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Abstract

Many researchers believe that human lifetime in the interval from 20 to 80 years is
approximately described by the Gompertz distribution. It is natural to consider the
problem of the distribution of the residual human lifetime at the final stage, that is, after
80 years. To do this, in this study, a statistical analysis of some statistical models on real
data is carried out. Several models are presented, which, according to the authors, can
adequately describe data on mortality after 80 years.
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1. Introduction

It is clear that various questions connected with the duration of life have always been of
interest to mankind. It is known that such great mathematicians as K. Hugens, W. Leibniz,
L. Euler, P. Laplace were interested in statistics about mortality and their presentation in
the form of life tables.
So, back in 1760, L.Euler published a work called "General Researches on the Mortality and
the Multiplication of the Human Race".
In 1812, P. Laplace wrote a classic course on probability theory, which laid the theoretical basis
for life tables and gave a direct method for constructing them (see Gavrilov and Gavrilova
(1991), Rosset (1981)).
How to quantify this phenomenon? And why is it necessary to study life expectancy? Here is
the answer from biologists (Gavrilov and Gavrilova (1991)) and geneticists (Comfort (1964)).
“...The practical significance of such studies is that they open up opportunities for predicting
the life expectancy of organisms and, most importantly, the possibility of finding ways to
continue life...”
“... Is it possible to understand what life is without finding out why it is limited in time and
how its boundaries are determined? This is a fundamental problem of natural science, key to
the entire scientific horizon”
Unfortunately, more than 250 years have passed since the time of Euler, when the first steps
were taken in this problem, but so far there is much unknown here.
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One of the first most successful attempts to mathematically describe the dependence of mor-
tality on age belongs to the English actuaries B. Gompertz and W. Makeham. They, relying
on statistical data and some simple empirical considerations, proposed to describe the human
lifetime T using the following distribution function

P(T < x) = F (x) =
{

1 − exp(−λx − β
α(exp(αx) − 1)) for x ≥ 0

0, otherwise,
(1)

where x > 0, β > 0, α > 0.
The failure rate function (mortality intensities) for distribution (1) rows exponentially and
has the following representation

r(x) = F ′(x)
1 − F (x) = λ + β exp(αx), x > 0. (2)

B.Gompertz (Gompertz (1825)) considered formulas (1), (2) with λ = 0 (Gompertz (G)
distribution). Subsequently, W.Makeham (Makeham (1860)) set the background component
λ > 0 (Gompertz-Makeham (GM) distribution).
Formulas (1), (2) mean that mortality is influenced by two components: one that does not
depend on age (background component) and the other, which at α > 0 increases in geometric
progression with age (characterizes exhaustion and aging of the organism).
Note that the Gompertz-Makeham law (1), (2) law turned out to be more competitive than
many modern formulas. Somewhere in the interval after 20 years, formulas (1), (2) describe
real data such as the lifespan of biological systems is better than other known formulas.
The reason for this is simple, this law is closely related to the distribution of extreme values
for minima (3rd type according to the classification of B.V.Gnedenko (Gnedenko (1943),
Leadbetter, Lindgren, and Rootzen (1983))).
And what is known about the residual time of human life, for example, after 100 years?
Here is the opinion of biologists on this matter (Greenwood and Irwin (1939), Economos
(1983), Gavrilov and Gavrilova (1991)):
“... An analysis of data on the mortality of people over 100 years old shows that in the most
extreme age groups, the human mortality intensities practically ceases to increase with age, so
that the kinetics of mortality of centenarians coincides with the kinetics of radioactive decay,
and the half-life corresponds to approximately one year”.
It is clear that at every age there is a certain probability of death. The data analysis carried
out in work Thatcher (1999) hows that after 30 years this probability begins to increase by
approximately 10% with each subsequent year. In round figures, the probability of death
during the year (for modern men) increases from 0,001 at the age of 30 to 0,1 at the age
of 80 years. This inevitable increase corresponds quite accurately to the "mortality law"
of Gompertz. Somewhere after 80 years, the growth rate slows down, and there is still
controversy about what happens at an older age.
It is well known that in the 19th century the probability of dying between the ages of 30
and 80 was much higher than today. Yet, until recently, it was widely believed that, despite
impressive improvements at a younger age, the probability of dying over 80 years of age has
not changed significantly. Thus, for example, article Modig, Andersson, Vaupel, Rau, and
Ahlbom (2017) establishes that the mortality among centenarians (after 100 years) does not
change, despite improvements at a younger age. The analysis was based on individual-level
data for all Swedish and Danish centenarians who were born between 1870 and 1991; a total
of 3006 men and 10963 women were included.
Some researchers believe that somewhere above 100 years there is a maximum life expectancy
that has remained unchanged from ancient times (see, for example, Karin and de Haan
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(1994) and the literature in Karin and de Haan (1994)). The opposite point of view and its
justification can be found in Feller (1957), ch.1, § 1.
We also note monograph Thatcher, Kannisto, and Vaupel (1998), which considers six possi-
ble models of mortality for residual life after 80 years. Eight datasets were analyzed, each
containing pooled data for 13 industrialized countries. The datasets cover periods 1960-1970,
1970-1980 and 1980-1990 years, as well as for cohorts born in 1871-1880 years, separately for
men and women. They contain over 32 million deaths aged 80 and over during this period.
The authors conclude that these data are clearly closer to the general logistic model and
model Kannisto special case of the logistic model) than to the models of Gompertz, Weibull
and Heligman & Pollard.
More precise mathematical statements on this topic were obtained in a recent article Rootzen
and Zholud (2017). These authors, relying on real data from the database of centenarians
IDL1 about the residual life span of supercentenarians (the residual life of supercentenarians
is their life time after 110 years) and on known statistical criteria, came to an important
conclusion:
the residual time of human life after 110 years has an exponential distribution.
In this work, you can also find some other interesting information about the residual life span
of supercentenarians, as well as a fairly complete bibliography in recent years on this topic.
For example, in the work it is calculated that the probability of surviving another year after
110 years is 47%. The chances that a woman will live to 110 years are 2 in 100 000, and
for men, these chances are 10 times less. Behind the data of base IDL, although there are
many more female supercentenarians, it is shown that there are no differences between the
distributions of women and men. There are also no significant differences in the distribution
for the regions of Southern and Northern Europe, between North America and Japan and
other countries. Based on the database data, the parameter of the exponential distribution
of the residual lifespan of 1.34 and a confidence interval (1.22, 1.46) with a reliability of 0.95
were found.
Our calculations on the new additional data from IDL confirm the results of Holger Rootzen,
Dmitrii Zholud. In addition, it follows from our analysis that the result about the exponential
distribution for residual life ex‘pectancy remains true for men after 105 years. True hypothesis
requires further testing.
On the other hand, for women in many cases this is not the case.
Here, just as in works Thatcher et al. (1998) and Rootzen and Zholud (2017), we pose the
question:
what is the distribution of the residual duration of human life, for example, after 80 years?
Unfortunately, the above works do not provide an answer to this question with a reliability
of 0.95 traditional for applied statistics.
From the plot of empirical mortality intensities for the US population (1980) (see Fig.1,
empirical data was obtained from book Bowers, Gerber, Hickman, Jones, and Nesbitt (1997),
Ch. 3, § 3.3, Table 3.3.1) that the exponential distribution cannot adequately describe the
duration of human life after 80 years.
The situation with the Gompertz or Gompertz-Makeham distribution is more complicated
and requires additional analysis.
In this work, we will try to answer these questions.
Our article has the following structure.
In subsection 2, one redundancy model from the mathematical reliability theory is studied,
which, in our opinion, is directly related to our problem. From this model, one simple
distribution (W ∗ - distribution) is derived, which will be used by us in the analysis of data
such as residual life expectancy.

1International database on longevity (IDL).
URL: https://www.supercentenarians.org/en/data-and-metadata/

https://www.supercentenarians.org/en/data-and-metadata/
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Figure 1: Mortality intensities after age 75 (USA)

And finally, in subsection 3 for the case of the W ∗ distribution, Gompertz (1) distribution
and some others, a statistical analysis of real data for residual life expectancy after 80 years
is carried out.

2. One mathematical model of reliability theory. Distribution W ∗
m.

Mathematical models of reliability theory have long been used by biologists in the analysis
of data on the mortality of people and other living organisms (see Gavrilov and Gavrilova
(1991), ch. 6, § 5). At the same time, human life span is naturally considered at the main
stage, that is, somewhere from 20 to 80 years. Also, an attempt is often made to derive
the distribution laws of Gompertz or Weibull, or to explain their appearance more precisely,
starting from some of the fundamental features of the biosystem.
We will consider a narrower task - to describe the human life span at the final stage, more
precisely, we want to slightly expand the results of Rootzen and Zholud (2017) and find a
distribution that more or less adequately describes the residual time of human life after 80
years.
Let S be some system that consists of subsystems S(1), S(2), . . ., S(m), which work indepen-
dently. Let us assume that the failure of system S occurs when at least one of the subsystems
S(k), k = 1, 2, . . . , m fails. If we denote by T(S) and T(S(k)) the uptime of system S and
subsystem S(k) respectively, then it is clear that

T(S) = min
1≤k≤m

T(S(k)). (3)

We will assume that each subsystem S(k) is given by a series-parallel system well known in
reliability theory of the form

Thus, it is assumed that subsystem S(k) consists of series-connected blocks B
(k)
j , j = 1, 2, . . . , n,

and each block B
(k)
j consists of parallel-connected elements e

(k)
1,j , e

(k)
2,j , . . ., e

(k)
k,j , the uptime of

which is τ
(k)
1,j , τ

(k)
2,j , . . ., τ

(k)
k,j .
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Figure 2: Series-parallel system

In addition, we impose the following condition on our model:
τ

(k)
i,j , i = 1, 2, . . . , k, j = 1, 2, . . . , n are independent identically distributed random variables

that have an exponential distribution with parameter λk

P(τ (k)
i,j < x) = 1 − exp(−λkx), x > 0.

Of course, one could assume that parameter n also depends on k(n = n(k)). But to simplify
the notation, we omit this dependence.
If we use the terminology of reliability theory, then we will consider the following two cases:
(i) loaded ("hot") reserve
and
(ii) unloaded ("cold") reserve.
Here, element e

(k)
1,j is called the main element of block B

(k)
j , and e

(k)
2,j , . . . , e

(k)
k,j are reserve

elements.
Let’s start from case (i). The reserve elements, like the main one, are in the on state, and
the moment of their connection instead of the main one does not affect their reliability. Of
course, the reserve element may fail earlier than the main one (see Gnedenko, Belyaev, and
Solovyev (1969), ch. 5, § 2 ).
In fact, from Fig.2 it follows that the failure of subsystem S(k) means the failure of at least
one block B

(k)
j , j = 1, 2, . . . , n. And block B

(k)
j will fail when all the elements of this block

fail. Then
T(S(k)) = min

1≤j≤n
T(B(k)

j ), T(B(k)
j ) = max

1≤i≤k
τ

(k)
i,j , (4)

where T(B(k)
j ) is the time to failure of block B

(k)
j .

In our conditions we have ∀j = 1, 2, . . . , n

G
(k)
j (x) = P(T(B(k)

j ) < x) = (1 − exp(−λkx))k, x > 0. (5)

From equality (5) we have for fixed k ≥ 1, x > 0, t > 0

lim
t→0

G
(k)
j (tx)

G
(k)
j (t)

= lim
t→0

(1 − exp(−λktx))k

(1 − exp(−λkt))k
= lim

t→0

(λktx)k

(λkt)k
= xk. (6)
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Equality (6) means (see Leadbetter et al. (1983), Ch. 1, §8, Matsak (2014), Sec.2, §8), that
the distribution function G

(k)
j (x) belongs to the min-domain of attraction type 2 (Weibull

distribution law):

Ψ∗
k(x) =

{
0, for x ≤ 0,

1 − exp(−xk), for x > 0,
(7)

i.e., at n → ∞.

P
(
a(k)

n

(
T
(
S(k)

)
− b(k)

n

)
< x

)
≈ P

(
a(k)

n

(
min

1≤j≤n
T
(
B

(k)
j

)
− b(k)

n

)
< x

)
≈ Ψ∗

k(x), (8)

where
a(k)

n = (γ(k)
n )−1,

G
(k)
j (γ(k)

n ) = 1 − 1/n,

b(k)
n = inf(y > 0 : G

(k)
j (y) > 0) = 0.

Approximate equality (8) can be rewritten as

P
(
T
(
S(k)

)
≥ x

)
≈ exp

(
−β(k)xk

)
, β(k) > 0, x > 0.

Further, taking into account equality (3), we obtain

P(T(S) ≥ x) =
m∏

k=1
P
(
T
(
S(k)

)
≥ x

)
≈ exp

(
−

m∑
k=1

β(k)xk

)
.

And therefore
P(T(S) < x) ≈ W ∗(β, x) = 1 − exp

(
−

m∑
k=1

β(k)xk

)
, (9)

β(k) ≥ 0, k = 1, m, x ≥ 0.

Case (ii). It is assumed that the main element e
(k)
1,j of block B

(k)
j is in the on state, and its

reserve elements e
(k)
2,j , . . . , e

(k)
k,j are off. It is assumed that until they are turned on instead of

the main element, they cannot have a failure.
Then

T(B(k)
j ) =

k∑
i=1

τ
(k)
i,j .

As is well known, this implies the following equality

G
(k)
j (x) = P(T(B(k)

j ) < x) = 1 −
k−1∑
i=0

(λkx)i

i! exp(−λkx), x > 0. (10)

Next, we use the following estimates:

(λkt)k

k! = 1
1 + dk

∞∑
i=k

(λkt)i

i! ,

where
dk =

∞∑
i=k+1

k!
i! (λkt)i−k ≤ λkt/k

1 − λkt/k
→ 0, t → 0
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(see Leadbetter et al. (1983), Ch.1, §7, Example 1.7.14).
Then for t → 0

1 −
k−1∑
i=0

(λkt)i

i! exp(−λkt) =
∞∑

i=k

(λkt)i

i! exp(−λkt) = (1 + o(1))(λkt)k

k! exp(−λkt). (11)

From equalities (10),(11) we obtain for a fixed k ≥ 1, x > 0, t > 0

lim
t→0

G
(k)
j (tx)

G
(k)
j (t)

= lim
t→0

(1 + o(1))(λktx)k

(λkt)k
exp(−λktx + λkt) = lim

t→0

(λktx)k

(λkt)k
= xk. (12)

That is, we have obtained an asymptotics similar to relation (6). Thus, for case (ii) the same
as in case (i), equality (9) is true.

Remark 1. It can be assumed that the basic "subsystems" on which the functioning of the
human body is based somewhere, for example, after 80-90 years, already have "limited redun-
dancy" (the numbers m and k in our model are very small). Therefore, it is natural to consider
the above mathematical model as some rough approximation to a real complex biological model
of the functioning of the human body at the final stage of life.
The distribution, which is given by formula (9), we will call the W ∗ - distribution. In fact,
this is the distribution of r.v.

W∗ = min
1≤k≤m

Wk,

where Wk are independent Weibull variables with shape k.
Further, we use this distribution in the analysis of real data on the residual time of human
life after 80 years. At the same time, in formula (9) we restrict ourselves to small values of
m, (m = 2, 3).

3. Statistical data analysis for residual lifetime
Denote by Tt0 the residual time of a human life that has reached the age of t0.
And let’s put forward an assumption : for sufficiently large t0 the following hypothesis

H0 = {Tt0 a random variable that has an distribution F0}

is true.
Our efforts in the future will be mainly directed to testing the hypothesis H0 for the cases
when we choose the distribution W ∗ (9), or the Gompertz (G) distribution, or the Weibull
distribution as F0.
Recall that the Weibull distribution is one of the most popular distributions in reliability
theory. Its distribution function is given by:

FW (x) = 1 − exp(−λxα), λ ≥ 0, α ≥ 0, x ≥ 0.

In addition, we will consider one variant of the logistic distribution (in Thatcher et al. (1998) it
is called Kannisto (LK) distribution). The Kannisto distribution has the following mortality
intensities (see Thatcher et al. (1998)):

r(x) = λ + a exp(bx)
1 + a exp(bx) , λ ≥ 0, a ≥ 0, b > 0, x ≥ 0,

and distribution function

FLK(x) = 1 − exp(−λx)
(1 + a exp(bx)

1 + a

)−1/b

, x ≥ 0. (13)
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This distribution in Thatcher et al. (1998) as one of the best for the analysis of old human
age.
Suppose that, in a certain region, at age intervals (t0, t0 + a1), (t0 + a1, t0 + a2), . . ., (t0 +
ar−1, t0 + ar), n1, n2, . . ., nr people died, respectively, N = N(t0) = n1 + n2 + . . . + nr is the
number of all people in this region who have reached the age of t0.
We introduce statistics χ2 n the case of distribution (W ∗):

χ2(β) =
r∑

i=1

(ni − Npi(β))2

Npi(β)
,

where pi(β) = FW ∗(β, ai) − FW ∗(β, ai−1); FW ∗ is given by the equality (9); a0 = 0.

The statistic χ2 for the case of other distributions is introduced in a similar way.
Following the H. Cramer (see Cramér (1946), Ch.30, §3) to test hypothesis H0 we use the
minimum statistics method χ2:

χ2(β) → min
βi≥0,i=1,m

χ2(β̄). (14)

True, unlike the H. Cramer, who reduces the problem of minimizing (14) to solving a system
of nonlinear equations, we directly solve problem (14). In this case, we used the functions of
the Optimization Toolbox package of the MATLAB system. For example, we used function
fminsearch, but condition βi ≥ 0, i = 1, m was additionally taken into account. It should also
be noted that it is very important to choose a good starting point from which the minimization
algorithm starts.
Hypothesis H0 is tested according to the traditional scheme:
if χ2

min > xkr, then H0 is not accepted, otherwise we consider that the data do not contradict
hypothesis H0, where xkr = U0.95 is the quantile of level 0.95 of the distribution χ2 with
(r − m − 1) degrees of freedom, and χ2

min - is the minimum value of statistics χ2 obtained
from task (14).
In addition, for ungrouped samples from base IDL the goodness of fit criteria Kolmogorov-
Smirnov, Cramer-Von Mises ω2, Anderson-Darling from the statistical package STATGRAPH-
ICS Plus were used, well known in statistics.

Example 1 Data from base (IDL)2.
Complete IDL database file was used for the analysis. Not all countries in this dataset contain
information on semi-super centenarians (aged 105-109). But for the countries used in this
study, all the data are available for both semi-super centenarians (aged 105-109) and super
centenarians (aged 110+).
From the base, men and women were selected separately, who satisfied the condition:

(A) born before 1902 inclusive and lived at least 105 years.

The selection of data sets prior to birth year 1902 was intended to ensure representative
samples without censoring where possible.
To analyze the data on people, the advancing powers with the largest samples were selected,
which satisfied the mind (A). At the time of the analysis, we obtained the following results:
France (N=378), USA (N=191), England (N=149), Germany (N=108), Belgium (N=58) (N
- sample size). And the hypothesis was tested that the residual time of a man’s life after
105 years has an exponential distribution (that is, hypothesis H0 was tested at F0 = W ∗,
t0 = 105, m = 1).

2International database on longevity (IDL).
URL: https://www.supercentenarians.org/en/data-and-metadata/

https://www.supercentenarians.org/en/data-and-metadata/
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As it turned out, criteria Kolmogorov-Smirnov, Cramer-Von Mises ω2, Anderson-Darling and
χ2 from package STATGRAPHICS Plus confirmed this hypothesis at a standard level of 0.05
for all the countries listed above. This naturally implies the assumption that in the general
case for men the hypothesis about the exponential distribution for t0 = 105 is true.
True, it should be noted that in this case, the homogeneity of the samples is not always
satisfied. For example, Kolmogorov-Smirnov criterion rejected the hypothesis about the same
distribution of samples of men from France and the United States, but accepted the same
hypothesis for France and Germany, as well as for France and Belgium.
Turning to the analysis of data on women, we immediately note that the situation here is a
little more complicated. The following table contains the results of calculating the minimum
values of χ2 statistics for women in France, Germany and a pooled sample of BCN (Belgium,
Canada and Norway).
The calculation of the best parameters for distributions W∗, G, K and W (for which the
observed value of Chi2 was minimal) was performed using function [x, fval] = fminsearch()
in package MATLAB. The number of intervals was adjusted as follows: if the number of
elements in one of the extreme intervals was less than 10, then this and subsequent intervals
were combined into one.
The MATLAB code for calculating values for France is given in Appendix 1.

Table 1: Data from base IDL, women born in 1902 or earlier

Country France Germany BCN
t0 105 105 105
N(t0) 4166 829 867
χ2(W ∗) 17.91 9.55 8.04
χ2(G) 15.78 9.23 8.04
χ2(LK) 15.77 8.37 8.04
χ2(W ) 33.97 11.98 9.13
r − m − 1 16 8 8
U0.95 26.3 15.5 15.5

Notations in Table 1:
t0 is the age from which the residual life time is considered;
N(t0) is the number of people who have reached age t0;
χ2(W ∗) is the minimum value of the statistics χ2 for distribution W ∗ at m = 2;
χ2(G) is the minimum value of the statistics χ2 for the Gompertz(G) distribution (1);
χ2(LK) is the minimum value of the statistics χ2 for the Kannisto LK distribution ;
χ2(W ) is the minimum value of the statistics χ2 for the Weibull distribution;
r − m − 1 is the number of degrees of freedom, r is the number of grouping intervals, m is
the number of unknown parameters of the respective distribution;
U0.95 - quantile level 0,95 distribution χ2 with r − m − 1 degrees of freedom.

Comments on Table 1.
(i) According to Table 1 criterion χ2 accepted hypothesis H0 for the distribution of W ∗ at
t0 = 105, m = 2 for women in France, Germany and a pooled sample of BCN .
A similar situation persists for the Gompertz (G) and Kannisto (LK) distributions.
(ii) Thus criterion χ2 itself accepted the hypothesis that residual life after 105 years is de-
scribed by the Weibull distribution for women in Germany and the pooled sample BCN , but
rejected this hypothesis for France.
(iii) It should also be noted that for women in France and Germany, criteria Kolmogorov-
Smirnov, Cramer-Von Mises ω2, Anderson-Darling from the STATGRAPHICS Plus package
rejected the Weibull distribution.
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(iv) If we use the terminology of reliability theory, then we can say (probably not entirely
accurate) that for men, the system for protecting the functioning of the body reaches the
“zero level of redundancy” somewhere around 105 years old, and for women - 5 years later,
that is, at 110 years old .

Example 2. Mortality data for centenarians in the Netherlands.
Relevant data was selected from article K.Aarssen, L.de Haan (Karin and de Haan (1994),
p.266, Tabl.2). he authors provide separately for men and women born in 1877-1881 data on
mortality of centenarians at the final stage of life.
The following two tables contain the results of the analysis of these data. More precisely,
we present the calculated minimum values of the statistics χ2 for the residual life time after
reaching a certain age of t0 ≈ 90 years.

Table 2: Netherlands, men, born 1877-1881

Year of birth 1877 1878 1879 1880 1881 1877-1881
(total)

t0 94 93 92 91 90 94
N(t0) 815 1092 1575 2062 2731 4131
χ2(W ∗) 4.49 14.13 7.12 10.1 7.02 3.52
χ2(G) 4.41 14.58 8.27 10.87 11.33 5.39
χ2(LK) 4.13 14.72 7.25 10.17 6.41 3.72
χ2(W ) 6.63 17.94 8.58 15.1 16.9 10.67
r − m − 1 7 10 10 11 11 10
U0.95 14.1 18.3 18.3 19.67 19.67 18.3

Table 3: Netherlands, women, born 1877-1881

Year of birth 1877 1878 1879 1880 1881 1877-1881
(total)

t0 94 93 92 91 90 94
N(t0) 1097 1556 2266 2939 3943 6260
χ2(W ∗) 11.04 9.2 19.21 14.66 9.89 14.52
χ2(G) 11.0 8.97 15.97 14.87 15.28 13.38
χ2(LK) 11.15 10.45 19.03 16.53 11.35 13.66
χ2(W ) 12.54 16.59 34.29 33.95 23.88 35.93
r − m − 1 9 10 10 12 13 11
U0.95 16.9 18.3 18.3 21.03 22.4 19.67

The MATLAB code for calculating values for women is given in Appendix 3.
Comments on tables 2, 3.
(i) From Tables 2 and 3 we conclude that for distributions W ∗, Gompertz(G) and Kannisto(K)
hypothesis H0 is true in almost all cases.
(ii) The Weibull distribution is inconsistent with the data for women born 1879-1881, as well
as for the total data for women born 1877-1881.
(iii) W ∗ distribution at m = 2 in all cases (except for women born in 1879) does not contradict
the data (replacing m = 2 gives m = 3 gives χ2(W ∗) = 11.33, for the case of women born in
1879, i.e. hypothesis H0 is accepted).
(iv) Thus, the data from Karin and de Haan (1994) do not contradict the hypothesis that
distributions W ∗, Gompertz (G) and Kannisto (LK) adequately describe the residual time
of human life after t0 = 90 years.
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Example 3. Mortality data in Germany, born 1895-1899.
The data were selected from the open online database GFGI3. The database contains a large
number of records with information about the birth, death, etc. of the German population
since 1600. For the analysis, only the data “date of birth” and “date of death” were used.
Records that did not contain the exact date of birth or death (day, month, year) were excluded
from analysis. Using Excel function = DATEDIF (BDATE; DDATE; ”y”), the number of
complete years was calculated for each record. Using filters in the database, we obtained
samples that contained information about people born in 1895-1899.
Similarly, as above, the minimum values of statistics χ2 for residual life time were calculated
separately for men and women after 80 years.
Since the situation here is a bit more complicated than in the previous cases, the parameter
m = 3 was chosen for the distribution W ∗, and the Gompertz (G) distribution remained
unchanged (the transition to a more general Gompertz-Makeham (GM) distribution did not
significantly change the situation).
In the following tables 4 and 5 the calculation results are given. The corresponding grouped
data, according to which tables 4, 5 were built, are given at the end of the article (Appendix
2, Table 9).

Table 4: Germany, data from the GFGI database, men, born 1895 - 1899

Year of birth 1895 1896 1897 1898 1899 1895-1899
(total)

t0 80 80 80 80 80 80
N(t0) 634 676 784 811 894 3799
χ2(W ∗) 11.4 16.39 17.85 23.93 15.3 39.68
χ2(G) 11.46 16.56 22.80 24.45 15.21 45.18
χ2(LK) 13.10 19.93 26.00 24.09 14.15 40.46
χ2(W ) 30.0 36.99 57.45 37.25 32.5 118.81
r − m − 1 15 16 16 13 15 19
U0.95 24.99 26.3 26.3 22.36 24.99 30.14

Table 5: Germany, data from the GFGI database, women, born 1895 - 1899

Year of birth 1895 1896 1897 1898 1899 1895-1899
(total)

t0 80 80 80 80 80 80
N(t0) 1039 1135 1181 1263 1368 5986
χ2(W ∗) 23.66 11.4 20.7 25.57 15.16 22.6
χ2(G) 27.60 14.49 18.67 26.80 14.99 21.93
χ2(LK) 28.59 12.59 22.06 27.03 15.55 23.12
χ2(W ) 34.27 38.85 70.36 90.94 78.74 236.85
r − m − 1 17 18 19 19 20 22
U0.95 27.58 28.87 30.1 30.1 31.4 33.9

Comments to tables 4, 5.
(i) From tables 4, 5 From tables 4, 5 it is clear that for men and women in Germany, the
final life expectancy after 80 years is much better described by the W ∗ distribution than by
the Weibull distribution. More precisely, distribution W ∗ at m = 3 is accepted for women

3Germany, Find a Grave™ Index, 1600s-Current (GFGI). [database on-line]. Lehi, UT, USA: Ancestry.com
Operations, Inc., 2012.
URL: https://www.ancestry.com/search/collections/60533/

https://www.ancestry.com/search/collections/60533/
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in all cases (table 5), and in most cases for men (table 4). At the same time, the Weibull
distribution deviates in all cases. For cases of Gompertz (G) and Kannisto (LK) we have
values of the χ2 statistic close to the χ2(W ∗) statistic.
(ii) If in table 4 in column ”1895-1899 (total)” we consider the total data without 1898 year
of birth, then we get χ2(W ∗) = 24.79, that is, hypothesis H0 for W ∗ distribution is accepted.
This indicates certain differences (heterogeneity) in the data for the 1898 year of birth, in
contrast to other years.
(iii) Note that when calculating tables 2-5 in the case of the Kannisto(LK) you can choose
the parameter λ = 0. This will not significantly change the value of the χ2 statistic.

Remark 2. If, in the conditions of example 3, we choose t0 = 75, that is, consider the residual
time of human life after 75 years, then the situation will become much more complicated. So
hypothesis H0 for the distribution of W ∗ at t0 = 75, m = 3 at a significance level of α = 0.05
is accepted somewhere in half of the cases.

Remark 3. On the data from example 3, preliminary comparisons of the Gamma distribution
and some others with the W ∗ distribution were also carried out. As it turned out, their
performance for the χ2 criterion was worse than that of the W ∗ distribution.

Example 4. Mortality data in Norway, born 1881-1885.
The data were selected from the online database HMD4. For the study, we used dataset
Deaths_1x1.
Similarly, the minimum values of statistics χ2 for residual life time were calculated separately
for men and women after 80 years. In this case, for the W ∗ distribution the parameter m = 3
was chosen. The following tables 6 and 7 give the calculation results. The corresponding
grouped data, according to which tables 6, 7 were built, are given at the end of the work
(Appendix 2, Table 10).

Table 6: Norway, data from the HMD database, men, born 1881 - 1885

Year of birth 1881 1882 1883 1884 1885 1881-1885
total)

t0 80 80 80 80 80 80
N(t0) 4780 5179 5145 5289 5492 25884
χ2(W ∗) 6.66 11.07 16.58 6.97 15.49 7.84
χ2(G) 7.78 12.78 14.20 8.36 17.11 14.69
χ2(LK) 8.65 12.75 21.81 6.84 15.37 9.70
χ2(W ) 174.35 194.41 288.94 147.89 169.93 842.22
r − m − 1 20 20 20 20 20 20
U0.95 31.4 31.4 31.4 31.4 31.4 31.4

Comments to the tables 6, 7.
(i) From Tables 6 and 7 we draw a conclusion: for men and women in Norway, the final life
expectancy after 80 years is adequately described by distribution W ∗ (at a significance level of
0.05). The same applies to the Kannisto (LK) distribution. The Gompertz (G) distribution
is also accepted almost always, with the exception of summary data for women. The Weibull
distribution is rejected in all cases.
(ii) It should be noted that the results for men and women in Norway were not successful for
other countries from base HMD. Perhaps this is due both to some heterogeneity in real data
and to some changes made to them during their fixation and initial processing.

4Human Mortality Database (HMD).
URL: https://mortality.org/Home/Index

https://mortality.org/Home/Index
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Table 7: Norway, data from the HMD database, women, born 1881 - 1885

Year of birth 1881 1882 1883 1884 1885 1881-1885
(total)

t0 80 80 80 80 80 80
N(t0) 6498 6927 7137 7360 7480 35402
χ2(W ∗) 6.30 13.49 20.04 9.45 8.10 12.13
χ2(G) 14.94 18.93 30.99 18.52 19.72 57.12
χ2(LK) 7.72 13.39 21.10 10.24 10.72 16.41
χ2(W ) 184.54 226.82 265.65 230.91 199.53 1.05e+03
r − m − 1 20 20 20 20 20 20
U0.95 31.4 31.4 31.4 31.4 31.4 31.4

Example 5. Total deaths in Europe after 80 years (11 countries, cohorts born 1871-1880,
table 3 from book Thatcher et al. (1998)).
In our opinion, the total data on mortality (11 countries + 10 cohorts) over the interval (80,
120) years can hardly be considered homogeneous. For example, for this data, the calculated
minimum values of statistic χ2 for W ∗ distribution were:

χ2(W ∗) = 124.70 for men,

and
χ2(W ∗) = 97.44 for women,

which is several times higher than the critical values at a significance level of α = 0.05. The
minimum values of the χ2 statistic for the Kannisto (LK), Gompertz (G) and Weibull (W )
distributions were even larger.
It can be hoped that the situation will improve when considering the residual time of human
life somewhere after 100 years. Therefore, in the following table, the interval (99, 120) years
is considered (a similar interval was also chosen in work Thatcher et al. (1998), table 6.4).
The notation is similar to that introduced above.

Table 8: Analysis of data on mortality of centenarians in Europe (residual life after 99 years,
11 countries, cohorts born 1871-1880)

sex men women together
t0 99 99 99
N(t0) 12967 44642 57609
χ2(W ∗) 17.27 15.77 24.71
χ2(G) 18.03 15.57 24.48
χ2(LK) 16.86 19.16 26.62
χ2(W ) 11.86 76.0 76.92
r − m − 1 8 8 8
U0.95 15.5 15.5 15.5

Interestingly, the minimum values of statistics χ2(W ∗), χ2(G) and χ2(LK) in the above table
8 are significantly lower (especially for men) than in the corresponding table 6.4 of Thatcher
et al. (1998). Perhaps this is explained by different methods for calculating the minimum χ2.

4. Conclusions
In this work, the task was to find a simple distribution that can be used to describe the
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residual time of a human life after 80 years with a standard reliability of 0.95 for applied
statistics.
In our opinion, the above preliminary calculations on real data show that for this we can try
to use the W ∗ and Kannisto (LK) distributions, and possibly the Gompertz (G) distributions
for fairly homogeneous data.
From the calculations in Table 8, it can be assumed that for summaries of data for several
countries and cohorts, these distributions can probably be used somewhere after 100 years.
Of course, the results presented in tables 1 - 8 are not yet sufficient to establish the validity
of hypothesis H0 for the W ∗

m, Gompertz (G) and Kannisto (LK) distributions.
It is clear that further tests on real data are needed for final conclusions.
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Appendix 1
Calculations of data for French women from the IDL database (105+) in Table 1.
1) Distribution (W ∗) is given by formula (9).
Optimal parameter values:

( beta_i =(x_i )^2) −> x =[0 .0385 , 0 . 0 0 0 6 ] ;

The value of the χ2 statistic at the optimal point:

[ xmin , f v a l ]= fminsearch ( ' rt l_fra_1902wf ' , [ 0 . 0 4 8 9 , 0 . 0 0 1 4 ] )
xmin =

0.0385 0 .0006
f v a l =

17.9118

A function that calculates the values of the χ2 statistic for distribution (W ∗):

f unc t i on rtl_fra_1902w=rtl_fra_1902wf ( x )
f i =[689 586 502 427 357 314 268 220 168 132 114 102 75
51 52 35 31 24 1 9 ] ;
xn=[0 115 230 345 460 575 690 805 920 1035 1150 1265 1380
1495 1610 1725 1840 1955 2 0 7 0 ] ;
xv=[115 230 345 460 575 690 805 920 1035 1150 1265 1380 1495
1610 1725 1840 1955 2070 2 5 0 0 ] ;
n=sum( f i ) ;
s2=1−exp(−x (1)^2 . ∗ xv −x (2)^2 . ∗ ( xv . ^ 2 ) ) ;
s1=1−exp(−x (1)^2 . ∗ xn −x (2)^2 . ∗ ( xn . ^ 2 ) ) ;
npi=(s2−s1 ) . ∗ n ;
rtl_fra_1902w= sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;

2) Gompertz distribution (G) is given by formula (1) at λ = 0.
Optimal parameter values:

( alpha=(x_2)^2 , beta=(x_1)^2) −> x =[2 .0774 , 0 . 0 1 8 6 ] ;

The value of the χ2 statistic at the optimal point:

[ xmin , f v a l ]= fminsearch ( ' g_fra_1902wf ' , [ 0 . 0 4 8 9 , 0 . 0 0 1 4 ] )
xmin =

2.0774 0 .0186
f v a l =

15.7790

A function that calculates the values of the χ2 statistic for Gompertz distribution (G):

f unc t i on g_fra_1902w = g_fra_1902wf ( x )
f i =[689 586 502 427 357 314 268 220 168 132 114
102 75 51 52 35 31 24 1 9 ] ;
xn=[0 115 230 345 460 575 690 805 920 1035 1150 1265 1380
1495 1610 1725 1840 1955 2 0 7 0 ] ;
xv=[115 230 345 460 575 690 805 920 1035 1150 1265 1380 1495
1610 1725 1840 1955 2070 2 5 0 0 ] ;
n=sum( f i ) ;
s2=1−exp(−(x (1 )^2)∗ ( exp ( x (2)^2 . ∗ xv ) −1)) ;
s1=1−exp(−(x (1 )^2)∗ ( exp ( x (2)^2 . ∗ xn ) −1)) ;
npi=(s2−s1 ) . ∗ n ;
g_fra_1902w = sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;
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3) Konnisto distribution (LK) is given by formula (13).
Optimal parameter values:

( lambda=(x_1)^2) , a=(x_2)^2 , b=(x_3)^2) −> x =[0 .0033 , 0 .0386 , 0 . 0 1 8 7 ] ;

The value of the χ2 statistic at the optimal point:

[ xmin , f v a l ]= fminsearch ( ' LKfraf_1902f ' , [ 0 , 0 .0489 , 0 . 0 0 1 4 ] )
xmin =

0.0033 0 .0386 0 .0187
f v a l =

15.7714

A function that calculates the values of the χ2 statistic for Konnisto distribution (LK):

f unc t i on LKfraf_1902=LKfraf_1902f ( x )
f i =[689 586 502 427 357 314 268 220 168 132 114
102 75 51 52 35 31 24 1 9 ] ;
xn=[ 0 115 230 345 460 575 690 805 920 1035 1150 1265 1380
1495 1610 1725 1840 1955 2 0 7 0 ] ;
xv=[115 230 345 460 575 690 805 920 1035 1150 1265 1380 1495
1610 1725 1840 1955 2070 2 5 0 0 ] ;
n=sum( f i ) ;
s21=exp(−x (1)^2 . ∗ xv ) ;
s22= ((1+x (2)^2 ∗exp ( x (3)^2 . ∗ xv ))/(1+x (2)^2)) .^( −1/ x ( 3 ) ^ 2 ) ;
s2=1−s21 . ∗ s22 ;
s11=exp(−x (1)^2 . ∗ xn ) ;
s12= ((1+x (2)^2 ∗exp ( x (3)^2 . ∗ xn))/(1+x (2)^2)) .^( −1/ x ( 3 ) ^ 2 ) ;
s1=1−s11 . ∗ s12 ;
npi=(s2−s1 ) . ∗ n ;
LKfraf_1902 = sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;

4) Weibull distribution (W ).
Optimal parameter values:

( lambda=(x_1)^2 , alpha=(x_2)^2) −> x =[0 .0312 , 1 . 0 8 6 6 ] ;

The value of the χ2 statistic at the optimal point:

[ xmin , f v a l ]= fminsearch ( ' wey_fra_1902wf ' , [ 0 . 0 4 8 9 , 0 . 0 0 1 4 ] )
xmin =

0.0312 1 .0866
f v a l =

33.9747

A function that calculates the values of the χ2 statistic for Weibull distribution (W ):

f unc t i on wey_fra_1902w=wey_fra_1902wf ( x )
f i =[689 586 502 427 357 314 268 220 168 132 114 102 75
51 52 35 31 24 1 9 ] ;
xn=[0 115 230 345 460 575 690 805 920 1035 1150 1265 1380
1495 1610 1725 1840 1955 2 0 7 0 ] ;
xv=[115 230 345 460 575 690 805 920 1035 1150 1265 1380 1495
1610 1725 1840 1955 2070 2 5 0 0 ] ;
n=sum( f i ) ;
n=sum( f i ) ;
s2=1−exp(−x ( 1 ) ^ 2 . ∗ ( xv .^ x ( 2 ) ) ) ;
s1=1−exp(−x ( 1 ) ^ 2 . ∗ ( xn .^ x ( 2 ) ) ) ;
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npi=(s2−s1 ) . ∗ n ;
wey_fra_1902w= sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;

Appendix 2

Table 9: Germany, data from the GFGI database, born 1895-1899

Year of birth 1895 1896 1897 1898 1899
Age m w m w m w m w m w
75 59 53 63 56 42 52 63 59 78 54
76 59 71 60 45 62 65 81 61 107 65
77 51 76 63 54 81 68 79 78 86 73
78 43 68 66 80 87 82 92 60 86 85
79 53 56 70 87 83 107 84 59 74 93
80 70 49 59 69 91 79 74 99 70 85
81 56 72 52 72 67 78 64 80 78 92
82 61 91 62 79 70 67 68 87 85 85
83 55 74 54 91 72 86 89 93 73 85
84 48 69 52 90 55 88 71 64 73 88
85 50 75 53 91 59 74 67 91 79 103
86 51 88 35 76 38 77 53 84 63 91
87 43 54 43 64 44 83 59 85 64 82
88 24 72 35 67 49 71 34 76 55 76
89 34 64 49 76 40 70 38 95 44 85
90 27 53 31 59 42 59 43 65 46 87
91 23 42 29 53 40 48 51 69 30 58
92 15 42 30 48 20 37 25 51 36 67
93 16 43 22 51 25 43 21 48 30 63
94 19 33 9 33 15 49 14 37 13 42
95 13 31 15 28 18 37 10 32 13 45
96 10 17 14 23 10 31 6 26 13 30
97 3 20 11 15 10 33 6 15 15 32
98 8 19 5 17 4 23 8 18 4 17
99 1 7 4 8 6 12 4 16 4 14
100 1 7 3 9 6 13 1 11 1 13
101 0 5 3 2 0 10 2 12 2 12
102 4 6 2 3 2 6 1 4 1 8
103 1 4 1 5 0 2 2 2 1 4
104 0 2 3 2 0 2 0 2 0 2
105 0 0 0 2 0 1 0 1 1 2
106 0 0 0 1 1 1 0 0 0 0
107 1 0 0 1 0 1 0 0 0 0
Total 75+ 899 1363 998 1457 1139 1555 1210 1580 1325 1738
Total 80+ 634 1039 676 1135 784 1181 811 1263 894 1368
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Table 10: Norway, data from the HMD database, born in 1881-1885

Year of birth 1881 1882 1883 1884 1885
Age m w m w m w m w m w
80 492 525 540 608 524 613 533 607 553 603
81 494 553 523 619 484 586 531 600 561 599
82 470 568 487 590 480 568 500 584 550 617
83 429 553 483 579 479 564 474 595 529 632
84 403 547 424 559 437 560 471 597 478 616
85 366 518 396 526 403 540 434 565 431 587
86 335 484 402 485 388 506 369 533 381 551
87 327 436 373 463 369 513 330 517 349 502
88 291 390 323 442 320 502 309 470 328 456
89 244 363 263 384 268 430 268 407 277 418
90 219 317 220 335 226 354 224 361 236 367
91 178 261 185 295 184 297 197 320 206 317
92 136 227 142 246 145 246 157 270 166 266
93 105 193 117 203 113 206 129 216 129 218
94 86 159 96 151 89 156 107 171 87 182
95 70 120 68 111 74 131 79 156 65 150
96 46 85 48 93 60 111 58 117 50 116
97 31 66 36 84 41 77 39 84 44 92
98 25 42 22 51 24 65 28 57 18 56
99 12 30 14 31 16 35 15 43 25 53
100 9 21 10 18 12 27 14 31 10 26
101 8 16 3 22 7 18 9 24 9 20
102 3 14 4 11 6 14 8 9 6 11
103 5 5 2 10 0 10 4 12 3 11
104 0 3 1 5 1 5 3 7 0 9
105 0 2 1 4 0 3 1 8 1 3
106 0 2 0 2 0 3 1 0 0 0
107 0 2 2 1 0 1 0 2 1 3
108 0 0 0 0 0 0 0 0 0 2
109 0 0 0 0 0 1 0 0 0 1
Total 80+ 8646 10465 9225 11267 9381 11403 9686 11947 9974 12182
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Appendix 3
Calculations of data for Netherlands women in Table 3.
1) Distribution (W ∗) is given by formula (9).
Optimal parameter values:
( beta_i =(x_i )^2) −> x =[0 .5495 , 0 . 1 0 6 6 ] ;

The value of the χ2 statistic at the optimal point:
rt l_wsuf ( x )
ans =

14.5548

A function that calculates the values of the χ2 statistic for distribution (W ∗):
f unc t i on axiwsu=rt l_wsuf ( x )
f i =[1701 1273 1038 705 476 362 249 192 110 66 35 22 15 1 6 ] ;
xn=[0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 ] ;
xv=[1 2 3 4 5 6 7 8 9 10 11 12 13 5 0 ] ;
n=sum( f i ) ;
s2=1−exp(−x (1)^2 . ∗ xv −x (2)^2 . ∗ ( xv . ^ 2 ) ) ;
s1=1−exp(−x (1)^2 . ∗ xn −x (2)^2 . ∗ ( xn . ^ 2 ) ) ;
npi=(s2−s1 ) . ∗ n ;
axiwsu= sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;

2) Gompertz distribution (G) is given by formula (1) at λ = 0.
Optimal parameter values:
( alpha=(x_2)^2 , beta=(x_1)^2) −> x =[2 .2804 , 0 . 2 4 2 9 ] ;

The value of the χ2 statistic at the optimal point:
g_rtl_wsuf ( x )
ans =

13.3847

A function that calculates the values of the χ2 statistic for Gompertz distribution (G):
f unc t i on g_rtl_wsu=g_rtl_wsuf ( x )
f i =[1701 1273 1038 705 476 362 249 192 110 66 35 22 15 1 6 ] ;
xn=[0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 ] ;
xv=[1 2 3 4 5 6 7 8 9 10 11 12 13 5 0 ] ;
n=sum( f i ) ;
s2=1−exp(−(x (1 )^2)∗ ( exp ( x (2)^2 . ∗ xv ) −1)) ;
s1=1−exp(−(x (1 )^2)∗ ( exp ( x (2)^2 . ∗ xn ) −1)) ;
npi=(s2−s1 ) . ∗ n ;
g_rtl_wsu= sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;

3) Konnisto distribution (LK) is given by formula (13).
Optimal parameter values:
( lambda=(x_1)^2) , a=(x_2)^2 , b=(x_3)^2) −> x =[0 .0072 , 0 .6627 , 0 . 3 1 1 4 ] ;

The value of the χ2 statistic at the optimal point:
LKrtl_wsuf ( x )
ans =

13.6640

A function that calculates the values of the χ2 statistic for Konnisto distribution (LK):
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f unc t i on LKrtl_wsu=LKrtl_wsuf ( x )
f i =[1701 1273 1038 705 476 362 249 192 110 66 35 22 15 1 6 ] ;
xn=[0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 ] ;
xv=[1 2 3 4 5 6 7 8 9 10 11 12 13 5 0 ] ;
n=sum( f i ) ;
s21=exp ( x (1)^2 . ∗ xv ) ;
s22= ((1+x (2)^2 ∗exp ( x (3)^2 . ∗ xv ))/(1+x (2)^2)) .^( −1/ x ( 3 ) ^ 2 ) ;
s2=1−s21 . ∗ s22 ;
s11=exp ( x (1)^2 . ∗ xn ) ;
s12= ((1+x (2)^2 ∗exp ( x (3)^2 . ∗ xn))/(1+x (2)^2)) .^( −1/ x ( 3 ) ^ 2 ) ;
s1=1−s11 . ∗ s12 ;
npi=(s2−s1 ) . ∗ n ;
LKrtl_wsu = sum ( ( ( f i −npi ) . ^ 2 ) . / f i ) ;

4) Weibull distribution (W ).
Optimal parameter values:

( lambda=(x_1)^2 , alpha=(x_2)^2) −> x =[0 .5511 , 1 . 0 5 3 9 ] ;

The value of the χ2 statistic at the optimal point:

wey_wsuf ( x )
ans =

35.9332

A function that calculates the values of the χ2 statistic for Weibull distribution (W ):

f unc t i on axiwsu=wey_wsuf ( x )
f i =[1701 1273 1038 705 476 362 249 192 110 66 35 22 15 1 6 ] ;
xn=[0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 ] ;
xv=[1 2 3 4 5 6 7 8 9 10 11 12 13 2 0 ] ;
n=sum( f i ) ;
s2=1−exp(−x ( 1 ) ^ 2 . ∗ ( xv . ^ ( x ( 2 ) ^ 2 ) ) ) ;
s1=1−exp(−x ( 1 ) ^ 2 . ∗ ( xn . ^ ( x ( 2 ) ^ 2 ) ) ) ;
npi=(s2−s1 ) . ∗ n ;
axiwsu= sum ( ( ( f i −npi ) . ^ 2 ) . / npi ) ;
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