
AJS

Austrian Journal of Statistics
2025, Volume 54, 1–16.
http://www.ajs.or.at/
doi:10.17713/ajs.v54i1.1953

Estimation of Concentrations Parameters in the
Model of Mixture with Varying Concentrations

Rostyslav Maiboroda
Taras Shevchenko National

University of Kyiv

Vitaliy Miroshnychenko
Taras Shevchenko National

University of Kyiv

Olena Sugakova
Taras Shevchenko National

University of Kyiv

Abstract

Model of Mixture with Varying Concentrations (MVC) is a generalization of the finite
mixture model (FMM) at which the mixing probabilities (concentrations of components
in the mixture) vary from observation to observation. In this paper we assume that the
components’ distributions are completely unknown, while the concentrations are known
up to some unknown euclidean parameter. Two approaches are considered to the semi-
parametric estimation of this parameter in the case of two-component mixture. The Least
Squares (LS) estimator is based on fitting the distribution functions of the observations.
The Empirical Maximum Likelihood estimator (EML) utilizes some empirical version of
the likelihood function. Consistency of the LS estimator is demonstrated. A fast algo-
rithm for the LS estimator calculation is presented. EML and LS estimators are compared
via simulations. Both EML and LS estimators show sufficiently good performance in all
the experiments. The LS estimator performed better then the EML one for components
with different variance. The EML estimator outperformed the LS one for nongaussian
components with asymmetric tails.

Keywords: mixture with varying concentrations, semiparametric estimation, empirical maxi-
mum likelihood, least squares.

1. Introduction

Finite Mixture Models (FMM) are widely used to describe distribution of heterogeneous sta-
tistical data. An introduction to the theory and statistical applications of FMM can be found
in (McLachlan and Peel (2000),McNicholas (2017)). Computational aspects of FMM statis-
tical analysis are considerd in Celeux, Fruhwirth-Schnatter, and Robert (2018). Applications
to biological and medical data statistics are presented in Schlattmann (2009). In classical
FMMs the mixing probabilities (concentrations of components in the mixture) are assumed
to be the same for all observations. We consider more flexible model of Mixture with Vary-
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ing Concentrations (MVC) where the concentrations of components vary from observation
to observation. A brief introduction to MVC with an application to genetics statistical data
see in Maiboroda and Sugakova (2012). Some multivariate MVC models with an application
to sociological data are considered in Maiboroda, Miroshnichenko, and Sugakova (2022). An
interesting example of MVC application to a neuroscience data analysis see in Pidnebesna,
Fajnerová, Horáček, and Hlinka (2023). Some statistical tests for MVC models were discussed
in Autin and Pouet (2011). In all these papers a nonparametric approach is considered when
the distributions of components are completely unknown. A parametric case is discussed in
Grün and Leisch (2006).
In theoretical considerations the components’ concentrations in MVC are usually assumed to
be known. In many applications it is more realistic to assume some parametric model for
these concentrations. A Least Squares (LS) approach to estimation of concentrations’ param-
eters when the components’ distributions are completely unknown is developed in Maiboroda
(2002).
In this paper we consider an alternative approach to the estimation of concentrations’ param-
eters based on a version of smoothed Empirical Maximum Likelihood (EML) technique, Qin
and Lawless (1994), Owen (2001). Performance MVC and EML estimators is compared via
simulations.
The rest of paper is organized as follows. We consider a motivating example from medical
statistics in Section 2. Construction of LS estimator for concentrations’ parameters, its con-
sistency and algorithmic implementation are considered in Section 3. The EML estimator is
introduced in Section 4. Results of simulations are presented in Section 5. Section 6 contains
concluding remarks. Technical proofs are placed in the Appendix.

2. Motivating example
Let there be a medical statistics data on patients with a disease caused by some virus. We
observe a result of some biochemical blood test for these patients which is considered as a
random variable ξ ∈ R. The value of ξ for the j-th patient is ξj , j = 1, . . . , n.
It is known that the disease can be caused by one of the two virus strains (variants): Strain 1
and Strain 2. Let sj be the strain which caused the disease of the j-th patient. We suppose
that the distribution of ξj is different for different strains sj . Let Fi be the CDF of ξj for
sj = i, i.e.,

Fi(x) = P{ξj < x | sj = i}, i = 1, 2.

The true values of sj are not observed. We may only know the probabilities pi
j = P{sj = i},

j = 1, . . . , n. Roughly speaking, the probability pi
j can be interpreted as the concentration

of the i-th strain in the population at the time when the j-th patient was infected. (If we
assume that both strains have the same infection rate).
Surely, p2

j = 1 − p1
j .

Then the unconditional distribution of ξj for unknown sj is a mixture of the distributions Fi:

P{ξj < x} = Pj(x) = p1
jF1(x) + p2

jF2(x). (1)

This is the model of two-component mixture with varying concentrations (MVC).
If one knows p1

j , j = 1, . . . , n, then it is possible to estimate Fi by ξ1,. . . , ξn with weighted
empirical CDFs Maiboroda and Sugakova (2012). (Observe that when no assumptions are
made on Fi the model (1) is identifiable only if p1

j are not constants. On the identifiability of
(1) see Maiboroda and Sugakova (2012)).
In this presentation we consider a more difficult case when pi

j are known up to some unknown
parameter ϑ ∈ Θ:

p1
j = p1

j (ϑ).
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For example, one may have some theoretical model of the epidemic dynamics which pre-
dicts the concentration of Strain1 at the time moment t: p(t, ϑ), where ϑ are some model
parameters. Then, if the j-th observed patient was infected at time tj ,

p1
j = p(tj , ϑ).

The Logistic model is, maybe, the simplest example of such models in which one the first
strain replaces the other one in the population of deseased persons:

p(t, ϑ) = 1
1 + exp

(
t−m

s

) .
Here the unknown parameter is ϑ = (m, s), where m ∈ R is the shift and s > 0 is the scale of
the logistic transform.
If the changes in concentrations have seasonal pattern one may consider the Harmonic model

p(t, ϑ) = 1
2

(
1 + sin

(
2π

t − m

T

))
, (2)

where ϑ = (m, s), m ∈ [0, T/2] is the shift, T > 0 is the period of the harmonic wave. Note
that the shift m = T/2 leads to the model (1) equivalent to the model m = 0 with the
interchange of the first and second components.

3. Least squares estimator

3.1. Construction of estimator

So, we consider the data (ξ1, . . . , ξn), such that ξj are independent random variables with the
CDFs

P{ξj < x} = Pj(x) = pj(ϑ)F1(x) + (1 − pj(ϑ))F2(x). (3)

The CDFs Fi of components are different but completely unknown. The concentrations pj(ϑ)
of the first component are known up to the unknown parameter ϑ ∈ Θ. (In the above examples
Θ ⊆ Rd, but in general, it can be any parametric set). Our aim is to construct an estimator
for ϑ by these data. It will be the maximizer of some empirical criterion R̂. We start by
introduction a theoretical LS criterion R to which R̂ is an estimator.
Choose any measure π on R. Let us define

Q(α; G1, G2) = 1
n

n∑
j=1

∫
(Pj(x) − pj(α)G1(x) − (1 − pj(α))G2(x))2π(dx).

Here α ∈ Θ is a possible value of ϑ, G1 and G2 are any functions considered as candidates on
the role of F1 and F2 (we do not assume here that Gi are proper distribution functions).
In what follows we use angle brackets ⟨�⟩n to denote the averaging by j = 1, . . . , n, say,

⟨p�(α)p�(ϑ)⟩n = 1
n

n∑
j=1

pj(α)pj(ϑ)

and so on.
So

Q(α, G1, G2) =
〈∫

(P�(x) − p�(α)G1(x) − (1 − p�(α))G2(x))2π(dx)
〉

n
.

Since Q(α, G1, G2) ≥ 0 and Q(ϑ, F1, F2) = 0, it is obvious that

ϑ ∈ argminα min
G1,G2

Q(α, G1, G2).
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There can be some minimizers of this function other then ϑ. Below we consider conditions
which exclude such cases.
Let

Q(α) = min
G1,G2

Q(α; G1, G2),

where min is taken over all possible functions, and

uj(α) = pj(α) − ⟨p�(α)⟩n√
∆n(α)

,

where
∆n(α) = ⟨(p�(α))2⟩n − (⟨p�(α)⟩n)2.

I.e. u�(α) is a centered, normalized version of p�(α).
Then a simple algebra yields

Q(α) =
∫ 〈

(P�(x) − ⟨P�(x)⟩n)2
〉

n
π(dx) −

∫
(⟨P�(x)u�(α)⟩n)2π(dx).

Since
∫ 〈

(P�(x) − ⟨P�(x)⟩n)2〉
n π(dx) does not depend on α, we obtain

ϑ = argminα Q(α) = argmaxα Rn(α),

where
Rn(α) =

∫
(⟨P�(x)u�(α)⟩n)2π(dx).

This is our theoretical criterion.
Observe that

⟨P�(x)u�(α)⟩n = E 1
n

n∑
j=1

uj(α)1{ξj < x}.

So, we take

R̂n(α) =
∫  1

n

n∑
j=1

uj(α)1{ξj < x}

2

π(dx) (4)

as our empirical criterion and define the least squares (LS) estimator ϑ̂LS
n for ϑ as a statistics

such that
R̂n(ϑ̂LS

n ) = sup
α∈Θ

R̂n(α).

3.2. Consistency

Here we derive conditions under which the LS estimator is consistent. For two-dimensional
MVC models they are less restrictive then the conditions presented in Maiboroda (2002).
In the asymptotic analysis (n → ∞) we consider concentrations which can be different for
different n

p1
j = p1

j;n(ϑ).

So we consider a sequence of samples (ξ1;n, . . . , ξn;n), n = 1, 2, . . . The observations ξj;n are
independent for fixed n. We do not assume any specific relation of observations in samples
of different sizes. I.e., there can be ξj;n1 = ξj;n2 for some j, or they can be independent. In
the model of mixing probabilities of the form p1

j = p(tj ; ϑ) the time moments tj = tj;n are
considered as nonrandom real numbers. There are no specific constrains on the behavior of
tj;n for different n.
In what follows we drop the subscript ; n to avoid notation complexities.
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Lemma. Assume that
(1) π(R) < ∞,
(2) there exists ∆− > 0 such that for all n ∈ N and all α ∈ Θ

∆n(α) = ⟨(p�(α))2⟩n − (⟨p�(α)⟩n)2 ≥ ∆−,

(3) there exists V < ∞ such that for all n ∈ N

sup
α∈Θ

n−1∑
j=1

|p1
j+1(α) − p1

j (α)| < V.

Then there exists a random variable Λ < ∞, such that

sup
α∈Θ

|R̂n(α) − Rn(α)| ≤ Λ

√
log n

n
.

(See Appendix for proof).
Let us see, when Rn(α) possess a unique maximum at α = ϑ.
Observe that

Rn(α) =
∫

(⟨P�(x)u�(α)⟩n)2π(dx)

= ⟨p�(ϑ)u�(α)⟩2
n

∫
(F1(x) − F2(x))2π(dx).

We will suppose that
∫

(F1(x) − F2(x))2π(dx) > 0.
Since

⟨p�(ϑ)u�(α)⟩n = ⟨u�(ϑ)u�(α)⟩n/∆n(ϑ)

and ⟨u�(ϑ)⟩2
n = 1, Rn(α) attains the unique maiximum at ϑ iff

|rn(α, ϑ)| < 1

for all α ̸= ϑ, where

rn(α, ϑ) = ⟨u�(ϑ)u�(α)⟩n = ⟨(p�(ϑ) − ⟨p�(ϑ)⟩n)(p�(α) − ⟨p�(α)⟩n)⟩n√
∆n(α)∆n(ϑ)

can be considered as a “sample correlation” between the hypothetical first component con-
centrations for the unknown parameter values α and ϑ.
To obtain an asymptotic result (consistency) the assumption |rn(α, ϑ)| < 1 must be strength-
ened.
Combining this observation with the Lemma we obtain

Theorem. Assume that Θ is compact and the following conditions hold.
(1) π(R) < ∞,
(2) There exists ∆− > 0 such that for all n ∈ N and all α ∈ Θ

∆n(α) = ⟨(p�(α))2⟩n − (⟨p�(α)⟩n)2 ≥ ∆−,

(3) there exists V < ∞ such that for all n ∈ N

sup
α∈Θ

n−1∑
j=1

|p1
j+1(α) − p1

j (α)| < V,

(4)
∫

(F1(x) − F2(x))2π(dx) > 0,
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(5) for all δ > 0,

lim sup
n→∞

sup
α: |α−ϑ|>δ

|rn(α, ϑ)| < 1.

Then ϑ̂LS
n → ϑ in probability as n → ∞.

3.3. Algorithmic issues

Fast calculation algorithm
Recall that the estimator ϑ̂LS

n is the maximizer of

R̂n(α) =
∫  1

n

n∑
j=1

uj(α)1{ξj < x}

2

π(dx)

= 1
n2

n∑
i,j=1

ui(α)uj(α)
∫

1{ξi < x}
∫

1{ξj < x}π(dx)

= 1
n2

n∑
i,j=1

ui(α)uj(α)π̄(max(ξi, ξj)),

where
π̄(z) =

∫
1{z < x}π(dx) = π{x : x > z}.

Direct calculation by this formula needs ∼ Cn2 operations. A simple reordering of terms
allows us to reduce this calculation complexity to ∼ Cn log(n).
Let ξ[1] ≤ ξ[2] ≤ · · · ≤ ξ[n] be the order statistics of ξj , j = 1, . . . , n, u[j](α), j = 1, . . . , n are
the weights uj(α) reordered together with ξ[j]. Then

R̂n(α) = 1
n2

n∑
i,j=1

u[i](α)u[j](α)π̄(max(ξ[i], ξ[j])).

Observe that
π(max(ξ[i], ξ[j])) = π[j] = π(ξ[j]) if i ≤ j.

So

R̂n(α) = 1
n2

2
n∑

j=2
u[j](α)Ujπ[j] +

n∑
j=1

(u[j](α))2π[j]

 , (5)

where Ui =
∑i−1

j=1 u[j](α).

To calculate R̂n(α) by (5) one needs to sort the sample ξj , j = 1, . . . , n in the ascending order
(∼ Cn log(n) operations), calculate Ui recusively for i = 1, . . . , n (∼ Cn operations), and
apply (5) (∼ Cn operations).
When some numeric procedure is used to find maximum of R̂n(α), one needs to calculate this
function many times at different points α. Note that the reordering of ξj and calculation of π[j]
can be done once at the beginning of this procedure and the results can be used in calculation
of R̂n(α) for all needed α. This makes the calculation of ϑ̂n a rather fast procedure.

Choice of integration measure
How to choose the integration measure π in our empirical criterion R̂(α)? Recall that the
theoretical criterion, which we would like to maximize is

Rn(α) = ⟨p�(ϑ)u�(α)⟩2
n

∫
(F1(x) − F2(x))2π(dx).
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So we need
∫

(F1(x) − F2(x))2π(dx) > 0 to obtain a consistent estimate. But F1 and F2
are unknown. So it is prudent to take π with support on all R. Then any difference of the
components’ distributions will be visible by our criterion. On the other hand, if most weight
of π is placed in the domain where no ξj is observed the estimate should be inefficient.
In our simulation experiments we took Gaussian π with the mean ξ̄ = 1

n

∑n
j=1 ξj and the

variance S2(ξ) = 1
n

∑n
j=1(ξj − ξ̄)2. The results show that with this choice of π the estimator

performs satisfactory in simple cases, when the components’ distributions differ significantly.

4. Smoothed empirical likelihood estimator
LS estimator uses difference between CDFs of components. It is well known that estimators
based on densities usually are more efficient then the ones based on CDFs. This observation is
utilized in the Maximum Likelihood (ML) estimation technique which leads to asymptotically
efficient estimators in many parametric problems. There exists also a nonparametric Maxi-
mum Empirical Likelihood (MEL) estimation technique (see Owen (2001),Qin and Lawless
(1994),Vexler and Boca Raton (2018)).
Application of standard ML to parametric models usually doesn’t lead to consistent estima-
tors. This is the case, e.g., for Gaussian mixtures when the means and variances of components
are unknown. In nonparametric models direct application of MEL also is not possible. So,
to derive an estimator for ϑ in the model (3) we apply a combined technique. To derive an
empirical version of likelihood we estimate the PDFs fi of the mixture components by kernel
estimators f̂i;n and use the estimators f̂i;n instead of the true fi in the likelihood.
So, assume that there exist PDFs fi(x) of distributions Fi, i = 1, 2. Then the PDF of ξj is

pj(ϑ)f1(x) + (1 − pj(ϑ))f2(x)

Then, if fi are known, the log-likelihood for ϑ estimation is

l(α) =
n∑

j=1
log(pj(α)f1(ξj) + (1 − pj(α))f2(ξj)). (6)

In this (parametric) case the maximum likelihood estimator for ϑ is defined as

ϑ̂P ML
n = argmaxα∈Θ l(α). (7)

Conditions of asymptotic optimality of this estimator can be obtained by usual parametric
statistics methods (e.g. Section III.4 in Ibragimov and Has’minskii (1981)).
In our case the PDFs fi are unknown. So we will estimate them under the assumption that
the unknown ϑ is equal to some fixed value α and then replace fi in (6) by these estimators.
Weighted kernel density estimators are used for this purpose of the form:

f̂i;n(x; α) = 1
nh

n∑
j=1

ai
j(α)K

(
x − ξj

h

)
, (8)

where K is a kernel, i.e. some PDF, h is a bandwidth, and ai
j(α) are weights separating the

ith component from other mixture components.
We consider the weights of the form

ai
j(α) =

2∑
k=1

γi
k(α)pk

j (α), (9)

where p1
j (α) = pj(α), p2

j (α) = 1 − pj(α) are the concentrations of the first and second
components which correspond to the unknown parameter value α.
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The coefficients γi
k(α) are taken to satisfy the condition:

⟨ai
�(α)pk

� (α)⟩n =
{

1 if k = i

0 if k ̸= i
, for i, k = 1, 2.

A straightforward computation provides

γ1
1(α) = ⟨p2

� (α)p2
� (α)⟩n/∆n(α), γ2

1(α) = ⟨p1
� (α)p2

� (α)⟩n/∆n(α),
γ1

2(α) = ⟨p1
� (α)p2

� (α)⟩n/∆n(α), γ2
2(α) = −⟨p1

� (α)p1
� (α)⟩n/∆n(α).

(10)

The weights ai
j given by (9) with (10) are called the minimax weights. Their properties are

described in Maiboroda and Sugakova (2012).
It is shown in Sugakova (1999) that if α = ϑ is the true value of the unknown parameter,
then, under suitable assumptions, the estimators f̂i;n(x, ϑ) converge to the true values of
fi(x), i = 1, 2. The optimal convergence rate of the estimator is attained if

h = hi;n =
(

Ai
nd2

nD4φi

)1/5

, (11)

where Ai
n = ⟨(ai)2⟩n, d =

∫
K2(z)dz, D2 =

∫
z2K(z)dz,

φi =
∫ (

∂2

∂x2 fi(x; ϑ)
)2

dx

(see Theorem 3 in Sugakova (1999) for details).
Since φi is unknown it should be estimated/approximated to obtain a feasible bandwidth
selection rule. We adopt a simple approximation similar to the Silverman’s rule of thumb. In
this approximation φi for the unknown fi is replaced by φi of normal density with the same
variance as of fi. This variance is estimated by the weighted sample variance

S2
i (α) = 1

n

n∑
j=1

ai±
j (α)(ξj − ξ̄i(α)),

where
ξ̄i(α) = 1

n

n∑
j=1

ai±
j (α)ξj .

Here (ai±
j (α), j = 1, . . . , n) is the vector of weights obtained by correction of (ai

j(α), j =
1, . . . , n). The correction allows to make all the weights non-negative (see Maiboroda and
Kubaichuk (2005)).
So we obtain the following modified Silverman’s rule of thumb

ĥi;n(α) =
(

8
√

πd2

3D2n
⟨(ai(α))2⟩n

)1/5

Si;n(α). (12)

In what follows we use h = ĥi;n(α) in f̂i;n(x; α) defined by (8).
If α ̸= ϑ, f̂i;n(x; α) converges to some linear combination zf1(x) + (1 − z)f2(x) of the com-
ponents’ PDFs. Note that z here not necessarily belongs to [0, 1], so this limit can attain
negative values for some x. So, to construct an empirical version of the loglikelihood (6) we
truncate the obtained density estimator away of zero by some threshold t > 0. The resulting
empirical quasi-loglikelihood is:

l̂n(α) =
n∑

j=1
log(max(t, pj(α)f̂1;n(ξj ; α) + (1 − pj(α))f̂2;n(ξj ; α))). (13)
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Then the empirical quasi-likelihood estimator for ϑ is defined by

ϑ̂EML
n = argmaxα∈Θ l̂n(α). (14)

5. Simulation results
We performed a small simulation study to compare the performance of the least squares
estimator ϑ̂LS

n and the empirical quasi-likelihood estimator ϑ̂EML
n . In these comparisons we

consider also the parametric estimator ϑ̂P ML
n defined in (7). This estimator utilizes much

more prior information on the data distribution then ϑ̂LS
n and ϑ̂EML

n . So one expects that
the bias and variance of ϑ̂P ML

n will be smaller then of the nonparametric estimators for any
version of tuning parameters, such as the measure π for ϑ̂LS

n or the bandwidth h and the
threshold t for ϑ̂EML

n . In this sense ϑ̂P ML
n represents a benchmark for possible improvements

of the considered estimation techniques.
In the experiments we simulated data from the harmonic model (1-2) with known period
T = 1 and unknown m. For the sample size n the covariate values tj were taken as tj = j/n.
The true value of m to be estimated was m0 = 0.25. The components’ distributions F1 and
F2 were different in different experiments (see below).
We considered samples of size n = 100, 250, 500, 1000, 2000 and 5000. For each sample size n,
B = 1000 samples X(b), b = 1, . . . B were generated. Three estimators were calculated for each
X(b): the least squares estimator m̂LS

(b) , the empirical quasi-likelihood estimator m̂EML
(b) and

the parametric maximum likelihood estimator m̂P ML
(b) . The biases (b) and standard deviations

(sd) of these estimators were approximated by

b∗ = m̄∗ − m0, sd∗ =

√√√√ 1
B − 1

B∑
b=1

(m̂∗
(b) − m̄∗)2, m̄∗ = 1

B

B∑
b=1

m̂∗
(b),

where ∗ means any of symbols LS, EML or PML.
Experiment 1. In this experiment we consider the case when the components’ distribu-
tions differ only in mean. Namely, F1 ∼ N(0, 0.01), F2 ∼ N(1, 0.01). The variance of the
observations is so small that the components can be separated with the naked eye. A typical
scatterplot of (tj , ξj) for such data of size n = 1000 is represented on Fig. 1(a). By (3)

E ξj = µ2 + (µ1 − µ2)pj(ϑ),

where µi are the means of distributions Fi, i = 1, 2. So, in this case the shape of p(tj , ϑ) =
pj(ϑ) can be deduced from a nonparametric estimate of E ξj as a function of tj . On Fig 1(a)
the solid line represents the Nadaraya-Watson estimator for E ξj and the dashed line is the
graph of 1 − p(t, ϑ0). In the case when the component means differ significantly, such figures
allow to perform a graphical diagnostic of the concentrations model.
Biases and standard deviations of the three estimators considered in the experiment are
presented at the Table 1. It is readily seen that for all the estimators the bias is negligible
in comparison to the standard deviation. As it could be expected, the PML possesses the
smallest variance for all sample sizes. But the nonparametric LS and EML estimators also
show relatively good performance. On Fig 1 (b) we present graphs of relative efficiency (RE)
of LS and EML w.r.t. PML, i.e. RELS = SdLS/SdPML and REEML = SdLS/SdPML. They
show that the Sd of EML is nearly 10% worse than of PNL and this grows to 20% for LS. So,
only a narrow margin is left for the improvement of PML or LS in this case.
Experiment 2. Let us consider now the components different in variance only: F1 ∼
N(0, 0.01), F2 ∼ N(0, 1). A typical sample of size n = 1000 is presented on Fig. 2. The mean
of ξj is the same for all j, but the shape of p(t) can be seen from the variance (second moment)
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Figure 1: Results of Example 1. (a) Typical data scatterplot with the second component
concentration (dashed line) and the Nadaraya-Watson estimator of mean of ξj (solid line),
(b) SdLS/SdP ML (dashed line), SdEML/SdP ML (solid line).
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Figure 2: Results of Example 2. (a) Typical data scatterplot with the second component
concentration (dashed line) and the Nadaraya-Watson estimator of mean of ξ2

j (solid line),
(b) SdLS/SdP ML (dashed line), SdEML/SdP ML (solid line).
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Figure 3: Results of Example 3. (a) Typical data scatterplot, (b) SdLS/SdP ML (dashed line),
SdEML/SdP ML (solid line).
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Figure 4: Results of Example 4. (a) Typical data scatterplot, (b) SdLSE/SdP ML (dashed
line), SdEML/SdP ML (solid line).

of ξj . Results of the experiment are represented in Table 2. Here LS performs significantly
better then the EML estimator and its variance is quite near to the variance of PML.
Experiment 3. Now consider the case when both the mean and the variance change. We
let F1 ∼ N(0, 1), F2 ∼ N(0.5, 2). Despite the differences, the distributions of the components
are much closer to each other than in the previous experiments and the changes in the series
of the observations are less visible (See Fig. 3). The results of the experiment are placed in
Table 3

In this experiment EML performs nearly as good as PML for sample sizes larger than 1000.
The LS is slightly worse.
Experiment 4. In this experiment we consider two non-Gaussian distributions with the
same mean and variance. Namely, let η be a chi-square distributed random variable with
three degrees of freedom. Then F1 is the distribution of η − E η and F2 is the distribution of
E η − η. A typical example of such data is presented on Fig. 4 (a).
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Figure 5: Results of Example 5. (a) Typical data scatterplot, (b) SdLSE/SdP ML (dashed
line), SdEML/SdP ML (solid line).

The change of components concentrations in the mixture can be observed by the observations
in tail domains of their distributions. But the mean and variance of ξj are constant for all j.

Results of simulations are presented in Table 4 and on Fig. 4. The EML estimator shows
very good performance, say, for the sample size n = 5000 it is only 6% worse than PML. The
LS is not so efficient in this case. It shows significantly worse performance than EML and
PML.

Experiment 5. In the previous experiments the changes in the observations’ distributions
were visible at the (t, ξ)-scatterplots. Now we consider an example of data for which this is
not the case. In these data the first component is standard normal, while the second one is
itself a mixture of two sub-components with mixing probabilities p1 = p2 = 1/2. The first
sub-component is N(a, s2) and the second one is N(−a, s2), where a = 1/

√
2, s2 = 1/2. It is

readily seen that with these parameters the mean and variance of the second component are
the same as of the first one.

A typical sample is presented on Fig. 5 (a), the results of the experiment are on Fig. 5 (b) and
in the Table 5. The EML preforms slightly better then the LS. The standard deviations of
the estimators are significantly worse then in the previous experiments. But these deviations
decrease toward zero as n increases, so the estimators observe this “invisible” change in
distribution. It is interesting to note that the PML here performs even slightly worse then
LS and EML for small sample sizes.

Table 1: Results of Experiment 1

Bias Sd
n PML LS EML PML LS EML

100 0.000354 0.000855 0.000602 0.0165 0.01891 0.0181
250 -0.000181 -0.000357 -0.000437 0.0107 0.0121 0.0115
500 0.000422 0.000479 0.000515 0.00741 0.00900 0.00839
1000 -6.92E-005 -9.85E-005 -1.33E-004 0.00526 0.00606 0.00571
2000 0.000150 0.000222 0.000160 0.00379 0.00435 0.00412
5000 7.56E-005 1.32E-004 1.21E-004 0.00238 0.00283 0.00266
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Table 2: Results of Experiment 2

Bias Sd
n PML LS EML PML LS EML

100 9.15E-4 -0.000431 -0.000952 0.0234 0.0289 0.0355
250 -2.75E-4 -2.99E-5 1.67E-4 0.0146 0.0167 0.0224
500 0.000761 0.000719 0.000921 0.0109 0.0123 0.0165
1000 8.47E-5 1.24E-004 2.45E-4 0.00761 0.00851 0.0119
2000 0.000280 0.000463 0.000666 0.00531 0.00582 0.00832
5000 0.000196 0.000237 0.000427 0.00345 0.00386 0.00524

Table 3: Results of Experiment 3

Bias Sd
n PML LS EML PML LS EML

100 0.00388 0.00133 0.00146 0.085 0.0962 0.0968
250 -0.000514 -0.00240 -0.000868 0.0512 0.0648 0.0621
500 0.000315 -0.000117 0.000781 0.0366 0.0463 0.0405
1000 0.000125 -0.000781 -0.000305 0.0249 0.0303 0.0254
2000 8.24E-5 1.54E-4 2.69E-4 0.0182 0.0218 0.0182
5000 0.000501 0.000358 0.000520 0.0116 0.0136 0.01146

Table 4: Results of Experiment 4

Bias Sd
n PML LS EML PML LS EML

100 -0.00179 0.00829 0.00976 0.0496 0.0939 0.0828
250 -0.00257 0.00159 0.000374 0.03177 0.0615 0.0454
500 0.000861 0.00125 0.000532 0.0224 0.0402 0.0247
1000 -0.000217 0.000225 -5.80E-5 0.0157 0.0277 0.0168
2000 -1.21E-4 -3.47E-4 -1.47E-005 0.0109 0.0200 0.0117
5000 8.81E-5 -2.41E-4 1.20E-004 0.00698 0.0129 0.00744

Table 5: Results of Experiment 5

Bias Sd
n PML LS EML PML LS EML

100 -0.00709 0.00046 0.00203 0.17836 0.14227 0.14142
250 0.00417 0.00498 0.00468 0.16349 0.13921 0.13953
500 0.00442 -0.00329 -0.00331 0.14759 0.14157 0.14098
1000 -0.00298 -0.00428 -0.00511 0.12515 0.14074 0.13722
2000 0.00214 0.00557 0.00510 0.09007 0.12624 0.11946
5000 0.00061 -0.00658 -0.00548 0.05608 0.10642 0.09649

6. Concluding remarks
We considered two nonparametric approaches to the estimation of concentrations parameter
in two-component mixture: least squares and empirical maximum likelihood. Parametric
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maximum likelihood estimation, which needs much more information of the components’ dis-
tributions, was considered as a benchmark of possible estimator efficiency. Both EML and LS
estimators show sufficiently good performance in all the experiments. The LS estimator per-
formed better then the EML one for components with different variance. The EML estimator
outperformed the LS one for nongaussian components with asymmetric tails. Throughout the
study the biases of the estimators were negligible in comparison to their variances. In most
experiments the variances of EML and LS was quite near to PML, therefore, one should not
expect a significant improvement in their performance by more deliberate choice of tuning
parameters. Of course, these observations are made by a restricted number of experiments
with only one simple model of concentrations. More experiments should be made to derive
more reliable conclusions.
Let us note some ways of the estimation technique improvement. LS estimation can be
improved by more deliberate choice of the integration measure π for the criterion R̂n(α) in
(4). In the EML estimator one may try to choose more accurately the bandwidth h and
the threshold t in the criterion l̂n(α) in (13). And a combination of LS and EML can be
considered in which the LS is used to derive a pilot estimator which is then improved by a
shift in direction of empirical likelihood maximization. Further work is needed to analyze
efficiency of these proposals.

Appendix

Proof of Lemma. Let

Ûn(x, α) = 1
n

n∑
j=1

uj(α)1{ξj < x} and Ūn(x, α) = E Ûn(x, α).

By the second part of theorem 2.4.3 in Maiboroda (2003), there exists a random variable
Λ̃ < ∞ such that

sup
x

|Ûn(x, α) − Ūn(x, α)| ≤ Λ̃

√
log n

n
[ sup
1≤j≤n

|uj;n(α)| +
n−1∑
j=1

|uj+1;n(α) − uj;n(α)|]

for all n = 1, 2, . . . (This is a corollary from the Vapnik — Chervonenkis inequality for
observations from MVC).
Assumption 2 of the Lemma with 0 ≤ pj;n(α) ≤ 1 imply
sup1≤j≤n |uj;n(α)| ≤ 2/∆−. Similarly

∑n−1
j=1 |uj+1;n(α) − uj;n(α)| ≤ 2V/∆−.

Observe that supx,α |Ûn(x, α)| ≤ 2/∆− and supx,α |Ūn(x, α)| ≤ 2/∆−.
So

|R̂n(α) − Rn(α)| =
∣∣∣∣∫

R

(
Ûn(x, α)

)2
−
(
Ūn(x, α)

)2
π(dx)

∣∣∣∣
≤
∫
R

|Ûn(x, α) + Ūn(x, α)| × |Ûn(x, α) − Ūn(x, α)|π(dx)

≤ 4
∆− Λ̃

√
log n

n

[ 2
∆− + 2V

∆−

]
π(R).

This is just the statement of the Lemma.

Proof of Theorem. Let λn = Λ
√

log n/n, where Λ is defined in the Lemma.
By the definition of ϑ̂n, R̂n(ϑ̂n) ≥ R̂n(ϑ). So, by the Lemma,

Rn(ϑ̂n) + λn ≥ R̂n(ϑ̂n) ≥ R̂n(ϑ) ≥ Rn(ϑ) − λn. (15)
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Assumptions 4-5 of the Theorem imply that for any δ > 0, there exist ε > 0 and n0, such
that

Rn(ϑ) ≥ Rn(α) + ε (16)

for all n > n0 and all α, such that |ϑ − α| > δ.
Combining (15) with (16) we obtain that |ϑ̂n −ϑ| < δ for all n, such that n > n0 and 2λn < ε.
Since λn → 0 a.s. this implies ϑ̂n → ϑ a.s. as n → ∞.
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