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Abstract

The ranked set sampling (RSS) procedure was initially established by McIntyre (1952)
for estimating the mean of forage and pasture yield as more precise than simple random
sampling (SRS). Recently, Aldrabseh and Ismail (2023) suggested the except extreme
RSS (EERSS) approach as a modification to RSS for estimating the population mean.
In this paper, a new estimator of the population variance is proposed using the EERSS
method. The mean squared error and bias equations of the new estimator are derived.
When the underlying distribution is non-symmetric, a simulation study is conducted to
evaluate the suggested estimator relative to SRS and RSS, based on the same number
of measured units, in terms of the relative precision and bias values for several sample
sizes. For symmetric distributions, the exact values of the bias and relative precision of
the EERSS variance estimator are evaluated. Two real datasets are utilized to illustrate
the performance of the suggested variance estimator. It is found that the EERSS variance
estimator is more efficient than the SRS estimator and more precise than RSS in most
cases, especially for small set sizes.

Keywords: ranked set sampling, except extreme ranked set sampling, judgment ordered, vari-
ance estimation, efficiency.

1. Introduction

The problem of estimating the population parameters is very important in statistics and
various fields of science. While simple random sampling (SRS) is a commonly used method,
Mclntyre (1952) presented ranked set sampling (RSS) as an alternative for estimating the
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production mean of pasture and forage yields. The RSS method is useful when the sample
units can be ranked visually or by a method other than direct quantification, which is less
expensive. Hence, it is widely used in agricultural, forest, and environmental fields. The RSS
procedure can be described as follows:

Step 1: Select m random samples each of size m units.

Set 1 Xl,XQ,...,Xm
Set 2 Xl,XQ,...,Xm

Set m | X1, Xo, ..., Xpm

Step 2: Rank the units within each sample with respect to the variable of interest judgmen-
tally or by any inexpensive method.

Step 3: Choose the i*" ranked unit from the " set for i = 1,2,...,m.
Set Ranking Selected units
Set 1 X(l:m)a X(Q:m)a SER) X(mm) X(l:m)

Set 2 X(l:m)» X(z;m)a ceey X(m:m) X(23m)

Set m | X1.m), X@2:m)s -+ +» X(mm) X (m:m)

Step 4: The above process can be repeated ¢ times (cycles) to obtain a sample of size n = cm.

Now, let w;(;.,,) denote the measurements of the produced ranked set sample, where j =
1,2, -+ ,crepresents the cycle number. The RSS estimator of the population mean is defined
as Xpgs = (1/cm) D521 21ty Tj(im)- In their study, Takahasi and Wakimoto (1968) defined
the theoretical properties of RSS and proved that X rgg is an unbiased estimator of the mean.
In a recent study, Aldrabseh and Ismail (2023) provided the except extreme ranked set sam-
pling (EERSS) method as a new approach to estimate the population mean. They showed that
the EERSS estimator is more efficient than the RSS, median ranked set sampling (MRSS),
moving extreme ranked set sampling (MERSS), and SRS estimators. The EERSS approach
is described using the following steps:

Step 1: Select m random samples each of size m + 2 units.

Set 1 X1, Xo, X3, ... aXerla Xm+2
Set 2 | X1, Xo, X3, ..., Xint1, Xt

Set m Xl) XQ) X37 e 7Xm+17 Xm+2

Step 2: Rank the units within each sample based on the variable of interest judgmentally or
by any inexpensive method.

Step 3: Choose the (i + 1) ranked unit from the i set for i = 1,2,...,m.

Set Ranking Selected units

Set 1 X(l:m+2)7 X(2:m+2)7 X(S:m+2)a SRR X(m+1:m+2)7 X(m+2:m+2) X(2:m+2)
Set 2 X(l:m+2)7 X(2sm+2)7 X(3:m+2)7 SRR X(m+1:m+2)7 X(m+2:m+2) X(3:m+2)

Set m X(l:m+2)7X(2:m+2)7 X(32m+2)7 ) X(m+1:m+2)7 X(m+2:m+2) X(m+1:m+2)

Step 4: The above process can be repeated ¢ times (cycles) to obtain a sample of size n = cm.
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Hence, the EERSS estimator of the population mean is defined as follows:
B 1 c m+l
Xeprss = — Y Y Xjim+2), (1)
cm — “—
7=1 i=2
with mean
_ 1 m—+1
E(X = — . 2
( EERSS) m ; H(i:m4-2)> (2)

and variance
m+1

Z U(Qi:m—‘rQ) : (3)
=2

The RSS is also employed in variance estimation, Stokes (1980) utilized the RSS method to
estimate population variance and suggested an asymptotically unbiased estimator given by

1
cm?

14 (XEERSS> =

1 cx _ 2
Shss = pre—] 2:1 2:1 (Xj(i:m) - XRSS) ; (4)
j=li=
with mean
1 m
E (S}QQSS> = 0-2 + m ZT(Qi:m)’ (5)

where o2 is the population variance, T(izm) = H(izm) — M p 18 the population mean, fi(;.p,) is
the mean of the (i : m)"" ordered random variable. The variance of the estimator is given as
follows:

9 B c (em — 1)2 s 4) s 9 9 cm —
Vv (SRss) = (cm — 1) l Z F(iim) +4 Z:ZI T(i:m) 9 (3:m) +4

c2m? < cm
=1

4c 9 9
T 50 > Zi<jo-(i:m)a(j:m) +

1 & 3)
D Tlaerm) Ko

=1

; O-Eli:m) ’

2(c—1) — (em —1)?
c2m?

(6)

In recent decades, many modifications of the RSS have been presented. Muttlak (1997) pro-
posed the MRSS, which considers only the median-ranked units. Subsequently, a multistage
version of MRSS was developed (Jemain, Al-Omari, and Ibrahim 2007). Al-Odat and Al-
Saleh (2001) established the MERSS, which utilizes only the extreme ranks and varies the
set sizes. The MERSS method is employed to derive the Bayesian estimator of variance by
Al-Hadhrami and Al-Omari (2009). Later, Zamanzade and Al-Omari (2016) suggested the
neoteric RSS procedure, which is used for estimating both the mean and variance. Robust
RSS (LRSS) (Al-Nasser 2007), robust extreme RSS (Al-Nasser and Mustafa 2009), double
LRSS (Al-Omari and Haq 2019), minimax RSS (Al-Nasser and Al-Omari 2018), modified
minimax RSS (Hanandeh and Al-Nasser 2021), and mixed methods combining SRS and RSS
(Haq, Brown, Moltchanova, and Al-Omari 2014). Most of these RSS modifications aim to
improve the efficiency of estimating the population mean.

Several researchers have addressed the problem of population variance estimation using RSS
and its modifications. For example, Yu, Lam, and Sinha (1999) compared the performance of
Stokes’s estimator for the normal distribution with their new unbiased estimator. MacEach-
ern, Oztiirk, Wolfe, and Stark (2002) introduced an RSS-unbiased estimator of variance for
the location-scale family. Additionally, Stokes (1995) investigated maximum likelihood (ML)
and best linear unbiased estimators for both variance and mean. Similarly, Balci, Akkaya,
and Ulgen (2013) introduced a modified ML for these estimators. Chen and Lim (2011)
suggested plug-in estimators for the variances and standard errors of strata. Ozturk and
Bayramoglu Kavlak (2020) used stratified judgment post-stratified samples to infer popu-
lation mean and total. Zamanzade and Vock (2015) discussed variance estimation with a
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concomitant variable. Likewise, Alam, Hanif, Shahbaz, and Shahbaz (2022) suggested two
generalized estimators under RSS using information from the auxiliary variable. Mahdizadeh
and Zamanzade (2021) proposed a kernel estimator of the cumulative distribution function.
The main objective of the current study is to discuss the EERSS procedure for estimating
population variance and compare it with SRS and RSS estimators.

The remainder of the paper is structured as follows: Section 2 covers the suggested EERSS
variance estimator along with its properties. Section 3 presents the results of various compar-
isons. In Section 4, we provide applications of the proposed method using two real datasets.
Finally, Section 5 offers a summary of the study’s conclusions.

2. General setup and suggested variance estimator

In this section, we define some important moments that simplify the calculations for our
variance estimation results. Let X1, Xo, ..., X, 12 denote a sample of independent and iden-
tically distributed (iid) random variables from a population with mean p, and variance o2.
The order of the sample units is denoted by X(1.n42), X@um+2)s -+ X(mt2:m42)- Then,

following Dell and Clutter (1972), for any constants v and k, we have:

Accordingly, by taking the expectations of both sides, we obtain

m+2 &
[Z E (X(i:m-‘rQ) o U) 1 = (m + 2) E (XZ - v>k'
i=1

In particular, the first and second moments around the mean u are expressed as follows:

m+2 m+2
Z (M(z‘:m+2) - N) = Z T(izm+2) = 0, (7)
i=1 i=1
and
m—+2 m—+2
Z 0(2i1m+2) + Z 7(272:m+2) = (m + 2) o2 (8)
i=1 i=1

In our case, if we exclude the extremes using Equations 7 and 8 and assuming symmetry, we
obtain

m+1 m+1
Z (M(i:m+2) - :U’) - Z T(i:m+2) = 0, (9)
1=2 i=2
and
m+1 m+2
Z U(Zi:m+2) = (m + 2) 02 - 0(21:m+2) - 0(21:m+2) - Z 7-(2i:'m—i-2)‘ (10)
=2 i=1

Based on the above discussion and for later use, we can state the following lemma 1:

Lemma 1. Assuming that Xgpgrss is an unbiased estimator of the population mean p under
the EERSS method, then

+1 _ +1
1. ZZZQ lu%i:m—f—Q) - 21712 T(Zi:m—&-Z) + mMQ'

+1 2 _ xmAl [ 2 2 _ ml 2 12
2. 305 B (X(i:m+2)) = 2% [U(i:m+2) F Bimt2)| = 22 O(ima2) T 2ie2 T(ime2) T
2
mu?.

_ 2
3. F (XEERSS) = Lyt T2y T 1.



Austrian Journal of Statistics 103

Proof. To prove (1), we utilize formula of 7(;., 12y, yielding:

H(i:m42) = T(izm+2) — M-

By squaring and taking the sum of both sides and then using Equation (7), we obtain

m+1 m+1 m+1 m+1

2 2 2 2 2
Z H(izm+2) = Z T(i:m+2) — 2p Z T(i:m+2) +mpu” = Z T(i:m+2) +mu”.
=2 =2 =2 =2

Now, (2) can be proven using the variance formula and (1) as follows:

m—+1 m~+1 m—+1 m+1 m+1
2:2 E (X(21m+2)> = 2:2 Vv (X(lerQ)) + ; :u%i:m-i-Q) = 2:2 U(Qi:m+2) ; T(Zi:m-i—Z) + mlu’2'

Finally, (3) can be proven directly using the variance formula and Equation (3) as follows:

m—+1

v 2 v o 2 1 2 2
E (XEERSS) =V (XEERSS) + [E (XEERSS)] =z ; O(izmy2) T 1
O
Let X1, X, ..., X;ne be a random sample of size n = mc selected from the parent population,

with a known population mean x and an unknown population variance o?. Therefore, the
most commonly used unbiased estimator of o2 under the SRS method is defined as follows:

1 X —\2 me X2 — meX?
S2.o = S (X - x) === 11
SRS mc—1i1< ! ) me — 1 ’ (11)

meanwhile, the variance of the estimator in the case of SRS is given as follows:

me =3 )04. (12)

1
2 - AT I
v <SSRS) B mcE (X =) me (me — 1

By referring to the EERSS method with a sample of size n = mc, Xm0y fori =2,...,m+1
and j = 1,2,...,c. Therefore, the proposed EERSS variance estimator is defined by

1 ¢ m+1 N 9
SkERss = 1 >N (Xj(i:m+2) - XEERSS) : (13)
j=1 i=2
with mean
m+1 B
E <S%3ERSS> = Cmc_ 1 [Z E (X(Qi;mﬂ)) —mE (X%ERSS)] . (14)
i=2

According to David and Nagaraja (2004), in the case of a symmetric distribution, employing
Lemma 1 and some simplifications, we obtain:

1 m+1 ¢ m+1
2 2 2
E (SEERSS) = Y Olimea) T poemm Y Thma)- (15)
=2 =2

Now, utilizing Equation (10), it can be written as:

2 _ 2 2 2 2
20° = 00m42) ~ Olmt2m+2) ~ Timt2mt2) — T(1m+2)
m

E (SJ%JERSS) =o'+
1 m+1

Z T(2i:m+2)'

m(em —1) =
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Thus, S?E ERSs 1S a biased estimator for o2, with a bias given by:

2 2 2 2 2
Bi SQ _ 207 — U(l:m+2) - 0(m+2zm+2) - T(m+2:m+2) - 7-(1:m+2)
tas { O EERSS m
17)
1 m+1 (
Z T(2i:m+2)'

m(em —1) =

If m is sufficiently large such that the bias approaches 0, then S%ppgs is asymptotically
unbiased, with its variance given in the following theorem:

(k) K th th
Theorem 1. Let Himt2) = E [X-(Z- m42) — ,u(i m+2)} denote the k" moment of the i"" or-

dered statistics about its mean Hlism=+2)- If,u (i-m-+2) is finite, then the variance of the EERSS
estimator of the population variance is given by:

) c c—1\2mt] m+1 ) )
14 (SEERSS) = (me — 1)2 ( ) Z M(l m—+2) +4 ; T(i:m+2)9 (i:m+2)

me — 1\ 3) 2(c—1)— (me -1,
+4 ( me ) Z T(i:m+2)'u(i:m+2) + m2c2 Z O (i:m+2)

=2 =2

m262 Z U(z m+2) (7’ m+2) }
i<r

Proof. To simplify the proof, let us deal with the variance of the numerator. Now, let

c m+l1 3 9
T= (Xj(i:m—f—Z) - XEERSS)
J=1 =2
c m+l1 _ 9
= [(Xj(i:m+2) - M(i:erQ)) - (XEERSS - /1') + ( zm+2 N)}
=1 =2
jC :n—l—l c m+1 ¢ m+l 9
= (Xj(i:m+2) = K(i:m+2) ) + Z Z (XEERSS - ) + ( H(im+2) )
7j=1 i=2 =1 i=2 =1 i=2
c m+1 3 c m+1 B
-2 ( (im+2) — H(i: m+2)> (XEERSS - M) -2> ) (XEERSS - M) (M(¢:m+2) - M)
j=1 i=2 j=1 i=2
c m+1
+2 (Xj(i:erZ) - M(i;m+2)) (N(i:erQ) - M) .
j=1 i=2

Now, let X;um2) — H(izms2) = Yjo)- Then, B (Vi) =0, B(Y2,)) = 0%, 0, E(Vh)) =

(k)
F(im+2
zero terms and simplifying further, it can be expressed as

T+ — (mc—l)imif ZZ j(r Zmi:l

) and Cov ( (i) S(T)) =0, for any j # s or i # r. After omitting the constant and

=1 =2 z<7“]1 ]<312
c m+l1
+23 > T Yie)
j=1 i=2

with
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and
c m—+1 m-+1
E(T*Q):E{< > > Y HZZZYQ@YM)”ZZ i Ys()
=1 i=2 i<rj=1s=1 ij<s i=2
m+1 ¢ m+1
CQZZZYQ s(r 22ZZYZ1)Y2 +4ZZ T(i:m+2) J(%
i<r j=1s=1 J<s =2 j=1 1i=2

("

After further simplifications and applying the variance and covariance formulas, we obtain

m+1 2
E(Tﬂ):c{(n’w—l)QZJr,u”n+2 (me—1)"+2

]122

2c Z U(Qi:m+2)o-(27“:m+2) + (C - 1)

2,2
m=c i<r
m-+1 m+1 m+1
me — 1 3
. Z U?i:m+2)] +4 Z T(2i:m+2)0(2i:m+2) +4 ( me > Z T(i:m+2)ﬂgi:)m+2)} .
i=2 i=2 i=2

Finally, the variance of the estimator is expressed as

Vv (SQEERSS) = 1)2 {E (T*Q) -~ [E (T*)]} = . E {(mc — 1) Z N(Z m+2)

(me—1 (me—1
m+1 m-+1
mec — 1 3
+4 Z 7—(21':771—1—2)U(Qi:m—s—Q) +4 ( me ) Z T(i:m+2):u'giz)m+2)
i=2 1=2
2(c—1) = (me—1)2" 4c 2
+ m2c2 Z O (i:m+2) +—> m2c2 Z O (i:m+2)9 (r:m+2)
=2 i<r
The proof has been completed. ]

3. Results and discussion

Since our estimator is biased, we need to calculate the mean squared error (MSE) using the
following formula:

MSE (Sle’ERSS> =V (S%ERSS) + [Bias (SJZEERSS)r' (18)

For comparisons between EFERSS and RSS relative to SRS for variance estimation, the
relative precision (RP) of S% . rgs With respect to the usual sample variance Sg rs and S%zss
is given by

V (SZRs)
2 Q2 _ SRS _
RP (87, S%ns) = MSE (5 ,l= EERSS, RSS. (19)
This section discusses the bias and the RP of the variance estimator. All calculations for
symmetric distributions were performed exactly using Wolfram Mathematica 13.3. For non-

symmetric distributions, all results were obtained through simulation using MATLAB R2023a,
with L = 100, 000 repetitions.

Table 1 contains the exact results of the RP and bias for the EERSS and RSS estimators ap-
plied to symmetrical distributions: N (0, 1), Uquadratic (0,1), Uniform (0,1), Lablace (0,1),
and Beta (3,3), at various sample sizes (m = 2,4,6,8,12,16,20). Similarly, Table 2 presents
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Table 1: Relative precision comparison of EERSS and RSS estimators vs. SRS estimator for
population variance, and bias values for some symmetric distributions

EERSS RSS
Distribution m RP |bias| RP |bias]
2 2.6723 0.4631 0.6768 0.3183
4 1.8653 0.4355 0.9234 0.1913
6 1.5579 0.4016 1.1419 0.1372
N (0,1) 8 1.4111 0.3713 1.3437 0.1071
12 1.2860 0.3228 1.7156 0.0746
16 1.2447 0.2868 2.0595 0.0573
20 1.2358 0.2590 2.3844 0.0465
2 2.0019 0.0187 1.2636 0.0459
4 2.1860 0.0049 1.4386 0.0276
6 2.3475 0.0118 1.8026 0.0199
Uquadratic (0, 1) 8 2.3584 0.0139 2.1774 0.0155
12 2.0699 0.0150 3.0055 0.0109
16 1.6928 0.0151 3.9842 0.0084
20 1.3975 0.0149 5.1650 0.0068
2 1.7626 0.0233 0.7241 0.0278
4 1.5052 0.0213 1.0637 0.0167
6 1.4312 0.0187 1.3483 0.0119
Uniform (0,1) 8 1.4416 0.0165 1.6248 0.0093
12 1.5634 0.0132 2.1744 0.0064
16 1.7393 0.0110 2.7240 0.0049
20 1.9374 0.0094 3.2742 0.0040
2 4.3703 1.2430 0.6935 0.5625
4 2.7464 1.1875 0.8783 0.3396
6 2.1517 1.1196 1.0171 0.2463
Laplace (0, 1) 8 1.8496 1.0573 1.1338 0.1943
12 1.5495 0.9539 1.3311 0.1374
16 1.4039 0.8733 1.5000 0.1066
20 1.3208 0.8086 1.6512 0.0873
2 2.1882 0.0140 0.6877 0.0117
4 1.6179 0.0131 0.9726 0.0070
6 1.4087 0.0118 1.2364 0.0050
Beta (3, 3) 8 1.3230 0.0108 1.4927 0.0039
12 1.2823 0.0091 1.9930 0.0027
16 1.3060 0.0079 2.4828 0.0021
20 1.3539 0.0070 2.9656 0.0017

the simulation results for the RP and bias of the EERSS and RSS estimators applied to asym-
metric distributions: Beta (5,2), Rayleigh (1), HalfNormal (2), Weibull (1,1), Exp (1),
Gamma (2,3), and Chisquare (5), also at various sample sizes (m = 2,4, 6, 8,12, 16, 20).

From Tables 1 - 2, we can conclude that:

e The RP varies across different distributions with fixed sampling methods at the same
value of m. For example, at m = 2, the RP of the EERSS estimator compared to the
SRS estimator is highest for the Laplace (0,1) distribution at 4.3703 and lowest for the
Uniform (0,1) distribution at 1.7636.

e The RP of the EERSS estimator compared to the SRS estimator decreases as m de-
creases for all parent distributions. This decrease is pronounced at small values of m,
gradual at medium values of m, and in some cases, there is an increase at large values
of m, as shown in the RP for beta and uniform distributions. In contrast, the RP of
the RSS estimator relative to the SRS estimator increases as m increases for all parent
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population variance, and bias values for some asymmetric distributions

EERSS RSS
Distribution m RP |bias] RP |bias]
2 2.5419 0.0108 0.7222 0.0082
4 1.8514 0.0100 0.9450 0.0049
6 1.6179 0.0091 1.1708 0.0035
Beta (5,2) 8 1.5146 0.0084 1.4452 0.0028
12 1.4299 0.0072 1.7999 0.0019
16 1.4486 0.0063 2.2211 0.0015
20 1.4568 0.0056 2.5658 0.0012
2 2.7685 0.1911 0.7005 0.1376
4 2.0106 0.1786 0.9075 0.0840
6 1.7473 0.1650 1.1641 0.0576
Rayleigh (1) 8 1.6233 0.1516 1.3409 0.0448
12 1.4980 0.1318 1.6802 0.0315
16 1.4677 0.1162 1.9927 0.0246
20 1.4694 0.1045 2.2979 0.0197
2 3.0087 0.6530 0.7449 0.4325
4 2.2258 0.6095 0.8927 0.2653
6 1.9786 0.5640 1.1182 0.1954
Half Normal (2) 8 1.9111 0.5171 1.3362 0.1408
12 1.7006 0.4468 1.5416 0.1026
16 1.7078 0.3992 1.8697 0.0858
20 1.6798 0.3630 2.1455 0.0640
2 4.9230 0.5775 0.7074 0.2555
4 3.8017 0.5445 0.8950 0.1513
6 3.2180 0.5165 0.9836 0.1113
Werbull (1, 1) 8 2.8319 0.4884 1.1049 0.0962
12 2.5355 0.4382 1.3350 0.0675
16 2.3144 0.3997 1.5066 0.0515
20 2.2765 0.3702 1.5626 0.0490
2 5.5139 0.5742 0.7749 0.2652
4 3.8812 0.5469 0.8645 0.1696
6 3.2610 0.5148 1.0267 0.1137
Exp (1) 8 2.9214 0.4851 1.1763 0.0926
12 2.5659 0.4371 1.3076 0.0685
16 2.3784 0.3977 1.4671 0.0538
20 2.2122 0.3691 1.6448 0.0416
2 4.5578 9.5543 0.8032 5.0975
4 3.0155 8.9068 0.7867 3.3173
6 2.6044 8.2803 1.0708 2.2824
Gamma (2,3) 8 2.3110 7.7544 1.1589 1.7873
12 2.0662 6.8951 1.3882 1.1985
16 2.0662 6.8951 1.3882 1.1985
20 1.9387 5.6778 1.7726 0.8291
2 3.8760 5.1454 0.7111 2.9644
4 2.8830 4.8335 0.9326 1.7575
6 2.5215 4.506 1.1148 1.2378
Chisquare (5) 8 2.2363 4.2021 1.2072 1.0322
12 1.9810 3.7208 1.4521 0.7028
16 1.8548 3.3413 1.6227 0.5551
20 1.7888 3.0548 1.7807 0.4318

distributions. This increase is significant at small values of m and smooth at large values

of m.
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e In the same distribution and for a fixed m, the results of RP indicate that the EERSS
estimator is more efficient than the RSS estimator in most cases, especially for small
values of m.

e The RP of the EERSS estimator is greater than one for all cases and all the considered
values of m. This indicates that the EERSS estimator outperforms SRS in all scenarios.
Moreover, it consistently surpasses the RP of RSS in most cases.

e The bias results indicate that the bias of the variance estimator decreases as m decreases
for both EERSS and RSS methods. However, at a fixed m and sampling method, the
bias value varies across different distributions. Across all distributions and at a fixed
m, the bias of the RSS estimator is lower than that of the EERSS estimator.

e In summary, the results of the RP strongly indicate that EERSS is the most efficient
sampling method for estimating population variance, especially at small set sizes.

4. Applications to real data

In this section, two real datasets are considered to illustrate the efficiency of the suggested
estimator. The first dataset represents the yearly crude birth rate in Jordan from 1960 to
2021, which is an important measure of the annual live births per 1,000 people estimated at
midyear. The natural increase rate is obtained by subtracting the crude death rate from the
crude birth rate. This natural increase rate reflects the rate of population change without
considering the impact of migration (Division 2022a). The second dataset represents the
yearly percentage of Jordanian people under the age of 14, from 1960 to 2022, from all
populations (Division 2022b).

Table 3 presents the raw data for the two datasets. Table 4 displays the results of descriptive
statistics for both datasets. Specifically, it shows that the mean and variance of the crude
birth rate are 37.27 and 91.315, respectively. Additionally, it indicates that the mean and
variance of the percentage of Jordanian people under the age of 14 are 43.258 and 36.778,
respectively. Figures 1 and 2 depict histograms and time series plots of the two datasets. It is
evident that the crude birth rate is slightly left-skewed and decreasing, while the percentage
of Jordanian people under 14 is symmetric and remains approximately constant.

Table 3: Raw datasets for two populations

Dataset 1

21.950 22.265 22.600 22999 23.377 23.708 24.441 25.398 26.207 27.018 27.840
28.605 28.605 28.729 28.785 29.024 29.044 29.068 29.085 29.153 29.399 29.659
30.551 31.479 32.784 33971 34.843 35.439 35.883 36.184 36.572 36.921 37.915
38.604 39.329 40.094 40.509 41.023 41.685 42.181 42.865 43.577 44.030 44.543
45.418 45.877 46.445 46.787 47.285 47.806 48.184 48.443 48.886 49.847 50.308
50.566 50.803 51.033 51.217 51.231 51.307 51.318

Dataset 2

45.7576 46.3203 46.8786 47.4050 47.9155 48.4247 48.8960 49.3088 49.6683 49.9636 50.1977
50.3821 50.5170 50.5977 50.6221 50.5926 50.5035 50.3610 50.1678 49.9304 49.6622 49.3675
49.0531 48.7268 48.4016 48.0751 47.7348 47.3721 46.9891 46.5898 45.7967 44.6471 43.5221
42.5032 41.7014 41.1739 40.9007 40.7824 40.6850 40.5379 40.3323 40.0622 39.7497 39.4117
39.0290 38.6318 38.2539 37.8850 37.4908 37.0804 36.6475 36.2102 35.7832 35.4660 35.3182
35.0718 34.7015 34.3305 33.9283 33.4993 33.0585 32.6091 32.0942

To illustrate the applicability of the EERSS estimator to the two considered populations,
Table 5 outlines the procedure for calculating the EERSS variance estimator. This estimator
is evaluated using Equation 13 with m = 6. It can be observed that for the first and second
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Table 4: Descriptive statistics of the two datasets

N Min Max  Mean Q1 Median Q3 Var Skewness
Dataset 1 62 21.95 51.318 37.27 29.024 36.746 46.445 91.315  0.0222
Dataset 2 63 32.094 50.622 43.258 37.977 44.647 49.014 36.778  -0.2970
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Figure 1: Histogram plots of dataset 1 (left) and dataset 2 (right)
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Figure 2: Time series plots of dataset 1 (left) and dataset 2 (right)

datasets, S%ERSS values are 75.0252 and 31.8805, with bias values of —16.2898 and —4.8975,
respectively.

Furthermore, to assess the performance of this estimator and compare it with both RSS and
SRS, we calculate the EERSS estimator using the same procedure for m = 2,3,4,5, and 6.
This involves computing the RP, absolute bias, and percentage error (PE). The PE serves
as an indicator of the absolute difference between the estimated and actual variance values
relative to the actual value, and it can be calculated using the formula (20).

)
|”lg—2“| % 100%, (20)

PE =

where [ is the sampling method, either EERSS or RSS. All calculations are performed using
MATLAB R2023b with L = 100, 000 repetitions. Table 6 presents the results of RP, bias, and
percent error (PE) for the two real datasets at m = 2,3,4,5,6. These results demonstrate
the quality and applicability of EERSS in estimating the population variance, compared to
both SRS and RSS procedures. The RP and absolute bias are evaluated using Equations (19)
and (17), respectively.

The results of RP in Table 6 for both EERSS and RSS estimators of population variance
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Table 5: EERSS procedure for a sample size of m = 6 from two datasets

EERSS sample of size m = 6 from dataset 1
Select m SRS and ranking them EERSS S%grss

22.265 28.605 29.659 31479  32.784  34.843  46.787 51.217 28.605 75.0252
22.600 24.441 28.729 35.439 41.685 42181  48.184 51.231 28.729
28.605 29.044  29.068 29.085 46.445  48.886  49.847 50.803 29.085
23.708 26.207  27.840 30.551 33.971 40.509  42.865 44.030 33.971
21.950 22,999 25398 35.883  36.184 36.572 48.443 50.566 36.572
23.377  28.785  36.921  41.023  47.806  50.308 51.033 51.318 51.033

EERSS sample of size m = 6 from dataset 2
Select m SRS and ranking them EERSS S%Zgrss

33.9283 35.0718 40.5379 43.5221 47.7348 48.7268 49.9304 50.5926 35.0718 31.8805
33.05685 37.8850 40.3323 40.7824 46.9891 48.0751 50.1977 50.6221 40.3323
37.0804 38.6318 40.0622 41.1739 42.5032 46.8786 48.4016 48.4247 41.1739
34.3305 35.4660 36.6475 37.4908 44.6471 46.5898 48.8960 50.1678 44.6471
35.3182 41.7014 45.7576 47.4050 49.3675 49.6622 49.6683 49.9636 49.6622
32.0942 35.7832 39.0290 39.7497 46.3203 47.3721 49.3088 50.3610 49.3088

Table 6: Relative precision, bias, and percent error of the sample variance of the two datasets
at m=2,3,4,5and 6

EERSS RSS
Dataset m RP |bias] PE RP |bias] PE
2 1.7025 18.506 20.5979 0.7387 32.5325 36.2108
3 1.7038 17.656 19.6525 0.9561 24.1859 26.9204
Dataset 1 4 1.7116 16.549 18.4205 1.1136 19.6234 21.8421
5 1.7177 15.394 17.1347 1.2585 16.6946 18.5821
6 1.7731 14.326 15.9457 1.3910 14.5467 16.1913
2 1.7259 6.4581 17.8431 0.7609 12.7800 35.3087
3 1.7997 6.2408 17.2426 0.9726 9.5919 26.5013
Dataset 2 4 1.8351 5.9055 16.3161 1.1320 7.8293 21.6315
5 1.9046 5.4655 15.1004 1.2776 6.6002 18.2356
6 1.9720 5.1148 14.1315 1.4267 5.8119 16.0577

increase with m, while the absolute bias and PE decrease. Furthermore, at the same values of
m, the RP of the EERSS estimator exceeds that of the RSS estimator. However, the absolute
bias and PE of the EERSS estimator are lower than those of the RSS estimator.

These indicators provide some insight into the consistency of the EERSS variance estimator
based on real applications, aligning somewhat with the simulation results presented in the
previous section.

5. Conclusions

This paper introduced a new estimator for population variance applicable to both symmetric
and non-symmetric distributions. Two real datasets are utilized for illustration purposes. The
study demonstrates that the EERSS estimator is asymptotically unbiased and more efficient
than the SRS estimator when using the same number of measured units. Furthermore, the
EERSS estimator outperforms the RSS estimator in most cases, especially for small set sizes.

In future work, further exploration of population variance estimation under alternative RSS
modifications and investigation of additional applications can be discussed.
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