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Abstract

Two-way contingency tables illustrate the relationship between two discrete variables.
Their corresponding probability tables can be regarded as an element in a simplex. Herein
we discuss the symmetry of a square contingency table with the same row and column
classifications. Specifically, we identify symmetric probability tables as a linear subspace
using the Aitchison geometry of the simplex. Then given a probability table, an orthogonal
projection onto the symmetric subspace yields the nearest symmetric table. The (i, j) cell
of the nearest symmetric table is characterized as the geometric mean of symmetric cells.
This characterization does not agree with the standard maximum likelihood estimators,
except in the symmetric case. The original probability table is subsequently decomposed
into symmetric and skew-symmetric tables, which are orthogonal to each other. Finally,
we develop a method to test the symmetry of a contingency table based on a parametric
bootstrap and provide an example.

Keywords: contingency table, Aitchison geometry, Bowker test, orthogonal decomposition.

1. Introduction
The variables in a square two-way contingency table often depend on each other. Consider
an I × I square contingency table with the same row and column classifications, where n
individuals are arranged in I2 cells with nij individuals assigned to the (i, j) cell. Assuming
the data is obtained from a multinomial sampling, individuals fall into each of the (i, j) cells
with a certain probability, pij > 0,

∑I
i=1

∑I
j=1 pij = 1. We will refer to a table with pij in

the ith row and jth column as a probability table (PT). Our research is interested in the
symmetric structure of pij , which means the probability that an individual falls into the (i, j)
cell is equal to the probability that the individual falls into the (j, i) cell. Bowker (1948)
proposed a method to test the hypothesis, H0 : pij = pji, for i, j = 1, 2, . . . , I, using χ2 type
statistic,

χ2 = n
I∑

i=1

I∑
j=1

(p̂ij − Êij)2

Êij

, (1)

where Êij = (p̂ij + p̂ji)/2 and p̂ij = nij/n. It has an approximately χ2 distribution with
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Table 1: Data of unaided distance vision of 7477 women aged 30 − 39 (Stuart 1955)

Right eye
Left eye Highest Second Third Lowest Total

grade grade grade grade
Highest grade 1520 266 124 66 1976
Second grade 234 1512 432 78 2256
Third grade 117 362 1772 205 2456

Lowest grade 36 82 179 492 7890
Total 1907 2222 2507 841 7477

Table 2: Estimated PT(%) corresponding to Table 1

Right eye
Left eye Highest Second Third Lowest Total

grade grade grade grade
Highest grade 20.33 3.56 1.66 0.88 26.43
Second grade 3.13 20.22 5.78 1.04 30.17
Third grade 1.56 4.84 23.70 2.74 32.85

Lowest grade 0.48 1.10 2.39 6.58 10.55
Total 25.50 29.72 33.53 11.25 100.00

I(I − 1)/2 degrees of freedom as n → +∞. We can also use likelihood ratio statistics,

G2 = 2n
I∑

i=1

I∑
j=1

p̂ij log
(

p̂ij

Êij

)
, (2)

which has the same limiting distribution as (1). These statistics are interpreted as divergences
from the maximum likelihood estimator, p̂ij , to the one under H0, Êij .
Throughout this paper, we use the contingency table given by Stuart (1955) as an example.
This table is a 4 × 4 contingency table, which classifies the eyesight of 7477 women (Highest,
Second, Third, and Lowest grades). Table 1 displays the contingency table, while Table 2
shows the corresponding estimated PT by percentage. For this table, Bowker’s test on the
symmetry of the square contingency table using (1) produces χ2 = 19.1 with a p-value ≃ 0.004.
Consequently, the null hypothesis is rejected at the 0.05 significance level.
When the symmetry model, H0, does not hold for the given data, we are interested in applying
the asymmetric or more relaxed models. For example, Kateri and Papaioannou (1997), Kateri
and Agresti (2007), and Tahata (2020) proposed the asymmetry models based on the f -
divergence for analyzing square contingency tables. Moreover, since we are interested in
measuring the degree of departure from symmetry, for example, Tomizawa (1994), Tomizawa,
Seo, and Yamamoto (1998), and Momozaki, Cho, Nakagawa, and Tomizawa (2023) proposed
the measures that represent the degree of departure from symmetry using various approaches.
Tahata (2022) gives a review that focuses on modeling based on f -divergence and the measure
of asymmetry. However, there has yet to be a detailed investigation of symmetry analysis
using Aitchison geometry. Therefore, this paper considers the method based on Aitchison
geometry for square contingency table analysis.
We can view I × J PTs associated with contingency tables as an element of the standard
(IJ − 1)-dimensional simplex, where the subset of RIJ is given by

SIJ =

(t11, t12, . . . , tIJ) ∈ RIJ | tij > 0,
I∑

i=1

J∑
j=1

tij = 1


In compositional data analysis, a simplex equipped with an algebraic-geometric structure,
called the Aitchison geometry, has been used because it becomes a Euclidean space (Bill-
heimer, Guttorp, and Fagan 2001; Pawlowsky-Glahn and Egozcue 2001). For two-way prob-
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ability tables, Egozcue, Pawlowsky-Glahn, Templ, and Hron (2015) introduced the decompo-
sition of a PT into two geometric marginal tables and an interaction table using Aitchison
geometry and proposed an analysis method similar to the ordinary log-linear model. Herein
we define the symmetry of PTs and propose a method to analyze the symmetry of square
contingency tables using the Aitchison geometry.
In Section 2, we recall simplicial operations and the Aitchison geometry for compositional
data: perturbation, powering, centered log-ratio (clr) transformation, and the Aitchison met-
rics. Section 3 introduces the transposition of a PT and the symmetric PTs, which create
the subspace and the decomposition obtained by the orthogonal projection of a given PT.
Moreover, we present the properties of a skew-symmetric PT obtained by subtracting the
symmetric PT from the original one and proposes measures of departure from symmetry.
Section 4 provides a method to test the symmetry based on the distance between the original
PT and the nearest symmetric one. Section 5 illustrates the proposed decomposition of PTs
and the testing of symmetry through an example 1. Finally, Section 6 concludes this paper.
All proofs are deferred to the Appendix.

2. Simplicial operations and the Aitchison geometry
Consider an I×J contingency table obtained from multinomial sampling. Let T = (tij) denote
the vector of its associated PTs, whose probabilities are assumed to be strictly positive and
add up to 1. Therefore, the table is regarded as an element in a simplex, SIJ .
Aitchison (1982) introduced an operation called perturbation between elements of a simplex.
In addition, Aitchison (1986) defined an operation called powering as a repeated perturbation.
For two PTs, R and T, and a real number, α, the perturbation, ⊕, and powering, ⊙, are
respectively given as

R ⊕ T =
(

r11t11∑I
i=1

∑J
j=1 rijtij

, . . . ,
rIJ tIJ∑I

i=1
∑J

j=1 rijtij

)
,

α ⊙ R =
(

rα
11∑I

i=1
∑J

j=1 rα
ij

, . . . ,
rα

IJ∑I
i=1

∑J
j=1 rα

ij

)
.

Simplex SIJ equipped with ⊕ and ⊙ is a (IJ − 1)-dimensional vector space. (Aitchi-
son, Barceló-Vidal, Martín-Fernández, and Pawlowsky-Glahn 2001; Pawlowsky-Glahn and
Egozcue 2001)
Because analyzing a simplex with the constraint that its entries add to 1 is difficult, Aitchison
(1982, 1986) achieved a flexible analysis by mapping the simplex onto a space of real num-
bers with two different isomorphisms: the additive log-ratio (alr) transformation and the clr
transformation. The clr transformation is suited to analyze PTs since each part of a PT is
represented by a contrast with the geometric mean of all the parts of the PT, which is easier
to interpret.
Let g(T) be the geometric mean of the entries of T, that is,

g(T) =

 I∏
i=1

J∏
j=1

tij

1/(IJ)

.

The clr transformation of T ∈ SIJ , clr(T), is an I × J table whose entries are expressed as

clrij(T) = log tij

g(T) , i = 1, . . . , I, j = 1, . . . , J,

where log refers to the natural logarithm. The overall sum of entries clr(T) is 0. Therefore,
it is not full rank and spans a (IJ − 1)-dimensional subspace of RIJ . The inverse of this
transformation is given as

T = C exp[clr(T)],
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where exp operates component-wise. C is the closure operator, which is defined as

CT =
(

t11∑I
i=1

∑J
j=1 tij

, . . . ,
tIJ∑I

i=1
∑J

j=1 tij

)
,

where T ∈
{

t ∈ RIJ | tij > 0
}

. Therefore, the clr transformation is a one-to-one mapping
from SIJ to (IJ − 1)-dimensional subspace of RIJ .
The Aitchison inner product, ⟨·, ·⟩a, the norm, ∥ · ∥a, and the distance, da(·, ·), are defined as

⟨·, ·⟩a = ⟨clr(·), clr(·)⟩, ∥ · ∥a = ∥clr(·)∥, da(·, ·) = d(clr(·), clr(·)),

where ⟨·, ·⟩, ∥ · ∥, and d(·, ·) denote the ordinary Euclidean inner product, norm, and distance
in RIJ , respectively. The simplex equipped with this metric in addition to perturbation and
powering is a (IJ −1)-dimensional Euclidean space (Billheimer et al. 2001; Pawlowsky-Glahn
and Egozcue 2001). Therefore, one table can be added to another one, the distance between
two PTs and the norm of a PT can be measured, and a PT can be orthogonally projected
onto some linear subspace.
Egozcue et al. (2015) proposed a method to study the independence between two categorical
variables using the Aitchison geometry. They showed that independent PTs constitute an
(I − 1)(J − 1)-dimensional linear subspace of SIJ , which is denoted by SIJ

ind, and any PT
can be orthogonally projected onto this subspace. As a result, any PT, T, can be uniquely
decomposed as

T = Tind ⊕ Tint,

where Tind is the closest independent PT in the sense of the Aitchison distance and Tint is
the interaction PT orthogonal to Tind. The square Aitchison norm of Tint is called simpli-
cial deviance, ∆2(T). Its relative version to falls within [0, 1], which is called the relative
simplicial deviance, R2

∆(T). ∆2(T) and R2
∆(T) can be used to measure the departure from

independence. They also developed another method to test independence using multinomial
simulations.

3. Symmetric PT
In this section, we consider the symmetric structure of a PT in the similar manner as Egozcue
et al. (2015) The probability that an individual will fall in the (i, j) cell is equal to the
probability that an individual will fall in the (j, i) cell because the symmetry of a two-way
contingency table is normally defined as corresponding to a PT, T, whose transpose, T (T),
is the same. Therefore, a symmetric PT is defined as follows:

Definition 1 (Symmetric PT). Let T ∈ SI2 be an I × I table. T is a symmetric PT, if

T = T (T).

This leads to Lemma 1 and Lemma 1 states that symmetric PTs form a subspace of SI2 .

Lemma 1 (Subspace of symmetric PTs). Let SI2
sym be the set of I × I symmetric tables in

SI2. Then SI2
sym is an (I − 1)(I + 2)/2-dimentional subspace of SI2.

Egozcue and Maldonado (2021) state the same for elements of R+
>0 = {(x11, x12, . . . , xII) ∈

RI2 | xij > 0} with log-geometry (non-normalized Aitchison geometry); Birtea and Gavra
(2024) show the relation between them, that is, R+

>0 with log-geometry is a Lie group and a
simplex with Aitchison geometry is associated to its quotient Lie group with respect to the
equivalence relation.
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Table 3: MLE(%) of Table 1 under the symmetry hypothesis

Right eye
Left eye Highest Second Third Lowest Total

grade grade grade grade
Highest grade 20.33 3.34 1.61 0.68 25.97
Second grade 3.34 20.22 5.31 1.07 29.95
Third grade 1.61 5.31 23.70 2.57 33.19

Lowest grade 0.68 1.07 2.57 6.58 10.90
Total 25.97 29.95 33.19 10.90 100.00

Table 4: Nearest symmetric PT(%) corresponding to Table 1

Right eye
Left eye Highest Second Third Lowest Total

grade grade grade grade
Highest grade 20.36 3.34 1.61 0.65 25.96
Second grade 3.34 20.25 5.30 1.07 29.96
Third grade 1.61 5.30 23.70 2.57 33.20

Lowest grade 0.65 1.07 2.57 6.59 10.88
Total 25.96 29.96 33.20 10.88 100.00

According to Lemma 1 and Hilbert projection theorem, for every PT T ∈ SI2 , there is a unique
PT, Tsym ∈ SI2

sym, for which ∥R ⊖ T∥a is minimized over the PTs, R ∈ SI2
sym. Moreover, T is

uniquely decomposed into Tsym and

Tskew = T ⊕ ((−1) ⊙ Tsym) = T ⊖ Tsym,

which are orthogonal to each other (⟨Tsym, Tskew⟩a = 0).
Theorem 1 describes orthogonal projections onto the subspace of symmetric PTs.

Theorem 1. Let T ∈ SI2 be an I × I table. The nearest symmetric PT to T is Tsym =
0.5 ⊙ (T ⊕ T (T)) in the sense of the Aitchison distance in SI2.

Table 3 shows MLE under the symmetry hypothesis, while Table 4 is the symmetric PT,
which is the orthogonal projection of Stuart’s example onto the symmetric subspace. The
latter coincides with the minimum discrimination information (MDI) estimator satisfying
symmetry in Ireland, Ku, and Kullback (1969).
As a result of the decomposition, the departure of symmetry can be measured using the
square-Aitchison norm.

Corollary 1. Let T ∈ SI2 be an I × I table. Consider the decomposition, T = Tsym ⊕ Tskew,
defined in Theorem 1. Then,

∥T∥2
a = ∥Tsym∥2

a + ∥Tskew∥2
a.

Next, we describe the properties of the skew-symmetric PT, Tskew, and the decomposition of
the square-Aitchison norm into symmetric and skew-symmetric parts.

Theorem 2. Let T ∈ SI2 be an I × I table. The nearest symmetric PT of Tskew is the
neutral element of SI2, N, whose elements are all equal. In addition, the (i, j) and (j, i) cells
of clr(Tskew) sum to 0.

From the properties shown in Theorem 2, Tskew is called a skew-symmetric PT. The nearest
symmetric PT of Tskew is the neutral element with ∥N∥a = 0. Therefore, ∥Tskew∥2

a is a proper
measure of asymmetry. The following theorem states this important property for Tskew.
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Theorem 3. Let T ∈ SI2 be an I × I table and R ∈ SI2
sym be any symmetric I × I PT. Then

the perturbed PT, V = R ⊕ T, is orthogonally decomposed into V = Vsym ⊕ Tskew, where
Vsym = R ⊕ Tsym.

The following two definitions adopt ∥Tskew∥2
a and its relative version as a measure of asym-

metry.

Definition 2 (Simplicial skewness). Let T ∈ SI2 be an I × I table with an orthogonal
decomposition T = Tsym ⊕ Tskew (Corollary 1). The simplicial skewness, which measures the
degree of symmetry, is defined as E2(T) = ∥Tskew∥2

a with 0 ≤ E2(T) < ∞.

Definition 3 (Relative simplicial skewness). Using the notation in Definition 2, the relative
simplicial skewness is

R2
E(T) = E2(T)

∥T∥2
a

= ∥Tskew∥2
a

∥T∥2
a

= ∥T∥2
a − ∥Tsym∥2

a

∥T∥2
a

, 0 ≤ R2
E(T) ≤ 1.

E2(T) has a desirable property. It offers a measure for the departure of symmetry, which
we call the symmetric invariant. That is, when each symmetric cell of T is multiplied by
arbitrary strictly positive constants, Tskew remains the same. When PT, T, is described by

pij =
{

δijϕij (i < j),
ϕij (i ≥ j),

where ϕij = ϕji, the simplicial skewness is expressed as

E2(T) = 1
2
∑
i<j

(log δij)2.

Consequently, it measures only the asymmetric components under an asymmetric model such
as the conditional symmetry (CS) model or the diagonals-parameter symmetry (DPS) model.
(McCullagh 1978; Goodman 1979)
The relative simplicial skewness is not symmetric invariant because its denominator changes
when another symmetric PT is perturbed to T. However, the relative simplicial skewness
indicates whether the skew-symmetric PT is in the overall norm. Therefore, a low value of
R2

E(T) may be due to either a small simplicial skewness or a large norm of symmetric PT.
When the simplicial skewness is large, it is useful to determine which cell is responsible
for the departure of symmetry. Tskew itself provides a detailed description of each cell.
However, reading the description directly from the cells is incomprehensible because it must
be read in contrast to 1/I2. Therefore, Tskew is transformed using the centered log-ratio
transformation,and clr(Tskew) is analyzed like a log-linear model with its constraint summing
to 0. This detailed description of skewness can be obtained using the following definition of
cell skewness:

Definition 4 (Cell skewness). Let Tskew ∈ SI2 be a skew-symmetric I × I table. The
coefficient clrij(Tskew) is called the (i, j) cell skewness.

A direct result is that the square-simplicial skewness is the sum of square-cell skewnesses:

E2(T) = ∥Tskew∥2
a =

I∑
i=1

I∑
j=1

(clrij(Tskew))2

Because cell skewnesses are functions of the symmetric invariant, Tskew, cell skewnesses are
symmetric invariants.
For simplicity, the cell-skewness analysis is presented as an I × I table, which is called a
skewness array. In a skewness array, the entries are the signed proportions or percents of the
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simplicial skewness, sgn(clrij(Tskew))(clrij(Tskew))2/E2(T). The strength of the skewness is
quantified, and the direction of the skewness is illustrated by the sign if its probability is a
surplus or deficit compared with the corresponding symmetry PT.
Theorem 4 shows how Tskew and the simplicial skewness change under weighting operations.

Theorem 4 (Weighting properties). Let T ∈ SI2 be an I × I table. Consider a symmetric
PT denoted as W and a real number, w. Then,

∥T ⊕ W∥2
a = ∥Tsym ⊕ W∥2

a + ∥Tskew∥2
a,

∥w ⊙ T∥2
a = w2 · ∥Tsym∥2

a + w2 · ∥Tskew∥2
a.

(3)

These properties in Theorem 4 have practical consequences. Sampling of the population may
affect the symmetric PTs of T, but does not affect the analysis. Perturbation by W works as
a weighting of the symmetric sampling without affecting the simplicial skewness. Weighting
by powering can appear in the case of repeated perturbation, which is the likelihood of an
independent sample being produced.

4. Symmetry test
Here, we present a method to test the symmetry of contingency tables derived on the theory
developed in the previous sections. We use the sample simplicial skewness, E2(T̂) (Definition
2), and the sample relative simplicial skewness, R2

E(T̂), as the test statistic.
Consider a sample I × I contingency table obtained by multinomial sampling, and the cor-
responding estimated PT, which is denoted T̂. To use the Aitchson geometry, the entries of
PT must be strictly positive and not 0. Therefore, T̂ must be an estimator that avoids zero
cells. Perks (1947) proposed a Bayesian estimator using the uniform Dirichlet prior, which is
given as

t̂ij = nij + 1/I2

n + 1 , i, j = 1, 2, . . . , I, (4)

Thus, (4) is biased toward ∥N∥a = 0. If we interpret the Aitchison norm as information like
Egozcue and Vera (2018), it is natural to set it to 0 before acquiring data. Let T be the
true unkown multinomial probabilities and SI2

sym be the subspace of symmetric tables, as in
Section 3, Definition 1. Then the hypotheses,

H0 : T = Tsym ∈ SI2
sym vs. H1; T /∈ SI2

sym,

are tested. Under H0, we must estimate which symmetric table corresponds to T = Tsym.
For the Bowker test statistic (1), the arithmetic mean of the PT and the transpose of the
PT are specified. According to the theory developed in the previous sections, Tsym is set to
T̂sym. That is, the symmetric PT obtained from the orthogonal projection onto a symmetric
subspace is the same form of estimator obtained in Ireland et al. (1969). Therefore, it has
the same asymptotic properties as the BAN estimator.
Using a parametric bootstrap, we investigate the sample distribution of two statistics. The
test procedure is as follows:

1. Estimate the sample PT, T̂, using the estimator that avoids zero cells;

2. Compute T̂sym from T̂;

3. For T̂sym, compute T̂skew = T̂ ⊖ T̂sym, E2(T̂), and R2
E(T̂);

4. Simulate 104 multinomial samples with the probabilities specified in H0 : T = T̂sym.
For each simulated contingency table, repeat steps 1 to 3;
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Table 5: Sizes and powers of six test statistics for 4 × 4 contingency tables with T̂sym ⊕ (r ⊙
T̂skew): simplicial skewness (E2), relative simplicial skewness (R2

E), Pearson statistic (χ2),
log-likelihood ratio statistic (L), and their bootstrap versions (χ2

B) and (LB)

r

Method n −1.5 −1.0 −0.5 0 0.5 1.0 1.5
E2 50 0.1542 0.1405 0.1391 0.1379 0.1451 0.1432 0.1574

100 0.1017 0.0941 0.0881 0.0852 0.0871 0.0914 0.0996
1000 0.1873 0.0772 0.0267 0.0155 0.0275 0.0754 0.1878
5000 0.9776 0.7060 0.2029 0.0437 0.2086 0.7064 0.9793
7477 0.9989 0.8860 0.3061 0.0492 0.3067 0.8878 0.9988

R2
E 50 0.2630 0.2493 0.2440 0.2414 0.2502 0.2528 0.2706

100 0.2448 0.2252 0.2120 0.2074 0.2143 0.2235 0.2433
1000 0.2622 0.1161 0.0460 0.0268 0.0474 0.1160 0.2627
5000 0.9791 0.7153 0.2132 0.0476 0.2167 0.7178 0.9805
7477 0.9990 0.8903 0.3139 0.0512 0.3144 0.8919 0.9989

χ2
B 50 0.1420 0.1365 0.1289 0.1254 0.1329 0.1300 0.1451

100 0.1110 0.1054 0.0966 0.0937 0.0949 0.1009 0.1138
1000 0.3476 0.1565 0.0623 0.0391 0.0627 0.1576 0.3512
5000 0.9911 0.7729 0.2093 0.0493 0.2245 0.7738 0.9907
7477 0.9998 0.9317 0.3302 0.0518 0.3270 0.9312 0.9997

LB 50 0.1533 0.1450 0.1377 0.1339 0.1411 0.1408 0.1545
100 0.1187 0.1091 0.0984 0.0952 0.0979 0.1061 0.1206

1000 0.3701 0.1674 0.0683 0.0444 0.0698 0.1724 0.3695
5000 0.9912 0.7717 0.2084 0.0495 0.2240 0.7718 0.9907
7477 0.9998 0.9313 0.3297 0.0519 0.3266 0.9308 0.9997

χ2 50 0.0050 0.0046 0.0036 0.0029 0.0049 0.0044 0.0056
100 0.0282 0.0218 0.0171 0.0138 0.0153 0.0203 0.0255

1000 0.3720 0.1684 0.0725 0.0471 0.0729 0.1771 0.3715
5000 0.9912 0.7689 0.2051 0.0493 0.2209 0.7706 0.9907
7477 0.9999 0.9307 0.3281 0.0520 0.3253 0.9300 0.9997

L 50 0.0511 0.0444 0.0390 0.0386 0.0460 0.0444 0.0489
100 0.0913 0.0776 0.0691 0.0671 0.0690 0.0800 0.0940

1000 0.3978 0.1879 0.0828 0.0543 0.0834 0.1953 0.3989
5000 0.9913 0.7739 0.2083 0.0505 0.2250 0.7739 0.9911
7477 0.9999 0.9315 0.3306 0.0530 0.3281 0.9313 0.9997

5. Compare the values of the test statistic and significant critical points.

To verify the size and power of the test, we conducted the Monte Carlo simulations. We
used the data set in Table 1 and its corresponding PT estimated by T̂, which was proposed
in Perks (1947). Then 104 contingency tables with n = 50, 100, 1000, 5000, and 7477 trials
under T̂sym ⊕ (r ⊙ T̂skew) were generated. The probability of rejection was estimated as the
proportion of times that the test statistic was larger than the 95% quantile of the distribution
generated under the null hypothesis, H0. The probability of rejection should approximately
coincide with a significance level α = 0.05. As the departure from symmetry value increase,
the probability of rejection should increase up to 1.
The sizes and powers of six test statistics were compared: simplicial skewness (E2), relative
simplicial skewness (R2

E), Pearson statistic (χ2), loglikelihood ratio statistic (L), and their
bootstrap versions (χ2

B) and (LB). χ2 and L were computed as (1) and (2) and, if nij +nji = 0,
then the corresponding summand was set to 0. χ2

B and LB were computed by a parametric
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bootstrap using the following test statistic:

χ2
B = n

I∑
i=1

I∑
j=1

(t̂ij − Êij)2

Êij

, LB = 2n
I∑

i=1

I∑
j=1

t̂ij log t̂ij

Êij

,

where tij is (i, j) cell of T̂ and Êij is (i, j) element of T̂sym. Table 5 shows the simulation
results. In all test statistics, the probability of rejection with a large sample (n = 5000, 7477),
converges to 0.05 under the null hypothesis (r = 0) and increases to 1 as the value of r
increases. Due to the unstable estimation of zero cells in contingency tables with small
samples, we cannot control the type I error of all test statistics. The controls of the type I
error for χ2 and L begin to stabilize from n = 100, while those for other statistics begin to
stabilize from n = 1000.

5. Illustrative example

Table 6: Statistics
Statistics Sample value 0.05 crit-v p-value

∥T̂∥2
a 20.560

∥T̂sym∥2
a 20.341

E2(T̂) 0.219 0.131 49 × 10−4

R2
E(T̂) 0.011 0.006 46 × 10−4

Table 1 shows the contingency table reported by Stuart (1955). Their table classified 7477
women by left and right eyesight (Highest, Second, Third, and Lowest grades). Table 4 shows
the consequence of orthogonal projection onto a symmetric subspace. The simplicial skewness
and other summary statistic are described in Table 6. Table 7 and 8 show the skewness table
and array, respectively.
The two symmetry tests show p-values below the 0.05 significant level. Therefore, the symme-
try hypothesis is rejected. This agrees with the method proposed by Bowker (1948). Once the
hypothesis of symmetry is rejected, the next question is how the PT deviates from symmetry.
The skewness array in Table 8 shows that most departures from symmetry are due to positive
skewness in the Highest-Lowest grade and a negative skewness in the Lowest-Highest grade.
The bold skewnesses suggest that the Highest-Lowest and Lowest-Highest grades are skewed
in the female employees at Royal Ordnance factories.

Table 7: clr(T̂skew) for Table 1

Right eye
Left eye Highest Second Third Lowest

grade grade grade grade
Highest grade 0.000 0.064 0.029 0.363
Second grade −0.064 0.000 0.088 −0.025
Third grade −0.029 −0.088 0.000 0.068

Lowest grade −0.363 0.025 −0.068 0.000

6. Conclusions
PTs are commonly obtained from a multinomial sampling. PTs with strictly positive entries
are elements of a simplex. Mathematical tools can be applied because a simplex with the
structure called the Aitchison geometry is a Euclidean space. Tools can identify the set of
symmetric PTs as a linear vector subspace. Given a PT, we obtained the nearest symmetric
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Table 8: Skewness array for Table 1

Right eye
Left eye Highest Second Third Lowest

grade grade grade grade
Highest grade 0.00 1.87 0.38 41.80
Second grade −1.87 0.00 3.56 −0.28
Third grade −0.38 −3.56 0.00 2.10

Lowest grade −41.80 0.28 −2.10 0.00

PT and the orthogonal decomposition into the symmetric PT and the skew-symmetric one
by projecting the original PT onto a symmetric subspace. Hence, the nearest symmetric PT
is a perturbation of the original PT and its transposition.
The square-distance to the subspace of symmetric tables, which is called the simplicial skew-
ness, is the Aitchison square-norm of the skew-symmetric table. The newly developed method
using simplicial skewness and its relative value as a test statistic is an understandable ana-
lytical tool, which should provide useful and practical results.
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A. Proof of Lemma 1

Lemma 1 (Subspace of symmetric PTs). Let SI2
sym be the set of I × I symmetric tables in

SI2. Then SI2
sym is an (I − 1)(I + 2)/2-dimentional subspace of SI2.

Proof. For any R = (rsym
ij ), T = (tsym

ij ) ∈ SI2
sym, and α ∈ R, we have that the (i, j) cell of

α ⊙ (R ⊕ T) is

(rsym
ij )α(tsym

ij )α∑I
i=1

∑I
j=1(rsym

ij )α(tsym
ij )α

=
(rsym

ji )α(tsym
ji )α∑I

j=1
∑I

i=1(rsym
ji )α(tsym

ji )α
.

The right-hand side of this equation is the (i, j) cell of T (α ⊙ (R ⊕ T)). Therefore, α ⊙ (R ⊕
T) = T (α ⊙ (R ⊕ T)) and SI2

sym is closed under perturbation and powering. Hence, it is a
subspace of SI2 . The dimension of SI2

sym is (I − 1)(I + 2)/2 because the upper triangle of the
square PT contains I(I −1)/2 cells and the dimension is reduced by one due to the constraint
that the cells add up to a constant.

B. Proof of Theorem 1

Theorem 1. Let T ∈ SI2 be an I × I table. The nearest symmetric PT to T is Tsym =
0.5 ⊙ (T ⊕ T (T)) in the sense of the Aitchison distance in SI2.

Proof. Let T∗
sym be 0.5 ⊙ (T ⊕ T (T)). Then, the (i, j) elements of T∗

sym is

tsym
ij =

√
tijtji∑I

k=1
∑I

l=1
√

tkltlk

.

To prove this theorem, for any R ∈ SI2
sym, whose (i, j) cell is rsym

ij = rsym
ji , we must show

⟨T ⊖ T∗
sym, T∗

sym ⊖ R⟩a = 0. The (i, j) entry of clr(T ⊖ T∗
sym) is given as

clrij(T ⊖ T∗
sym) = log

tij√
tijtji∑I

k=1
∑I

l=1
tkl√
tkltlk

− log

 I∏
i=1

I∏
j=1

tij√
tijtji∑I

k=1
∑I

l=1
tkl√
tkltlk


1/I2

= log tij√
tijtji

− log
I∑

k=1

I∑
l=1

tkl√
tkltlk

− 1
I2

I∑
i=1

I∑
j=1

log tij√
tijtji

+ log
I∑

k=1

I∑
l=1

tkl√
tkltlk

= log
√

tij

tji
− 1

I2

I∑
i=1

I∑
j=1

log
√

tij

tji

= log
√

tij

tji
−

 1
I2

I∑
i=1

I∑
j=1

log
√

tij − 1
I2

I∑
i=1

I∑
j=1

log
√

tji


= log

√
tij

tji
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and the (i, j) entry of clr(T∗
sym ⊖ R) is given as

clrij(T∗
sym ⊖ R) = log

√
tijtji

rsym
ij∑I

k=1
∑I

l=1
√

tkltlk

rsym
kl

− log

 I∏
i=1

I∏
j=1

√
tijtji

rsym
ij∑I

k=1
∑I

l=1
√

tkltlk

rsym
kl


1/I2

= log
√

tijtji

rsym
ij

− log
I∑

k=1

I∑
l=1

√
tkltlk

rsym
kl

− 1
I2

I∑
i=1

I∑
j=1

log
√

tijtji

rsym
ij

+ log
I∑

k=1

I∑
l=1

√
tkltlk

rsym
kl

= log
√

tijtji

rsym
ij

− 1
I2

I∑
i=1

I∑
j=1

log
√

tijtji

rsym
ij

.

Then we have the Aitchison inner product of T ⊖ T∗
sym and T∗

sym ⊖ R as follows.

⟨T ⊖ T∗
sym, T∗

sym ⊖ R⟩a =
I∑

i=1

I∑
j=1

clrij(T ⊖ T∗
sym) · clrij(T∗

sym ⊖ R)

=
I∑

i=1

I∑
j=1

(
log

√
tij

tji

)(
log

√
tijtji

rsym
ij

)

−
(

1
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I∑
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)
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√
tij
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)
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log

√
tij − log

√
tji
) (

log
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tij + log
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tji − log rsym
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)

−
(
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I2
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(
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C. Proof of Theorem 2

Theorem 2. Let T ∈ SI2 be an I × I table. The nearest symmetric PT of Tskew is the
neutral element of SI2, N, whose elements are all equal. In addition, the (i, j) and (j, i) cells
of clr(Tskew) sum to 0.

Proof. Let tij be the (i, j) cell of T and tsym
ij (= √

tijtji/
∑I

k=1
∑I

l=1
√

tkltlk) be the (i, j) cell
of the nearest symmetric PT, Tsym. The (i, j) cell of Tskew, tskew

ij , is

tskew
ij =

tij/tsym
ij∑I

k=1
∑I

l=1 tkl/tsym
lk

=
√

tij/
√

tji∑I
k=1

∑I
l=1

√
tkl/

√
tlk

.
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Therefore, all elements of Tskew ⊕ T (Tskew) are equal. The (i, j) and (j, i) cells of clr(Tskew)
sum to 0 because the geometric means of symmetric cells in Tskew are equal to the overall
geometric mean.

D. Proof of Theorem 3

Theorem 3. Let T ∈ SI2 be an I × I table and R ∈ SI2
sym be any symmetric I × I PT. Then

the perturbed PT, V = R ⊕ T, is orthogonally decomposed into V = Vsym ⊕ Tskew, where
Vsym = R ⊕ Tsym.

Proof. The projection of V onto the symmetric subspace, Vsym = R ⊕ Tsym, is a symmetric
PT because R is symmetric PT and SI2

sym is a linear subspace. Therefore,

Vskew = V ⊖ Vsym = T ⊖ Tsym = Tskew.

E. Proof of Theorem 4

Theorem 4 (Weighting properties). Let T ∈ SI2 be an I × I table. Consider a symmetric
PT denoted as W and a real number, w. Then,

∥T ⊕ W∥2
a = ∥Tsym ⊕ W∥2

a + ∥Tskew∥2
a,

∥w ⊙ T∥2
a = w2 · ∥Tsym∥2

a + w2 · ∥Tskew∥2
a.

(3)

Proof. The first equation in (3) is the same result in Theorem 3. Due to the distributive
property of powering by w, w ⊙ T = w ⊙ Tsym ⊕ w ⊙ Tskew. The second equation in (3) is
due to the property of the Aitchison norm and the Pythagorean theorem.
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