′Y v

2 (p)

u1(∥p∥)

+

1
3δkk′Y 0

0 (p) − 1√
30

2∑
v=−2

K2v
kk′Y v

2 (p)

u2(∥p∥)

 ,
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where the matrices K2v have the form

K2 −2 = 1√
2

(e−1 ⊗ e1 + e1 ⊗ e−1), K2 −1 = 1√
2

(e−1 ⊗ e0 + e0 ⊗ e−1),

K21 = 1√
2

(e0 ⊗ e1 + e1 ⊗ e0), K22 = 1√
2

(e−1 ⊗ e−1 − e1 ⊗ e1),

and the spherical harmonics are

Y 0
0 (p) = 1

2
√

π
, Y −2

2 (p) =
√

15
2
√

π

p−1p1
∥p∥2 ,

Y −1
2 (p) =

√
15

2
√

π

p0p1
∥p∥2 , Y 0

2 (p) =
√

5
4
√

π

(
3p2

0
∥p∥2 − 1

)
,

Y 1
2 (p) =

√
15

2
√

π

p−1p0
∥p∥2 , Y 2

2 (p) =
√

15
4
√

π

p2
−1 − p2

1
∥p∥2 .

We substitute the plane wave expansion (13) with d = 3 to the equation

Kkk′(x, y) =
∫ ∞

0

∫
S2

exp(i(p, x − y))fkk′(p) dΩ dΦ(λ)

and obtain

Kkk′(u) = 4
√

2π2
2∑

n=1

∫ ∞

0
f̃n

kk′(λ, u) dΦn(λ),

where

f̃1
kk′(λ, u) =

J1/2(λ∥u∥)
3
√

λ∥u∥
δkk′Y 0

0 (θ, φ) −
√

2J5/2(λ∥u∥)√
15λ∥u∥

2∑
v=−2

K2v
kk′Y v

2 (θ, φ),

f̃2
kk′(λ, u) =

J1/2(λ∥u∥)
3
√

λ∥u∥
δkk′Y 0

0 (θ, φ) +
J5/2(λ∥u∥)√

30λ∥u∥

2∑
v=−2

K2v
kk′Y v

2 (θ, φ).

Observe that 1
3I = 1

3K1 + 2
3K2. It follows that Φ2({0}) = 2Φ1({0}).

Using the values of the matrix entries K2v
kk′ and spherical harmonics Y v

2 , we obtain

2∑
v=−2

K2v
kk′Y v

2 (u) = −
√

5
2
√

6π
δkk′ +

√
15

2
√

2π

ukuk′

∥u∥2 ,

The values

J1/2(x) =
√

2√
π

sin x√
x

, J5/2(x) = 3
√

2√
π

sin x

x2√
x

−
√

2√
π

sin x√
x

− 3
√

2√
π

cos x

x
√

x

give

f̃1
kk′(λ, u) = 1

π
√

2

[(
−3 sin(λ∥u∥)

(λ∥u∥)3 + sin(λ∥u∥)
λ∥u∥

+ 3 cos(λ∥u∥)
(λ∥u∥)2

)
ukuk′

∥u∥2

+
(sin(λ∥u∥)

(λ∥u∥)3 − cos(λ∥u∥)
(λ∥u∥)2

)
δkk′

]
,

f̃2
kk′(λ, u) = 1

π
√

2

[(
−3 sin(λ∥u∥)

2(λ∥u∥)3 − sin(λ∥u∥)
2λ∥u∥

− 3 cos(λ∥u∥)
2(λ∥u∥)2

)
ukuk′

∥u∥2

+
(sin(λ∥u∥)

2(λ∥u∥) − sin(λ∥u∥)
2(λ∥u∥)3 + cos(λ∥u∥)

2(λ∥u∥)2

)
δkk′

]
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The correlation tensor takes the form

Kkk′(u) = 4π

∫ ∞

0

[(
−3 sin(λ∥u∥)

(λ∥u∥)3 + sin(λ∥u∥)
λ∥u∥

+ 3 cos(λ∥u∥)
(λ∥u∥)2

)
ukuk′

∥u∥2

+
(sin(λ∥u∥)

(λ∥u∥)3 − cos(λ∥u∥)
(λ∥u∥)2

)
δkk′

]
dΦ1(λ)

+ 2π

∫ ∞

0

[(3 sin(λ∥u∥)
(λ∥u∥)3 − sin(λ∥u∥)

λ∥u∥
− 3 cos(λ∥u∥)

(λ∥u∥)2

)
ukuk′

∥u∥2

+
(sin(λ∥u∥)

λ∥u∥
− sin(λ∥u∥)

(λ∥u∥)3 + cos(λ∥u∥)
(λ∥u∥)2

)
δkk′

]
dΦ2(λ).

If we absorb the term 4π (resp., 2π) to the measure Φ1 (resp., Φ2), then we arrive at Equa-
tion (6). Our condition Φ2({0}) = 2Φ1({0}) becomes Φ2({0}) = Φ1({0}), as it should be.
To obtain the spectral expansion of the field itself, we use the expansion (13) instead and
obtain

Kkk′(x, y) = (2π)3
∞∑

ℓ′,ℓ′′=0

ℓ′∑
m′=−ℓ′

ℓ′′∑
m′′=−ℓ′′

iℓ′−ℓ′′
∫ ∞

0

Jℓ′+1/2(λ∥x∥)√
λ∥x∥

Jℓ′′+1/2(λ∥y∥)√
λ∥y∥

dΦ1(λ)

×

1
3δkk′ +

√
2(2ℓ′ + 1)(2ℓ′′ + 1)

5
√

3

2∑
v=−2

cℓ′ℓ′′v
m′m′′2K2v

kk′

Y ℓ′
m′(θ′, φ′)Y m′′

ℓ′′ (θ′′, φ′′)

+ (2π)3
∞∑

ℓ′,ℓ′′=0

ℓ′∑
m′=−ℓ′

ℓ′′∑
m′′=−ℓ′′

iℓ′−ℓ′′
∫ ∞

0

Jℓ′+1/2(λ∥x∥)√
λ∥x∥

Jℓ′′+1/2(λ∥y∥)√
λ∥y∥

dΦ2(λ)

×

1
3δkk′ −

√
(2ℓ′ + 1)(2ℓ′′ + 1)

5
√

6

2∑
v=−2

cℓ′ℓ′′v
m′m′′2K2v

kk′

Y ℓ′
m′(θ′, φ′)Y m′′

ℓ′′ (θ′′, φ′′).

The field takes the form

Xk(r, θ, φ) = (2π)3/2
2∑

n=1

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓ
∫ ∞

0

Jℓ+1/2(λr)
√

λr
dζkℓmn(λ)Y ℓ

m(θ, φ),

where ζkℓmn are centred orthogonal stochastic measures on B([0, ∞)) satisfying the condition

E[ζkℓ′m′n′(A)ζk′ℓ′′m′′n′′(B)] = δn′n′′M ℓ′ℓ′′m′m′′n
kk′ Φn′(A ∩ B),

and where

M ℓ′ℓ′′m′m′′1
kk′ = 1

3δkk′ +
√

2(2ℓ′ + 1)(2ℓ′′ + 1)
5
√

3

2∑
v=−2

cℓ′ℓ′′v
m′m′′2K2v

kk′ ,

M ℓ′ℓ′′m′m′′2
kk′ = 1

3δkk′ −
√

(2ℓ′ + 1)(2ℓ′′ + 1)
5
√

6

2∑
v=−2

cℓ′ℓ′′v
m′m′′2K2v

kk′ .

4. A new result
In this Section, we prove Theorem 1.

Proof. We consider only the case of C1. The case of C0 can be proved similarly and easily.
Assume that the restriction of the representation U to O(d − 1) has a simple spectrum
U1 ⊕ · · · ⊕ Uk. Let { eij : 1 ≤ j ≤ dim U i } be a basis of the linear space U i, 1 ≤ i ≤ k.
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The tensor product U i ⊗ U l contains the trivial irreducible representation of O(d − 1) if and
only if ℓ = i. The above representation lives in the linear space generated by the matrix

Ki = 1
dim U i

(ei1 ⊗ ei1 + · · · + ei dim U i ⊗ ei dim U i).

These matrices are the k extreme points of the (k − 1)-dimensional simplex C1.
To prove the converse statement, assume that the restriction of the representation U to
O(d−1) has a spectrum m1U1 ⊕· · ·⊕mkUk. Let { eilj : 1 ≤ j ≤ dim U i } be a basis of the lth
copy of the linear space U i, 1 ≤ i ≤ k, 1 ≤ l ≤ mi. The ith connected component of the set
of extreme points of C1 consists of the symmetric nonnegative-definite matrices of the form

K =
mi∑

l′,l′′=1
al′l′′(eil′1 ⊗ eil′′1 + · · · + eil′ dim U i ⊗ eil′′ dim U i)

with unit trace. If there is i with m1 ≥ 2, then the above component is not a singleton and
C1 is not a simplex.

5. Concluding remarks
The spectral theory of random fields is under further development. We mention the theory of
random cross-sections of homogeneous vector bundles, see Malyarenko (2011, 2024), spectral
theory of fractional random fields, see Broadbridge, Nanayakkara, and Olenko (2022), Leo-
nenko, Olenko, and Vaz (2024), random fields with singular spectrum, see Leonenko (1999),
random fields on a sphere, see Marinucci and Peccati (2011). There are many other directions
and open problems that were not mentioned here.
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