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Abstract

This work tackles sequential data change-point detection, a research area with various
applications in different fields. It focuses on analyzing sequential data such that the dis-
tance between locations of consecutive observations is not fixed. The models developed
here for change detection extend a Hidden Markov Mixture approach originally designed
to handle irregular spacing to improve the identification of atypical values. These models
consider the probability of Markov dependence explained by the distance between loca-
tions. Bayesian inference is carried out via Gibbs Sampling. Informative priors for the
dependency structure are crucial to identify clusters. The models adapt these priors to
enable change identification in a general setting. Two mixture models are formulated: one
for mean changes and another for mean or variance changes. Post-processing strategies
are suggested to categorize observations among the components to facilitate change iden-
tification by the mixtures. These strategies are based on maximum posterior probability
and consider the uncertainty associated with classifications. Models and clustering perfor-
mances are evaluated in simulation studies including a Monte Carlo scheme. The analysis
also explores three real illustrations. Finally, the proposed approaches are compared to
existing clustering and change detection methods available in the literature.

Keywords: Bayesian inference, breakpoint, clustering, Markov-switching model, serial data.

1. Introduction

A change point is a structural shift in ordered observations pattern, over time or space.
Literature offers diverse methods for detecting such changes, some of which are addressed
in Fearnhead (2005), Ratkovic and Eng (2010), Fearnhead and Liu (2007), Fearnhead and
Rigaill (2019), Mira and Petrone (1996), Martinez and Mena (2014), and Haynes, Fearnhead,
and Eckley (2017). In the present work, the analysis of irregularly spaced series is the central
focus. Here, the time or spatial gaps between consecutive observations are not fixed. As a
result, dependence can be explained by the distance between adjacent locations. Ignoring
this dependence can determine bias and information loss. Irregular spacing may arise due to
different reasons: the presence of missing values or the occurrence pattern of the phenomenon
of interest. Natural disasters (e.g. earthquakes and floods) often generate this type of series.
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The positions of genes along a chromosome is another example.
Various fields employ irregular series analysis. Koumar and Cejka (2023) examines some
of the more than 35 million irregular series from a real ISP network, showcasing their util-
ity in network traffic analysis. Miller (2019) deals with irregularly recorded paleoclimatic
data due to dating challenges, like CO2 concentrations and surface temperatures, collected
sporadically and non-contemporaneously. Li, Liao, Peng, and Hwang (2015) addresses with
telecom synchronization measurement data often unevenly spaced due to non-uniform data
bit distribution. There are many other examples in fields such as astronomy, climatology,
high-frequency finance, and signal processing. The present study introduces Bayesian models
for change detection in this context. These models are developed as extensions of a Hid-
den Markov Gaussian Mixture (Mayrink and Gonçalves 2020) originally proposed to identify
atypical observations in genetic data.
The Bayesian modeling for change point detection started with Chernoff and Zacks (1964),
Smith (1965), Carlin, Gelfand, and Smith (1992), Stephens (1994), and Whittaker and
Frühwirth-Schnatter (1994). The Product Partition Model (PPM) was pivotal in this do-
main, evolving into a popular approach for change detection. Initial efforts to identify mul-
tiple change points via PPM were made by Hartigan (1990), Barry and Hartigan (1992),
and Barry and Hartigan (1993). In this case, the inference, via Markov Chain Monte Carlo
(MCMC), can be computationally expensive for large datasets due to the stochastic partition-
ing. Various works have advanced in this direction, including Loschi and Cruz (2005), which
extend the PPM by providing a method to obtain posterior distributions for the number of
change points, as well as the probability of each instance being a change point.
Another Bayesian approach for identifying change points was formulated by Chib (1998). In
this case, a reparameterization is proposed for a general change point model, assuming a
known number of regimes and treating the process as a Hidden Markov Chain of discrete
states. Each state of a latent variable indicates a distinct regime, and the probability of
changing regimes depends on the current regime. Markovian dependence is present and
remains constant throughout the series. Models for sequential data developed as extensions
of Chib’s method are referred to as Hidden Markov Models, also known as Markov-switching
or Markov Mixture models. The proposals in this paper are constructed under this approach
and will be referred to as Hidden Markov Mixture (HMM). The main feature here is the
use of the Markovian structure to describe how the data transitions between the unobserved
regimes. In Mayrink and Gonçalves (2020), the authors define a finite Gaussian HMM that
adapts the dependency structure of Chib to handle an irregularly spaced series. The Markov
dependence is treated as uncertain, meaning that it exists with some probability modeled
as a function of distances between neighboring observations. Informative priors establish
the Markovian structure such that consecutive and close observations tend to be assigned
to the same component (or adjacent components). The model discourages classifying near
observations into distant components. Other methods building upon Chib’s work encompass
articles such as Gales and Yong (2007), Meigenier, Bonastre, Fredouille, and Merlin (2000),
and Beal and Krishnamurthy (2006); they address speech recognition and gene clustering
problems. For foundational concepts on this approach, from both classical and Bayesian
perspectives, see Fruhwirth-Schnatter (2006).
Numerous studies address the grouping of time series data while considering spatial depen-
dence. A common strategy to incorporate this dependence involves employing Markov ran-
dom fields in mixture models. This approach finds widespread application in spatial data,
as demonstrated in Fernández and Green (2002) and Vincent, Risser, and Ciuciu (2010).
Another approach involves developing models that combine Dirichlet Process (DP) to accom-
modate uncertainty in the number of clusters, along with Gaussian Process (GP) to handle
temporal dependence. Recently, McDowell, Manandhar, Vockley, Schmid, Reddy, and En-
gelhardt (2018) constructed such a model by assuming that observations within a cluster are
generated from a specific GP, with a mean obtained via DP and a covariance kernel specific to
each cluster, defined as a function of the Euclidean distance between locations. Furthermore,
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Teixeira, Assuncao, and Loschi (2019) work with PPM in the spatiotemporal context, and
Page and Quintana (2016) propose a spatial version.
The detection of change points in series using clustering mixture models is an active field
in Bayesian studies. In this context, a change point can be characterized as the location at
which a component change occurred. Mixture modeling facilitates accommodating various
distribution patterns, and in a clustering mixture, regimes are recurrent. Parameter values
vary across different components, allowing better adaptation to cyclic changes in the series.
In change point models, structural parameters are estimated, with no possibility of identifying
a return to a previously identified regime in earlier locations. Works in this domain include
Broët and Richardson (2006), identifying changes in series of genetic data using spatially cor-
related mixtures; Zhu and Melnykov (2022) developing an asymmetric matrix-variate mixture
capable of simultaneously estimating change points across all data groups; and Melnykov and
Maitra (2010) providing a retrospective on important finite mixtures for clustering. However,
finite mixture models, including those developed here, do not consider uncertainty in the
number of clusters, requiring pre-specification of this quantity and subsequent analyses to
determine the appropriate value. In this regard, the Bayesian nonparametric extension for
infinite mixture models (using the DP) is common in the literature. This approach allows
simultaneous estimation of the number of components and parameters. See, for example, Ko,
Chong, and Ghosh (2015); Dufays (2016).
The development of methods for identifying multiparametric changes in a series is also a
relevant issue. The aim is to identify locations where changes may occur at distinct time
points for various parameters. Examples of such methods include the multiple partition PPM
(Pedroso, Loschi, and Quintana 2023), and the model in Peluso, Chib, and Mira (2019) where
groups of structural parameters follow distinct DP priors, with a different multiple-change
process for each, under the structure of Chib (1998).
The allocation of observations to clusters in grouping models is commonly done using post-
processing methods based on Maximum a posteriori (MAP) estimation, or the Posterior
Similarity Matrix (PSM) in Fritsch and Ickstadt (2009). The MAP seeks the optimal cluster-
ing that maximizes the posterior. Specifically, in finite mixture models, the term MAP can
be used as the criterion that assigns an observation to the component k that maximizes the
vector of posterior classification probabilities across all components. The PSM provides prob-
abilities that two observations belong to the same cluster. Methods based on the PSM yield
a single optimal estimate of the partition, disregarding the associated uncertainty. Bayesian
mixtures with a varying number of clusters often employ PSM-based approaches to estimate
the optimal configuration, as classification probabilities are influenced by label swapping dur-
ing MCMC (Fritsch and Ickstadt 2009).
The contributions of this work are as follows. (i) development of HMMs for change detection
in irregular series through adaptations of priors defined in a foundational model proposed to
identify atypical observations. The proposed HMMs harness the original model’s ability to
handle spatial dependence as uncertain, thus contributing to change point analysis in irregu-
lar series. The stochastic modeling flexibility for dependence structure allows us to determine
whether there is dependence between a pair of adjacent observations and quantify such de-
pendence. (ii) one of the proposed models leverages the structure of components with distinct
and ordered means (Mayrink and Gonçalves 2020), and with the contribution of choosing ap-
propriate informative hyperparameters, defines an HMM for change point detection focused
on the means. (iii) a second model is constructed to identify changes in mean and/or variance
separately. This is achieved by carefully choosing priors and imposing constraints. In the mul-
tiparametric proposal, it is crucial to allow some components to have equal (or close) means
(but different variances), unlike the reference model. (iv) propose clustering methods based
on MAP criterion, enabling the quantification of the classification uncertainty. (v) evaluate
the methodology through simulations with Monte Carlo (MC) scheme across various scenar-
ios. (vi) illustrate the models through real applications in finance and astronomy, which have
not been previously analyzed for change point detection assuming irregular spacing. (vii)



Austrian Journal of Statistics 117

compare the proposals with existing approaches for clustering and change point detection.
The outline of this paper is as follows. Section 2 describes the Hidden Markovian Bayesian
mixture model. Subsequently, this section presents the proposed models for change detec-
tion in irregular series as extensions of the base model. Section 3 details the post-processing
classification methods. Section 4 shows the MC studies for various scenarios of artificial irreg-
ular series. Section 5 compares the proposed models with other methods from the literature
for clustering and change detection. Section 6 encompasses the real applications. Finally,
Section 7 summarizes the main conclusions.

2. Gaussian hidden Markov mixture
The models developed here share a similar structure, particularly utilizing the spatial depen-
dence to address the irregular spacing. These models diverge in terms of specifying informative
priors tailored to achieve specific goals.
Let Xi be a real random variable associated with the i-th location; X1, · · · , Xn is a ran-
dom sample. Consider K > 1 (fixed and known) representing the number of mixture com-
ponents. Define q0 = (q01, q02, · · · , q0K)⊤ ∈ RK+ as an unknown vector of probabilities,
with

∑K
k=1 q0k = 1. Let Q = (qk1k2), k1, k2 = 1, · · · , K, represent the transition matrix

of a first-order Hidden Markov Chain with discrete time, having K latent states, where
each state indicates a mixture component. Denote qk = (qk1, qk2, · · · , qkK)⊤ ∈ RK+, with∑K

k′=1 qkk′ = 1, as the probability vector in the k-th row of Q. Define the classification vector
Zi = (Zi1, · · · , ZiK)⊤ ∈ {0, 1}K . In this case, Zik = 1, if Xi belongs to the k-th compo-
nent, and Zik = 0, otherwise. An HMM with Gaussian components of unknown means and
variances µk and σ2

k, for k = 1, · · · , K, is defined as follows:

(Xi|Zi) ∼ N(µk, σ2
k), independent ∀i; (1)

(Z1|q0) ∼ Mult(1, q0); (2)
(Zi|Zi−1,k = 1, ρi, q0, Q) ∼ (1 − ρi) Mult(1, q0) + ρi Mult(1, qk), i = 2, · · · , n. (3)

Here, “Mult” indicates the Multinomial distribution. The Xi’s are not marginally (with
respect to Z) independent. The dependence is defined at a lower level of the model by Ex-
pression (3), a discrete mixture representing the absence or presence of first-order Markovian
dependence. The Markovian structure represented by Mult(1, qk) stochastically determines
the classification of the observation Xi, given that the model classified Xi−1 in the k-th com-
ponent. The Expression (3) reflects that the Markovian dependence is the same for any pair
of consecutive observations, however, it is uncertain, being present with probability ρi. Let
Φ be the cumulative distribution function of the standard normal distribution and define di

as the transformed distance on the scale (0, 1] between neighboring locations i − 1 and i. The
following priors are adopted.

(µk, σ2
k) ∼ NIG(mk, vk, u1k, u2k); (4)
qk ∼ Dir(αk), k = 1, · · · , K, independent; (5)
q0 ∼ Dir(α0); (6)

(ρi|β) = Φ(β0 + β1di); (7)
β = (β0, β1)⊤ ∼ N2(µ0, Σ0). (8)

The terms “NIG” and “Dir” indicate the Normal-Inverse-Gamma and Dirichlet distributions.
Denote β = (β0, β1)⊤ ∈ R2. In terms of hyperparameters, consider vk, u2k ∈ R+, mk ∈ R,
u1k > 2 is positive real, α0, αk ∈ RK+, µ0 ∈ R2, and Σ0 is a positive definite variance-
covariance matrix (2 × 2). Equation 7 introduces spatial dependence into the HMM by
defining the probability ρi of Markovian dependence as a function (probit) of the transformed
distance di between neighboring observations. For computational implementation, auxiliary
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Bernoulli (Ber) random variables denoted as Wi, i = 2, · · · , n, are also introduced. One can
write

(Zi|Zi−1,k = 1, Wi = 0, q0) ∼ Mult(1, q0); (9)
(Zi|Zi−1,k = 1, Wi = 1, Q) ∼ Mult(1, qk); (10)

(Wi|ρi) ∼ Ber(ρi). (11)

Set W1 = 0 almost surely, since there is no observation before X1. Furthermore, (Z1|Z0, W1 =
0, q0) := (Z1|q0) in the scenario of an absence of Markovian dependence. The next section
discusses informative priors.

2.1. Proposed prior specifications

The purpose of this section is to verify and justify the suitability of the priors for achieving
the goal of change point detection. In this article, two HMM’s are proposed. The first one
is intended for identifying changes in mean, also known as the Separated Means Component
model (HMMS). The second model addresses changes in mean and/or variance, and will be
referred to as the Grouped Means Component model (HMMG). The priors to deal with the
spatial structure are the same in both models. However, the priors for the means and variances
of the mixture components, as well as the strategy adopted for handling label reassignment,
differ between the models.

Label switching

The label-switching problem can arise in mixture models when there are multiple possible
permutations of labels assigned to the mixture components, resulting in the same probability
distribution. Label swapping does not affect the statistical properties or the quality of model
fitting, but it can lead to confusion in interpreting estimates.

HMMS : It addresses the permutation problem by imposing a constraint in which the Gaus-
sian components have distinct and ordered means (Mayrink and Gonçalves 2020). This or-
dering also defines the concept of neighborhood among the components, which is crucial for
handling spatial dependence. Consequently, the model fits mixtures with distinct component
means, justifying the acronym HMMS . The approach enables the identification of changes
focused on the mean.

HMMG: It allows fitting Gaussian components with equal or close means. This enables
handling situations where the densities of components significantly overlap. To achieve this
capability, the HMMG groups the means of these components into a set called “grouped mean
components”. Within each group, different variances are defined. Consequently, a change in
the mean is obtained as the location between consecutive observations generated by different
components belonging to distinct groups. In cases where these components belong to the
same group of means, only the variance change is determined. An additional parameter,
R ∈ N∗, fixed and known, where 1 < R < K, defines the number of component groups. The
components are allocated to each group using the k-means clustering method (Hartigan and
Wong 1979).

The flexibility to identify changes in mean and/or variance by the HMMG is enabled through
the treatment of label switching, and this is facilitated by the appropriate choice of priors
for means and variances. To carry out the relabeling, consider the r-th collection of grouped
means as gr = {µr1, · · · , µrsr }, where sr is the known size of the collection, and 1 ≤ sr < K.
The sizes of the groups are included in the vector s = (s1, · · · , sR), with

∑R
r=1 sr = K. The

labels of the mixture components are established in two steps. First, the grouping of means
is ordered. Then, the label is determined within each group by the restricted ordering of
variances, σ2

rj , j = 1, · · · , sr, for each collection r of means, r = 1, · · · , R. This implies that
components within the same group exhibit distinct variances. Thus, the constraints in the
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HMMG are defined by:

µ11 ≤ · · · ≤ µ1s1 < µ21 ≤ · · · ≤ µ2s2 < µR1 ≤ · · · ≤ µRsR
;

σ2
11 < · · · < σ2

1s1 ; σ2
21 < · · · < σ2

2s2 ; · · · σ2
R1 < · · · < σ2

RsR
. (12)

The constraints in (12) enable the model to identify changes in mean and variance individually.
For instance, consider two components of an HMMG grouped in the same collection. In this
case, a component change signifies a variance-only change. Now, consider two components
grouped in separate collections. Here, a change in component indicates a change in mean.
This labeling strategy allows an understanding of the model’s degree of uncertainty in chang-
ing the mean. The components being labeled in ascending order of prior variances, within
the same group of means, implies that the adjacent component to the right has higher uncer-
tainty about the mean. The first component of each group has the lowest variability and the
separation of means is slightly higher “between” than “within” groups. These aspects imply
that a small overlap is configured between the first and last components of adjacent groups.
Consequently, a group of means change-point only occurs when there is strong evidence from
the data.
Restrictions on the parameters of the HMMs are enforced during the MCMC. The re-labeling
by mean restriction post-processing in HMMS showed slightly inferior results to the restric-
tion enforced during the MCMC in extreme mixture scenarios (components with significant
overlap). The results were analogous (post and during MCMC) in other scenarios. Tests con-
ducted on the HMMS with few samples demonstrated that ordering of means produced anal-
ogous re-labeling results compared to the “data-based relabeling” by Rodriguez and Walker
(2014), where the optimal permutations are defined as those that minimize a k-means type
loss function between the cluster centroids and the observed data. Another k-means type
alternative by Malsiner-Walli, Frühwirth-Schnatter, and Grün (2017) is an interesting option
for future analyses focused on the label-switching issue. Other post-processing methods, to be
applied after sampling, proved inefficient in our study. This includes sorting only variances,
mixture component weights, or using the methods by Stephens (2000b) and Papastamoulis
and Iliopoulos (2010).

Priors to handle the spatial dependence

The choice of informative priors dealing with the dependence structure is crucial to empower
the model with the ability to identify clusters and achieve the desired spatial association.
Under less informative settings, the HMM might behave similarly to a common mixture
model. Alternatively, in the analysis of large datasets, inference could be dominated by the
likelihood. The β is responsible for reflecting the desired relationship di × ρi. The µ0 in
(8) indicates the expected behavior “di increases and ρi decreases”. The result is a smoothly
decreasing curve, where di = 0.5 corresponds to ρi = 0.5. The smoothness is important to
differentiate the degree of Markovian dependence across different distances.
Figure 1 illustrates some patterns. The choice of the prior expected behavior for di×ρi depends
on the application. The HMMs proposed by Mayrink and Gonçalves (2017) and Mayrink and
Gonçalves (2020) use the option in Panel (a). In the genetic application motivating these
studies, few di < 0.2 or di > 0.8 are present. As a consequence, Panel (a) suggests a faster
decrease of ρi when di ∈ (0.2, 0.8). Modifying the the shape of this curve enables the model
to handle specific irregular spacing. If most observations have near neighbors (small di’s),
and assuming informative prior for β imposing the curve in (a), then many ρi ≈ 1 (strong
dependence) is obtained. This behavior is not reasonable since it poses difficulties to model
reclassification, thus leading to convergence issues in the MCMC. In this situation, it is
recommended to use one of the patterns in Panels (b − d). In the present study, the choice
µ0 = (0.5, −1) yields the best results for the proposed applications. Moreover, it is crucial to
assume an informative prior for β, with Σ011 = Σ022 = 0.0001, to ensure the desired posterior
behavior. The choice of not fixing β allows some flexibility for the analyst in expressing
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uncertainty about the relationship di ×ρi. For simplicity, β0 and β1 are assumed independent
(Σ012 = Σ021 = 0).

Figure 1: Prior relationship between the distance di and the dependence probability ρi for
different µ0

The modeling in Mayrink and Gonçalves (2017) defines di ∈ (0, 1], which is motivated by
computational reasons, given that large di’s are observed in their genetic application. The
same strategy is considered in Mayrink and Gonçalves (2020) and it remains important to
be used in the HMMs proposed here. The scale of distances varies between applications
and the (0, 1] transformation can be viewed as a standard strategy to allow a broad use and
understanding of the model’s behavior. Exploring the distances on a fixed scale, regardless of
the application, simplifies the selection of priors that reflect spatial association. The choice
of whether or not to apply the transformation does not alter the modeling structure but can
impact inference.
The HMM in Mayrink and Gonçalves (2020) employs Markovian dependence to identify
observations in just two components, those with lower and higher means. The proposed
adaptation aiming to identify change points retains the model’s clustering capability and
enables change detection. However, it does not prioritize one component over the other in
the mixture. In most change-point applications, there is no reason to favor allocation to any
component.
The Dirichlet prior of q0 reflects the absence of Markovian dependence. Specify α0 =
(T/K)1(K×1). The term 1(K×1) is a (K × 1) vector of 1’s. The value T must be chosen
by the user and it is recommended to be of greater magnitude than the sample size size. This
way α0 suggests that all weights are equal to enforce similar allocation priority among the K
components. Small T dictates a weak prior, which would be overshadowed by the likelihood.
This holds particularly true when the series is large. On the other hand, the parameters in αk

of the Dirichlet for qk, k = 1, · · · , K, are defined to favor the formation of clusters. In other
words, the chosen αk should facilitate the classification of consecutive and near observations
into the same mixture component. Adhering to the expectations in the presence of spatial
dependence, the αk should discourage the model from allocating adjacent observations into
distant components. Values of αk can be arranged in the k-th row of a matrix αK×K , which
would be configured with higher values in the main diagonal.
The strategy for determining the Markovian structure given by αK×K is as follows. First, the
labels of the hidden states are defined in accordance with the label-switching strategy adopted
among mixture components. Each model has a specific re-labeling strategy (to be discussed
later). Gaussian components with close means (neighbors) correspond to adjacent states. The
sum of any row in αK×K is T . The highest values are on the main diagonal, and the second
highest values are arranged in the sub- and super-diagonals. This configuration is necessary
to impose clustering power on the model, promoting classifications in nearby components for
adjacent serial observations. The remaining elements in the row have equal and small values,
meaning that distant components have similar and reduced priority. To achieve a reasonable
clustering behavior, it is recommended to allocate at least 50% of the sum of weights to the
elements on the main diagonal of αK×K . The analyst must be aware that setting extremely
high values in this main diagonal leads to a situation where the model is not flexible enough
to allocate near observations in different components. As a consequence, convergence issues
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will occur in the MCMC.
An MC sensitivity analysis for the HMMs, under different choices for αK×K , indicated that
the HMMG requires large percentages of the sum T = 2,000 (inspired by the main references)
in the main diagonal as opposed to the HMMS . Specifically, based on the data examined
in this study, we selected the Markovian structure α50% for the HMMS and α75% for the
HMMG. The overridden value refers to the percentage considered for the magnitude on the
main diagonal. In addition, assume allocating 22% (for α50%) and 10% (for α75%) of the sum
2,000 to the elements in the sub- and super-diagonals. The Supplementary Material presents
this sensitivity analysis in detail.
The HMMs proposed in this work are flexible in terms of choosing the prior uncertainty level
about the parameters. The decision to increase or decrease the initial information level on β,
q0, and qk depends on the application and the available sample size. Fixing parameters to
build these models would result in the loss of such flexibility.

Prior distributions for means and variances

The proposed methodology for constructing priors for the means took into consideration an
assessment of the degree of proximity among the means of the mixture components. In the
HMMG, the priors are centered in closer locations of the mixture domain than those of the
HMMS . This is justified by the fact that the HMMG allows components with equal (or
close) means. Regarding the prior for the variances, a single vague prior was maintained
for the HMMS , as this model does not intend to analyze changes in variance. However, to
aid the identification of different variances by the HMMG, it became necessary to adopt an
informative prior for each variance. Further details regarding this aspect are described for
each model in sequence.

HMMS : Gaussian priors for µk (HMMS) are proposed with different levels of variability to
assess the model’s behavior. A criterion based on the overlap between adjacent component
densities was employed, quantified by the intersection area between these pairs (Inman and
Bradley 1989). Gaussian densities (symmetric) with high overlap indicate closely positioned
means, while low overlap suggests more distant means. Results from a sensitivity analysis
of the HMMS , across different data scenarios, indicate that the choice for a 10% overlap
configures a moderate separation of the means. It is recommended to adopt such separation,
and thus avoid greater overlaps that impair the distinct means requirement. Further details
can be found in the Supplementary Material. The hyperparameters of the NIG distribution
defined for (µk, σ2

k) are determined to reach the desired overlap rate. The mk were chosen to
be equally spaced, taking into account the scale of the observations. The vk were defined such
that the variability of the Gaussian priors for µk’s yield the target overlap rate. Regarding
the variance σ2

k, a single vague prior is adopted in the HMMS ; set u1k = 2.1 and u2k = 1.1,
then E(σ2

k) = 1 and V ar(σ2
k) = 10, which follows a similar approach to that used in Mayrink

and Gonçalves (2020).

HMMG: The strategy here is similar to the one defined for the HMMS . However, the
HMMG allows for components with equal (or close) means to be accommodated. In this case,
adopting a large intersection between two adjacent Gaussian prior densities is an interesting
configuration. Sensitivity analyses performed on a simulated sample under various scenarios,
with overlap values of 10%, 15%, 20%, 25%, and 30%, revealed that a minimum overlap of
25% is necessary for MCMC convergence, particularly for the means. The 25% overlap is
also considered for the real applications. In the HMMG, it became evident that the use of a
single vague prior for variances leads to a lack of MCMC convergence. This issue arises due
to component swapping caused by the weak prior distinction for the σ2

k’s. The inclusion of
distinct informative distributions for variances is necessary to aid the model in component
identification, considering that components are labeled by the restricted ordering of variances
within each mean group; see Expression (12). A reasonable option is to define K distinct
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priors, one for each variance, given that in practice the number of groups and their cardinality
(R and s) are unknown. That way, K Inverse-Gammas with ordered means are specified. One
has E(σ2

1) = 0.5, and the subsequent expectations are uniformly spaced, ensuring that the
mean of the last component is smaller than the sample variance SV =

∑n
i=1(Xi−X̄)2/(n−1)1.

The SV is an upper limit for E(σ2
K). The spacing between means is determined by SV /(K+2),

which prevents E(σ2
K) from being too close to the upper limit. For the prior variability,

consider V ar(σ2
k) = 1. See the Supplementary Material for further details. Malsiner-Walli

et al. (2017) control the overlap and relative position between the means of the components on
the mixture-of-mixtures modeling by specifying hyperparameters based on the decomposition
of total, intra, and inter-group variability. A similar strategy could be adapted to our HMMs;
this topic is left for future work.

2.2. Bayesian inference

A Gibbs Sampling was employed to sample from the joint posterior distribution of all un-
known quantities defined in the models. The algorithm is implemented with a block structure
to improve mixing and convergence. The block (Z, W ) requires a BFFS method (Backward-
Filtering-Forward-Sampling) developed in Mayrink and Gonçalves (2017). This entails sam-
pling (Z, W ) in the forward direction, while the parameter values of their respective marginal
distributions are recursively obtained in the backward direction, from n to 1. As a result,
the procedure accounts for the Markovian dependence in the series in both future and past
directions. The MCMC implementation encompassing all complete conditionals, remains con-
sistent with that used in Mayrink and Gonçalves (2020). Nevertheless, the rejection sampling
strategy is replaced by mean (and variance) reordering of the components to address the
label-switching issue.
The MCMC has 6,000 iterations and burn-in period of 3,000. Regarding initial values, set
q

(0)
0 = (1/K) 1(K×1) and Q(0) = (1/K)1(K×K), where 1(l1×l2) is a l1 × l2 matrix of 1’s. Start-

ing values for µk, σ2
k, and β were defined using their respective prior means. In assessing

convergence, two tests were applied to the chains of µk’s, in addition to observing traceplots
and posterior densities. The coda package (Plummer, Best, Cowles, and Vines 2006) was
utilized, specifically remploying the geweke.diag (Geweke 1992) and heidel.diag (Heidel-
berger and Welch 1983) functions for convergence diagnostics. A lack of convergence was
assumed if the chain failed both tests.
The quantities K and R of the HMMs are treated as fixed, yet in practice, they are rarely
known. We adopt the strategy of commencing the analysis with K being estimated by a stan-
dard Bayesian Gaussian mixture model (without dependence) fitted by the bmixnorm function
from the R package bmixture (Mohammadi and Salehi-Rad 2012; Mohammadi, Salehi-Rad,
and Wit 2013). This function employs transdimensional MCMC sampling based on a birth-
death approach (Stephens 2000a). Particularly for the HMMG, knowledge of the quantity
R, representing the number of groups of Gaussian components with proximate (or equal)
means, is imperative. A reasonable estimate for this element is garnered from the modes
in the data histogram of the application. The estimate R̂ is determined by the number of
peaks detected in the predictive density of a simple Gaussian mixture with K components
(bmixture). The peak points (modes) are determined through an optimization method in the
package Splus2R (Constantine and Hesterberg 2021). Malsiner-Walli et al. (2017) propose
a more systematic approach for determining the number of group components and the total
group count. Implementing this strategy is beyond the scope of our study.
In the present study, K and R are chosen in two stages. First, initial values are determined as
previously explained. Subsequently, the HMM of interest is fitted under the initial candidate
of K (and R), as well as under adjacent options (K −1, K +1, R−1, R+1). The final model
is then selected using goodness-of-fit measurements and model selection criteria for clustering.
Furthermore, in the HMMG, the allocation of the K components among the R collections of

1If SV < 0.5, the prior mean for σ2
1 must be redefined to maintain the scale.
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grouped means g
(t)
r = {µr1, · · · , µrsr }(t), r = 1, · · · , R, is performed at each MCMC iteration

t using the k-means clustering method (Hartigan and Wong 1979) on the means µ
(t)
1 , · · · , µ

(t)
K ,

with the number of centroids determined by R. The cardinality of each group in each iteration
constitutes the coordinates of the vector s(t). Once the grouping g

(t)
1 , · · · , g

(t)
R is obtained,

the label switching strategy (12) is applied. The estimate of s is the most frequent posterior
configuration s̃ among those visited throughout the MCMC.

3. Classification method
In an HMM, a change point detection should examine whether there is a classification change,
regarding mixture components, between consecutive observations in the series. Hence, a
strategy is to first establish a criterion to allocate each observation to one of the mixture
components and subsequently analyze alterations throughout the series. Similar to Mayrink
and Gonçalves (2017) and Mayrink and Gonçalves (2020), classifying a data point into the k-th
mixture component can be achieved based on the corresponding posterior probability. Given
an (approximate) sample of size M from the posterior distribution of Z, and the observation
at position i, the mentioned posterior probability is given by pik = (1/M)

∑M
m=1 I(Z(m)

i,k = 1),
where pi = (pi1, · · · , piK)⊤, with

∑K
k=1 pik = 1 for all i, represents the vector of classification

probabilities for the i-th observation. The term I(.) is an indicator function. In the present
study, the i-th observation is assigned to the component k, if pik takes the highest value
within pi. In the literature, this strategy is referred to as the Maximum a posteriori (MAP)
method. Particularly, for HMMS , a mean change point is defined as the location between
two adjacent observations, where the first is classified in one component and the second is
allocated in another one.
The chosen criterion selects the component with the highest probability, even in situations
where multiple components have large probabilities, a scenario prone to classification errors.
In the case of a Gaussian mixture, this classification uncertainty tends to be higher for those
components that have substantial overlap. Given that the HMMG permits fitting components
with completely (or nearly completely) overlapping densities, the adoption of the simple MAP
criterion may lead to errors in identifying changes in variance.
The frequent situation where “multiple components exhibit high probabilities”, in the HMMG,
has motivated the proposal of a certainty-level classification criterion to assess changes in vari-
ance. The idea is to segregate observations into two groups based on the level of certainty
in their allocation, here referred to as “decisive” and “doubtful”. For an observation i that
satisfies max(pi) > 0.5, its allocation is designated to the component with the maximum pik

with a high level of certainty, termed a “decisive” classification. Conversely, the criterion
accounts for the two components having the first and second largest probabilities. In this
case, the model is not certain about the allocation, termed as “doubtful” classification. In
a simulation study, under the “doubtful” category, a classification is assumed reasonable or
satisfactory when one of the two high-probability components corresponds to the real one for
that observation; classification error is obtained otherwise. The performance of the classifi-
cation criteria, under different certainty levels, was studied using MC samples. Details are
available in the Supplementary Material. In brief, the criterion “max(pi) > 0.5” (henceforth
denoted P0.5) yielded the best results.
In an HMMG, to distinguish change points between mean and variance, two steps are nec-
essary. First, each observation is assigned to one of the K components using the criterion
max(pi). Then, based on the posterior estimate of the vector of sizes for the R collections
of grouped means, ŝ = (ŝ1, · · · , ŝR)⊤, the components are allocated to the corresponding
collections following the constraints to avoid label-switching in (12). For example, if K = 7,
R = 3, and s = (3, 2, 2), then components 1 to 3 belong to collection 1, 4 and 5 are related to
collection 2, and the rest correspond to collection 3. If two adjacent observations in the series
are classified into different groups, then a change in the mean occurs. If they are classified in
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the same group, but under different components, it configures a change in variance.
After applying the classification method, it is possible to measure the certainty level for
the classification of each observation. The model’s uncertainty in allocating observation i
to component k′ is evaluated through p̄ik′ ≡ 1 − pik′ for the purpose of studying mean
changes under HMMS , or variance changes under HMMG. If the interest lies in analyzing
mean changes under HMMG, the classification certainty level is not directly associated with
allocating an observation to a component, but to a set of grouped means. In this context, the
model’s uncertainty is calculated as p̄∗

ir′ ≡ 1 −
∑

k∈gr′ pik, where gr′ defines the components
belonging to the r′-th collection of means. The lower this probability, the lower the model’s
uncertainty that the classification is correct.
Figure 2 illustrates the classifications provided by HMMG, as well as allocation uncertainty.
Panel (a) displays the classification concerning the mean. The blue line indicates the posterior
mean of the component in which the observation was allocated. The horizontal gray lines
represent the median of each collection of grouped means. A mean change occurs when the
blue line moves away from one gray line and aligns with another. For example, in Panel (a),
there is only one mean change point, corresponding to observation i1. Although not depicted
here, it is worth noting that when using the HMMS , the type of graph in Panel (a) does not
feature the gray lines, and a change in the level of the blue line indicates a mean change.
Figure 2 (b) highlights the variance-based classifications produced by HMMG. Asterisks of
different colors are superimposed onto the series, representing classifications into distinct
components. The y-axis value signifies the posterior mean of the component to which the
observation was classified. Panel (b) indicates a mean change by the shift in the asterisk
series, moving away from one gray line. Variance change is denoted by a color alteration
of the asterisk sequence. There are 5 evident variance changes and 1 mean change in the
graph. Panel (b) displays only one of the two possible classifications at the doubtful level.
Specifically, for the i-th observation, the shown allocation corresponds to the component with
the highest value in pi. The Supplementary Material discusses the efficiency of assuming the
first or the second largest probabilities.

(a) Mean-based classification (b) Variance-based classification

Figure 2: Classifications and change-points from HMMG
K=4
R=2 with s = (2, 2). Black line: data

series. Gray lines µ̃g1 and µ̃g2 : median of grouped means collections. Panel (a): posterior
mean by mean-based classification (in blue). Panel (b): posterior mean by variance-based
classification (colored asterisks show distinct component classification). Subpanels p̄∗ and p̄
show classification uncertainty for mean and variance, respectively. Peaks at p̄∗ for i1 and i2
(i1 local mean change). Peaks at i3 and i4: doubtful classifications for variance.

Generally, the classification uncertainty is high at a change point, resulting in spikes in the
graph of p̄ and p̄∗. Regarding changes in mean groups, Panel (a) indicates a sequence of
observations classified under g1, 1 to i1 − 1, with low uncertainty. However, upon reaching
the first observation classified in g2 at i1 (the change point), the model tends to be less
confident. For subsequent observations, the uncertainty decreases again due to the model
clustering nature (consecutive observations from nearby locations tend to be under the same
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component). When the model fit produces a high number of change points, one will observe
an erratic trajectory for p̄ and/or p̄∗ (many spikes), as seen in Panel (b). Changes in asterisk
colors within the same group level (trajectory near one gray line) indicate changes in variance.
Note the presence of spikes of p̄ at these locations.
Spikes in p̄∗ or p̄ do not only occur at change points. A spike under an observation literally
indicates a higher classification uncertainty provided by the criterion. In Panel (a), even
though the observations from i1 to 300 are classified under the same group g2, there is a
spike located at i2. Observe that data point i2 is slightly lower than the other values in
the data sequence, sufficient for the model to be uncertain about allocating i2 to g1 or g2.
Nevertheless, the chosen criterion indicates g2 due to the clustering nature of HMMG. In
Panel (b), observations i3 and i4 do not determine variance changes. However, they exhibit
a high classification uncertainty. Additionally, the classifications at i3 and i4 are deemed
“doubtful”, with p̄ > 0.5.
In addition to MAP, other clustering methods (Stephens 2000b; Kaufman and Rousseeuw
1990) were explored in our study. Their results are consistent in estimating similar partitions.

4. Simulation studies
This section showcases simulations conducted to assess the performance of HMMs in change-
point detection within artificial data scenarios of series characterized by irregular spacing.
An MC scheme is applied with 50 replications. The MCMC settings are the same as those
presented in Section 2.2. The value of K (and R) was assumed to be known, as established
in the artificial data generation. Convergence issues were not observed for any MC sample.

4.1. Artificial data

A total of 7 different scenarios are studied, 3 generated via HMMS and 4 via HMMG. Among
them, both purely artificial scenarios and scenarios motivated by real applications are con-
sidered. Each of the simulated series comprises a total of n = 1,000 irregularly spaced
observations. For the purely artificial cases, the di’s were generated between (0, 1] using the
Uniform distribution. Figure 3 (a, c) display the di’s. Panel (c) shows that low and high values
are scattered throughout the series. For each series, approximately 90% of the distances are
small < 0.5 (strong dependence). The remaining di’s establish weak to moderate dependen-
cies. These distances were then randomly allocated to the series to form the irregular spacing.
Concerning the spatial dependence, assume β = (4, −8) reflecting the behavior in Figure 1
(a). The transition probability matrix αK×K is defined to impose strong clustering power.
In this case, the probability that adjacent observations are allocated in the same component
(main diagonal) is 0.95, while the probability of transitioning to an adjacent component is
0.02. These settings were chosen to ensure the presence of clusters in the series and prevent
consecutive observations from being classified into non-adjacent components. In the absence
of serial dependence, assume q0 = (1/K)1(K×1).
The degree of proximity between means of the components was considered to build the data
scenarios. In the HMMS , assume different overlap levels between components. Denote the
scenario by CK

A with K = 8 and overlap rate A = {0.05, 0.10, 0.25}. Observations were
generated between [0, 30]. This scale allows up to a maximum of 8 components under study
to be accommodated, while simultaneously achieving the desired overlap rate. The means
of the Gaussian components were determined based on the data scale, and the variances
were chosen to achieve the target overlap. In the HMMG, two scenarios are referred to
as “purely artificial”. They are denoted by Cs=(2,4) and Cs=(3,3). The other two cases are
simulated based on the features from two real applications discussed later in this paper (IPC
Mexico and Solar flares). Here, denote C∗

s=(1,2,2) and C∗
s=(3,1,1). In purely artificial scenarios,

the components within each group have equal means. Then R = 2 was considered, and
the component parameters were chosen to reflect data distribution with distinct bimodality
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Figure 3: Distances between adjacent observations in a purely artificial series. Panel (a):
Histogram of the di’s. Panel (b): Markovian dependence probabilities ρi. Panel (c): Distances
di versus location.

(groups with moderate means separation). In the scenarios mimicking real data, the groups
are characterized by components having close means (not identical).

4.2. Performance of HMMS

The MC study examines how HMMS behaves under data scenarios with low and high over-
lap (A = 0.05 or 0.25). Preliminary studies with a small number of samples from CK=8

A=0.10
did not uncover any inference or classification challenges. MC results demonstrate that the
model exhibited fitting stability. Figures 4 (a1) and (b1) indicate that the boxplots of µ̂k

are positioned in increasing order, following the imposed increasing and restricted ordering
of the means of the HMMS components. Figure 4 and Table 1 (prior structure for HMMS)
present reasonable outcomes for the estimation of means and variances of the components,
with a noticeable lower MC variability in mean estimation compared to variance estimation.
However, the issue of underestimating variances, particularly among components with higher
true variances and under scenarios with higher overlap rates, stands out. For these cases,
Figures 4 (a2) and (b2) depict the true values positioned above the boxplots. The error for
estimating σ2

k can reach up to 80% (Table 1).

Figure 4: MC study for the HMMS , with α50% and 10% prior overlap. Boxplots exhibit the
posterior means for µk or σ2

k. Asterisks indicate true values.

Table 1 indicates a classification error that is not excessively high (with a small MC interquar-
tile range). Results reveal that HMMS provides a better fit for data arising from mixtures
with low overlap rates. As a consequence, one can observe lower percentages of errors for
µk and σ2

k, as well as a lower classification error. However, when exploring data with higher
overlap in mixtures, the MC results are less favorable. The next section develops a similar
analysis for the HMMG.
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Table 1: MC study: HMMS , α50%, 10% overlap. Error: 95% HPD without the true value.
“Error Tot. µk” (or “σ2

k”) is the sum of errors across all components. “Max. Error σ2
k”

indicates the highest variance error (component in parentheses). Last column: MC median
of the % of misclassified observations (interquartile range in parentheses).

Artificial Monte Carlo results (%)
data Error Tot. µk Error Tot. σ2

k Max. Error σ2
k Clas. Error

CK=8
A=0.05 12.5 8.5 20.0 (5) 2.9 (0.9)

CK=8
A=0.25 20.3 38.8 80.0 (4) 16.5 (2.6)

4.3. Performance of HMMG

Now, the HMMG is explored in an MC scheme with four scenarios (two purely artificial and
two inspired by real data). Figure 5 highlights that under the chosen prior configuration
for the HMMG, the estimates of µk and σ2

k align with the true values (asterisk). In Panels
(a − c), note that the positions of the boxplots tend to express the group of means. Panels
(d − f) demonstrate an ascending order of boxplot for σ2

k’s within a group, reflecting the
imposed model constraint of ordering variances within each cluster. Furthermore, lower vari-
ability is observed for means than for variances, similar to what was evidenced for the HMMS .
The patterns obtained from scenarios assuming groups of equal means (denoted by C) and
scenarios inspired by real data (C∗) are similar, even considering issues with variance esti-
mation. For equal means scenarios, a tendency to underestimate the higher-value variances
within each group is observed (asterisk below the boxplot), contrasting with the occurrence
of overestimation in scenarios based on real data (asterisk above the boxplot).
The performance analysis of the HMMs, in addition to goodness-of-fit, requires the evalu-
ation of classifications due to their clustering purpose. Table 2 summarizes the number of
classification errors, both for variance (component-wise classification) and for the group of
means. The results are similar for any of the scenarios under study. The lower values (below
8%) of classification errors validate the use of the max(pi) criterion for the mean. However,
for variance identification, this criterion can provide more than 50% of errors.

(a) Cs=(3,3) (b) C∗
s=(1,2,2) (c) C∗

s=(3,1,1)

(d) Cs=(3,3) (e) C∗
s=(1,2,2) (f) C∗

s=(3,1,1)

Figure 5: MC study for HMMG with α75%, V ar(σ2
k) = 1 and overlap of 25%. Posterior

estimates for µk and σ2
k (asterisk indicates true value). Panels (a − c): µ̂k. Panels (d − f):

σ̂2
k. Remark: Cs=(2,4) (Supplementary Material) resembles Cs=(3,3).

The MC study reveals a similarity among the pik in pi, mainly for the components within
the same group r. This justifies the tendency of the criterion max(pi) to correctly classify
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Table 2: MC Study for HMMG under α75%, V ar(σ2
k) = 1 and overlap of 25%. Evaluating

mean-based and variance-based classification errors using the max(pi) criterion. Percentages
refer to MC medians.

Classification Classification errors by scenarios (%)
type Cs=(2,4) Cs=(3,3) C∗

s=(1,2,2) C∗
s=(3,1,1)

Means group 4.6 5.8 8.0 4.5
Variance 50.6 52.4 30.4 45.1

observations with respect to the group, but indiscriminately classify the observation into any
component within a group (possible variance classification error). Generally, classification
probabilities are below 0.5 for misclassified observations. However, correctly allocated data
points, with criterion max(pi), have the highest pik for their original component k, which
may exceed 0.5. Based on the information obtained from the classification probability vector,
several criteria were proposed at two levels of certainty for variance classification (decisive
and doubtful). The adopted criterion P0.5 yielded the best results in the examined scenarios.
See details in the Supplementary Material.

Table 3: MC study: HMMG, α75%, V ar(σ2
k) = 1, and 25% overlap. Assessing the P0.5

certainty-level classification. Median MC values are expressed in % (the higher, the best).

Performance measures Scenarios
Cs=(2,4) Cs=(3,3) C∗

s=(1,2,2) C∗
s=(3,1,1)

1. % Decisive Obs. 35.05 26.55 85.69 54.97
2. % Decisive Correctness 71.50 67.00 75.89 72.22
3. % Decisive Error in Neighbor 85.38 88.32 90.68 92.87
4. % Doubtful Correctness 67.40 73.20 68.43 75.53
5. % Doubtful Error in Neighbor 38.24 42.87 40.30 49.80
6. % Doubtful Correctness in Neighbor 97.13 98.53 98.49 99.32
7. % Total Correctness 69.00 72.90 74.69 72.79

Table 3 presents results about the efficiency of the P0.5 criterion in HMMG. The following
quantities are analyzed: percentage of decisive classifications (row 1), percentage of correct-
ness among decisive and doubtful classifications (rows 2 and 4), percentage of misclassification
allocating “decisive observations” to an adjacent component (row 3), percentage of misclas-
sification allocating “doubtful observations” to an adjacent component (row 5), percentage
of well-classified doubtful observation where one of the components is true and the other is
a neighbor (row 6), and number of correct classifications (decisive + doubtful classifications)
(row 7). These measurements are important to evaluate the classification performance of the
HMM. An error due to allocation to a component close to the true one is less critical than
classifying into distant components.
Table 3 shows that the amount of decisive classification is not small (26%-86%). The lowest
value is associated with the scenario of component groups with equal means, Cs=(3,3), with
high overlap among components forming the groups. The higher percentages are obtained
in scenarios of mixtures with lower overlap between components, which is attributed to the
presence of mean groups with only 1 or 2 components. Decisive correctness is notably sub-
stantial (≥ 67%). Misclassification tends to occur towards adjacent components for decisive
errors (> 85%). This behavior is not similar for doubtful errors (< 50%). The model’s ability
to produce doubtful classifications that at least include the true component is also evident
(> 67% in row 4, > 97% in row 6). Regarding the total correctness, the adopted certainty-
level criterion outperforms (≥ 69%) the max(pi). These results reveal that the HMMG has
reasonable variance-based classification capacity, as it tends to at least identify the σ2

k from
a component adjacent to the true one.
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5. Model comparison
This section is focused on a comparison between the proposed HMMs and 4 approaches from
the literature to cluster or detect change points. Here, the HMMS and HMMG will be de-
noted as M1, and their application depends on the scenario under study. The alternative
approaches are represented as follows. The M2 corresponds to the Bayesian mixture of Gaus-
sian components for clustering, without spatial dependence, and with a Dirichlet process prior
to incorporating uncertainty about K. This option is implemented in the profRegr function
of the R package PreMiuM (Liverani, Hastie, Azizi, Papathomas, and Richardson 2015). The
M3 refers to the spatial partition product model present in the sppm function of the R pack-
age ppmSuite (Page and Quintana 2016). The M4 is the reference partition product model
by Barry and Hartigan (1993), implemented in the R package bcp (Erdman and Emerson
2007). Lastly, the classical non-parametric approach M5 identifies change-points of arbitrary
nature in series, without spatial dependence, using the cpt.np function of the R package
changepoint.np (Haynes et al. 2017). The methodologies related to M2, M3, and M4 allow
for the identification of mean changes.
An MC analysis is conducted in 4 scenarios of irregular series. One scenario involves com-
ponents with means having an intermediate level of separation, CK=8

A=0.10 (M1 = HMMS), and
three scenarios with grouped means (M1 = HMMG). For the HMMs, assume K and R to be
known. The competing models are applied under their respective default configurations, with
the MCMC settings remaining the same as in Section 2.2 for Bayesian cases. In this study,
for M4 (standard PPM), change points are considered to be observations with high posterior
probability (> 0.5). For change detection using M2 and M3, a post-processing clustering
method is employed. Here, consider a robust version of the k-means known as Partitioning
Around Medoids (PAM) developed by Kaufman and Rousseeuw (1990). This method is based
on an estimated similarity matrix (PSM). Changes are identified by M1 using both PAM and
the proposed classification criterion. The output of the R functions of M4 and M5 does not
provide sufficient information to apply the PAM.
Three measurements are used to evaluate the similarity between estimated and true partitions.
Consider the Adjusted Rand Index (ARI) in Hubert and Arabie (1985), being a pair-counting
measurement, along with the Adjusted Mutual Information (AMI) and Normalized Variation
of Information (NVI) classified as information theory-based measurements (Vinh, Epps, and
Bailey 2009). To calculate them, use the functions arandi, AMI, NVI from the R package
aricode (Chiquet, Rigaill, and Sundqvist 2022). Additionally, one can compare the detected
change points with the true configuration using the True Positive Rate (TPR) calculated for
binary classifications. The values of these measurements are bounded in [0, 1]. Here, the
value (1 − NVI) is used to ensure a uniform interpretation of all three measurements. Higher
values indicate greater similarity between estimated and true clustering.
The model comparison is developed through two distinct approaches: MC analysis of mean
changes, and analysis of “mean and variance" changes. The first approach accounts for all
5 models, while the second one is focused on M1 and M5. Note that M5 estimates change
points of any nature, i.e., its corresponding package does not provide sufficient information
to classify a change as related to the mean or the variance. This is a critical contrast with
respect to M1 (HMMG).
In the analysis of Bayesian models, consider only the convergent MC replications. Our pro-
posed HMMs converged in all replications under study, however, M2, M3, and M4 indicated
a lack of convergence for some samples. Convergence issues were detected in a maximum of
18% of the replications for at least one of the models in each scenario. The M2 is an excep-
tion with convergence issues for 40% of the replications in CK=8

A=0.10 (mixture components with
separated means).
Figure 6 shows the number of mean changes produced by each model in relation to the true
quantity. Panels (b − d) indicate that M2 and M3 identify a higher number of changes, more
prominently in the real data-inspired scenarios in (c) and (d). The case with components
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Figure 6: MC study comparing models. Estimated number of mean changes. Dashed line
indicates the true number. Change points generated by M5 are associated with changes of
any nature (µk or σ2

k).

having separated means, Panel (a), exhibits boxplots with lower variability and concentrated
near the level 100 (the true number of changes). Let MPAM

1 denote the HMM model under
the PAM method. This option provides boxplots suggesting a similar number of changes
across all panels. Overall, the HMMs tend to detect more changes than the original quantity.
However, this number does not appear to deviate significantly from the true value (except for
M2 and M3). The M4 and M5 detect the lowest number of changes (they underestimate the
true quantity).

Table 4: Model comparison (MC study). Similarity (ARI, AMI, NVI) between estimated and
true partitions. TPR due to binary response (change: yes/no) for each location. Scenarios in
each column: 1 = CK=8

A=0.10, 2 = Cs=(3,3), 3 = C∗
s=(1,2,2), 4 = C∗

s=(3,1,1). Remark: changes from
M5 can be related to the mean or variance.

Change Model ARI AMI 1-NVI TPR
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

MPAM
1

0.84 0.76 0.68 0.84 0.86 0.65 0.69 0.77 0.76 0.49 0.53 0.64 0.94 0.79 0.82 0.82
µk (0.05)(0.05)(0.15)(0.13)(0.04)(0.05)(0.15)(0.15)(0.04)(0.05)(0.09)(0.15)(0.03)(0.07)(0.07)(0.07)

M1
0.80 0.76 0.82 0.89 0.80 0.81 0.85 0.87 0.90 0.87 0.89 0.88 0.94 0.78 0.78 0.73

(0.09)(0.10)(0.08)(0.14)(0.07)(0.06)(0.04)(0.10)(0.03)(0.04)(0.03)(0.08)(0.03)(0.08)(0.07)(0.11)
µk M1

- 0.49 0.75 0.55 - 0.58 0.79 0.65 - 0.79 0.86 0.76 - 0.60 0.70 0.59
and - (0.10)(0.09)(0.12) - (0.07)(0.06)(0.06) - (0.02)(0.03)(0.03) - (0.07)(0.05)(0.08)
σ2

k M5
- 0.31 0.34 0.46 - 0.53 0.53 0.62 - 0.63 0.63 0.66 - 0.03 0.02 0.03
- (0.09)(0.10)(0.21) - (0.05)(0.06)(0.12) - (0.04)(0.05)(0.11) - (0.02)(0.03)(0.03)

In Figure 6 and Table 4, the comparison M1 × MPAM
1 demonstrates that the classification

criteria, proposed for the HMMs (Section 3), yields results of similar or superior quality to
the PAM method across the scenarios. Thus, for comparison against competing models, the
results from the HMMs will be subjected to the classification criteria proposed for them in
this study. In the analysis of “mean and variance" changes, only scenarios involving mixtures
with grouped mean components are investigated. As depicted in Table 4, overall, the HMMG

(M1) exhibits notably superior performance compared to M5, mainly in the detection of true
change points (TPR). Only for the scenario C∗

s=(3,1,1) the M5 shows performance comparable
to M1 in terms of partition similarity measures (ARI and AMI).
Figure 7 reveals that M1 generally exhibits superior or equivalent performance compared
to the other models in identifying mean changes. This can be seen in terms of the correct
detection of locations with changes and the partition quality of the series. It’s important to
emphasize that none of the scenarios indicated a single model having the best behavior across
all aspects. Furthermore, the scenario CK=8

A=0.10 (separated means) was the only one where
the majority of models demonstrated similar performance, particularly in terms of partition
quality. The M2 stood out from the others by presenting some measurements with a larger
MC variability for the real data-inspired scenarios, notably in Figure 7 [1, 3], panel in row 1
and column 3, [2, 4], [3, 4], and [4, 4].
The M2 and M3 exhibit performance close to that of the HMMs in terms of true change
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Figure 7: Model comparison with boxplots (MC study). Similarity (ARI, AMI, NVI) between
estimated and true partitions. TPR due to binary response (change: yes/no) for each location.
Scenarios in each column: 1 = CK=8

A=0.10, 2 = Cs=(3,3), 3 = C∗
s=(1,2,2), 4 = C∗

s=(3,1,1). Remark:
changes from M5 can be related to the mean or variance.

point detection. This suggests that, in terms of efficiency in locating the changes, these two
options can be considered interesting alternatives to M1. However, it’s important to note
that M2 demonstrated unstable performance in some aspects for real data-inspired scenarios.
Furthermore, M2 and M3 tend to estimate a larger number of change points than the com-
petitors (Figure 6). When examining the partition quality, the M4 is the one displaying a
good performance closer to that of M1. This indicates that M4 is a strong competitor when
the focus is on the overall partition of the series.

6. Real applications
In this section, the HMMs are applied to 3 real daily series. Two of them are related to
stock market indices: Ibovespa (Brazil) and IPC Mexico. The third time series corresponds
to astronomical data concerning solar explosions durations (in seconds). The financial indices
represent adjusted closing prices observed from January 01 (2018) to August 12 (2021). These
series were extracted from the Yahoo Finance2 website using the getSymbols function from
the R package quantmod (Jeffrey and Joshua 2020). The period for the solar explosion data
spans from August 12 (2008) to August 12 (2021). The dataset includes days with multiple
explosions, then the average duration is adopted for the analysis (the median provides a similar
series). The astronomical data is available through the NASA website3 accessed October 30
(2021). The observations in these applications are rescaled to align with the magnitude
explored in the simulated studies (financial data is divided by 1000, explosion duration is
divided by 100).

2https://finance.yahoo.com
3https://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt

https://finance.yahoo.com
https://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt
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The irregular spacing in both financial series is highly similar, characterized by the absence of
observations on weekends and holidays, as well as the presence of a few missing data points.
In the solar data, there can be periods with no recorded explosions ranging from 2 to 278
days in sequence, thus indicating irregular spacing. These missing observations can happen
for several reasons, depending on the mechanism to register data or external conditions.
To ensure a greater diversity of distinct degrees of dependence, 30% of the observations
are randomly removed from each series. Please note that this removal strategy reduces the
sample size, therefore, fewer observations are available to fit the models (i.e. such a strategy
is not conducive to the effective implementation of the HMMs). After the alteration, we have
n = 623, 636, and 926, corresponding to 47%, 48%, and 19% of the total days, for Ibovespa,
IPC Mexico, and solar explosions, respectively. The analysis of these series without data
removal can be found in the Supplementary Material. Conclusions align with those in this
paper, except for the solar data showing better component classification with the full series.
For the financial series, the di’s rescale to (0, 1] was performed by dividing each di by the
maximum distance. The financial series exhibit a similar pattern of irregular spacing, en-
compassing almost the entire interval (0, 1]. For the series of average explosion duration,
the rescale has two steps: (i) calculate log(di)’s and (ii) divide them by the maximum log
distance. The log preserves the differences among the smaller distances and almost equalizes
the larger values; see Figure 8. This choice was motivated by the presence of a few large di’s
viewed as outliers in the series. The relationship di × ρi, defining the strength of Markov
dependence, is influenced by these outliers imposing that most di’s are below 0.5 associated
with large ρi. The log scale ensures that the distribution of di’s covers different parts of the
interval (0, 1). Figure 8 indicates that the ρi’s are spread across (0.3, 0.7), with a prevalence
of the stronger dependence (ρi ≈ 0.7).

(a) Ibovespa (b) Solar explosions

Figure 8: Histograms of di’s and corresponding Markovian dependence probabilities ρi’s in
the HMMs related to real applications. The behavior of IPC Mexico resembles Panel (a).

This study applies the HMMs, for the 3 datasets, assuming different K and R, as described
in Section 2.2. Configurations showing a lack of convergence, in the chains of µk or σ2

k, were
excluded from the analysis. Figure 11 (a) shows an asymmetric and unimodal behavior for
the solar explosion dataset. This aspect motivates the use of the HMMG for this particular
application. The option R = 1 is determined assuming the criterion based on the number
of histogram modes. However, we would like to handle the mode region and the tail region,
therefore, consider R = 2 and R = 3 here. The analysis indicates that the HMMG with R = 3
places more emphasis on changes in the mean, while the R = 2 case only assesses changes in
the tail. Due to the multimodal feature of both financial series histograms, it makes sense to
assume the HMMS for them; details can be found in the Supplementary Material.
Model evaluation relies on the following goodness-of-fit measurements: Deviance Information
Criterion (DIC), Widely Applicable Information Criterion (WAIC), Log Pseudo Marginal
Likelihood (LPML), and a clustering-based model selection criterion known as Integrated
Completed Likelihood (ICL). Further information on these criteria can be found in Spiegel-
halter, Best, Carlin, and der Linde (2002), Watanabe (2010), Gelman, Carlin, Stern, and
Rubin (2003), and Biernacki, Celeux, and Govaert (2000). For all cases, we establish that
lower values indicate a better fit.
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Figure 9 exhibits results of the selected HMMS and their respective classifications produced
for the financial series. Panels (a) and (b) highlight the good fit of the predictive density to the
data distribution. In Panels (c) and (d), note that the blue line (posterior mean) follows (as
expected) the trajectory of the series. Some occurrences of singleton clusters can be observed
in the results. For instance, in Panel (d), around the days 320 and 355 (with IPC index ≈ 41)
there is no change in the mean except for two isolated observations. This phenomenon may
be associated with observations located in the tails of adjacent mixture components.
Figure 10 shows the HMMG fitted to the IPC Mexico data. In Panel (b), the blue line indicates
the posterior mean of µk related to the component where the observation is allocated. Note
that the blue line tracks the series path, with all classifications exhibiting low uncertainty
(p̄∗ < 0.5) for most days, especially between 400 and 1100. In Panel (c), it can be seen that
the analysis provides variance classifications with low uncertainty for a large portion of the
series (e.g. p̄ ≈ 0 between 800 and 1000). Nearly all observations are categorized as decisive.
The HMMG, selected for the Ibovespa via information criteria, proves ineffective in adhering
to the data; see details in the Supplementary Material. Thus, the HMMS

K=7 is the preferred
model for the Ibovespa.

(a) HMMS
K=7 (Ibovespa) (b) HMMS

K=3 (IPC Mexico)

(c) Mean-based classif. (Ibovespa) (d) Mean-base classif. (IPC Mexico)

Figure 9: Model fit and mean-based classifications from HMMS . Panels (a, b): histogram
with estimated mixture density (dashed line), and estimated densities of components (solid
lines). Panels (c, d): data series (in black) and posterior mean of µk (in blue). Subpanels p̄
represent the degree of uncertainty in mean-based classification.

Table 5 demonstrates that the HMMG applied to the explosion dataset performs as effectively
as the applications to financial data concerning classification certainty for the mean. At least
96% of the observations are classified with low uncertainty. In terms of variance, the models
classify at most 40% of the observations as decisive. The HMMG with a greater number of
components, applied to the explosion data, is the least effective in classifying variance, with a
percentage of “decisive” between ≈ 11% and ≈ 22%. Nonetheless, these models are indicated
as good alternatives in terms of goodness-of-fit. According to the study, the HMMG

K=5
R=3

is a reasonable choice for the application. This conclusion is obtained when accounting for
both “classification power” and goodness-of-fit. For the chosen HMMG in each series, no
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(a) HMMG
K=4
R=3 fit (b) Mean-based classification (c) Variance-based classification

Figure 10: HMMG fitted to the IPC Mexico. Panel (a): histogram, estimated mixture (dashed
line), and components (solid lines). Panel (b): Data series (black points) and estimated µk

(blue line). Panel (c): estimated σ2
K . Uncertainty levels are expressed in Panels (b) and (c).

issues with estimating the components group size vector s were evident, which is crucial for
classification. The outcomes provided P (ŝ) >> 0.5, indicating a strong conviction about
component grouping.

Table 5: HMMG fitted with different K and R to the Solar explosions data. The last two
columns indicate the percentage of observations classified with low uncertainty. A favorable
result is suggested when a high value is obtained in the last three columns, and a low value
is detected for ICL, DIC, LPML, and WAIC.

K R ICL DIC LPML WAIC P (ŝ) p̄∗ ≤ 0.5 (%) p̄ ≤ 0.5 (%)

4 2 6364.02 4978.73 2491.52 2494.55 1.00 100.00 40.71
3 6359.49 4977.26 2490.93 2493.95 0.99 87.26 41.47

5 2 6407.32 4923.90 2463.74 2466.52 1.00 100.00 35.64
3 6407.13 4922.07 2462.74 2465.51 1.00 98.06 36.18

6 2 6520.89 4891.64 2446.85 2449.37 1.00 100.00 22.79
3 6517.22 4889.44 2445.60 2448.14 0.56 96.98 23.43

7 2 6607.02 4870.71 2435.68 2438.04 0.98 100.00 15.77
3 6608.18 4870.84 2435.74 2438.02 0.47 96.11 15.77

8 2 6684.45 4858.66 2429.35 2431.66 0.91 100.00 11.45
3 6683.52 4858.73 2429.49 2431.83 0.44 97.19 11.45

Figure 11: HMMG
K=5
R=3 fitted to the solar data. Panel (a): estimated mixture. Panel (b):

uncertainty level in variance classification by group. Panel (c): data (in black) and posterior
mean of µk (in blue) with uncertainty level (p̄∗). Panel (d): data (in black), variance classifi-
cations (colored asterisks), and uncertainty level (p̄).

Figures 10 and 11 (a) present goodness-of-fit results related to the IPC Mexico and Solar
datasets. The HMM fit for the solar data exhibits significant overlap among the Gaussian
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components. As a result, upon observing the estimated densities in Figure 11 (a), it becomes
evident that the number of components allocated to each of the mean groups can be ŝ =
(3, 1, 1). For the IPC Mexico, the estimate is ŝ = (1, 2, 1).
In contrast with the financial series, Figure 11 (d) indicates that, for the solar data, the
uncertainty level in variance classification is ≈ 0.5 for most observations. In Panel (b), it is
evident that only classifications corresponding to the first three components, Group g1, with
red, green, and dark blue asterisks in (d), tends to be designated as “doubtful” (p̄ > 0.5).
However, the model does not exhibit excessive uncertainty in this type of classification, given
that the median of p̄ in (b) is ≈ 0.6 with a small interquartile range. One possible reason
for the model’s lower certainty in variance classification is the high overlap between mixture
components within the same group.
The HMMs applied to the financial data estimated ≈ 1.0−7.1% of the series as mean changes
and ≈ 1.4 − 1.6% as variance-only changes. The solar data exhibited higher volatility, with
22% of the series estimated as mean changes, and 9% as variance-only changes. The initial
period of the COVID-19 pandemic (days 788 to 809, corresponding to February 27 to March
19 (2020) are detected as change points in the financial series. This aspect can be seen in
Figure 9 (c, d), and Figure 10 (b, c).
In summary, both HMMS and HMMG seem suitable for the IPC Mexico data. A brief
comparison study (HMMS vs. HMMG) is included in the Supplementary Material. The
choice of the HMM is left to the analyst. The study must account for the research goal, which
may involve detecting alterations solely in the mean or extending to variance, alongside other
factors such as the number of changes and the desired level of model certainty. Emphasizing
classification accuracy is important, while still ensuring goodness-of-fit.

7. Conclusions
This work introduced Bayesian mixture models with Markovian dependence, inspired by
Mayrink and Gonçalves (2020), to identify change points in irregularly spaced series. Two
models are proposed: one for identifying mean changes (HMMS), and one for detecting
changes in the mean and/or variance (HMMG). These proposals incorporate a dependence
structure to handle the irregular spacing. They allow inferences about the existence of Marko-
vian dependence between neighboring observations. This aspect stands out as a contribution
to change point detection in irregular series. Specifically, the HMMG is designed to group
mixture components with equal or close means but having distinct variances. Here, a group
change is the focus rather than a simple mean change. A variance change involves alternating
components within groups.
Classification methods were proposed for assigning observations to mixture components. They
are based on the MAP approach. Simulation studies showed that the posterior mean of µk

reasonably follows the series path. The HMMs yield accurate mean classifications for nearly all
observations. In scenarios with high overlap between components, the occurrence of singleton
clusters was more frequent. This phenomenon is not well-addressed in the change-point
literature, making it an interesting topic for future improvements. The MAP criterion was
not effective for classifying variance in the HMMG due to the high overlap in the mixture.
Thus, a certainty-level classification method was proposed. The simulation studies revealed
a substantial number of “decisive” classifications (high accuracy rate). Even when making
mistakes, the tendency is to classify into adjacent components. The same can be said about
the category “doubtful”.
The simulation results also demonstrate the HMM’s efficiency in terms of goodness-of-fit
and inference for µk. Some estimation difficulty was noted for σ2

k, especially for components
with high variability (high overlap). MC studies indicated that the HMMG requires priors to
establish a strong Markovian structure. In contrast, a less strong dependence is recommended
for the HMMS (lower overlap). Inconsistencies in fitting can occur depending on the overlap
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level and the strength of dependence imposed a priori.
The HMMs were also compared with change point detection methods from the literature.
The selected methods include cases assuming independence or spatial dependence between
observations. In this context, for mean change detection, the HMMs demonstrated superiority
or equivalence to the competitors. However, for identifying changes in both the mean and
variance, HMMG exhibited notably superior performance compared to the non-parametric
competitor.
The real data analysis suggested that both HMM’s were suited for the chosen financial series.
Nevertheless, the HMMS is an interesting choice for the Ibovespa, due to its flexibility in
tracking the rising trajectory. The HMMG was fitted to the solar data due to the need for
multiple highly overlapping components to accommodate the asymmetry. Here, a reasonable
number of observations was obtained with “decisive” and “doubtful” classifications. The
“doubtful” cases are associated (allocated with a moderate uncertainty) with components
having high overlap. To select the HMM, in addition to goodness-of-fit, one should consider
the research goal (mean or mean/variance changes), the expected number of changes, and the
level of classification uncertainty.
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