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Abstract

One-inflation in zero-truncated count data has recently found considerable attention.
In this regard, zero-truncated Geometric distribution and distribution to a point mass
at one are used to create a one-inflated model, namely, one-inflated zero-truncated Geo-
metric distribution. Its reliability characteristics, generating functions, and distributional
properties are investigated in detail, which includes survival function, hazard rate func-
tion, reverse hazard rate function, probability generating function, characteristic function,
variance, skewness, and kurtosis. Monte Carlo simulation have been undertaken to eval-
uate the effectiveness of the maximum likelihood estimators. To test the compatibility
of our proposed model, the baseline model and the proposed model are distinguished by
using the two different test procedures. The adaptability of the suggested model is demon-
strated using two real-life datasets from separate domains by taking various performance
measures into consideration.

Keywords: zero-truncation, one-inflation, goodness of fit, simulation, hypothesis testing, geo-
metric distribution.

1. Introduction

In every discipline of knowledge, including epidemiology, engineering, sociology, biological
research, insurance, agriculture, and public health, the statistical analysis and modelling of
count data is very important. We fit a valid probability model to count data in order to build
up decision-making while dealing with count data.

When dealing with positive count data possessing variability, one can model positive data
by truncating the distribution at zero, resulting in a zero-truncated distribution. When a
specific range of values for the variables is ignored or cannot be seen, the resulting model is
said to be truncated. Truncation of probability distributions is an essential statistical feature
with several applications in different areas. It is preferable to use a zero-truncated probabil-
ity distribution instead of any other discrete distribution, when data is to be represented or
produced without zeros. Many datasets exclude zero counts, such as the number of siblings
in a family, the number of passengers in a car including the driver, the number of articles
published in different journals from various disciplines, the number of disturbing events re-
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ported by patients, the number of flowers bloomed, and the number of times a voter has
cast a ballot in a general election, etc. Zero-truncated probability models behave well when
modelling such types of situations, and the results drawn from them seem quite sound.

Positive count data modelling can be traced back to the mid-twentieth century, when the
first truncated model, known as the zero-truncated Poisson distribution (ZTPD), was put
forward by David and Johnson (1952) to model such data. Later, several models like the
Negative Binomial distribution (NBD), were modified to zero-truncated Negative binomial
distribution by Sampford (1955) as an alternative to the zero-truncated version of the Pois-
son distribution. Ghitney et al. (Ghitany, Al-Mutairi, and Nadarajah (2008)) introduced the
zero-truncated Poisson—Lindley distribution (ZTPLD) and developed the estimation methods
based on the moment method and the maximum likelihood method. Phang and Loh (2013)
discussed the applications of ZTNBD in analyzing the abundance of rare species and hospital
stays. Shanker and Fesshaye (2016) studied the nature and behaviour of other truncated
distributions like ZTPD, ZTPLD, and zero-truncated Poisson-Sujhata distribution (ZTPSD)
by drawing different inferences. Shibu et al. (Shibu, Chesneau, Monisha, Maya, and Irshad
(2023)) introduced the novel Lagrangian zero-truncated Katz distribution and investigated
various structural properties of the model and showed that the model is both over-dispersed
as well as under-dispersed. Elah et al. (Elah, Ahmad, and Wani (2023)) introduced a new
truncated model called zero-truncated New discrete distribution to analyze the various ap-
plications in different fields. Kiani (2020) introduced a simple structural model called zero-
truncated discrete Lindly distribution. Based on the values of parameters, the distribution
can be thought of as a two-model mixture of a zero-truncated Geometric distribution (ZTGD)
and ZTNBD. Park et al. (Park, Gou, and Wang (2022)) studied the estimation of the pa-
rameters of truncated Geometric distribution. The baseline model used in this article is the
zero-truncated Geometric distribution. A random variable with non-negative integer support
is said to possess Geometric distribution from Goémez-Déniz (2010), if its probability mass
function (pmf) is of form

f)=p1-pht=0,1,2...,0<p<1 (1)

where t denotes the number of failures until the first success. One of the essential properties
of this distribution, among all other distributions, is the lack of memory property. which
plays an important role in the branch of applied probability.

The pmf of zero-truncated Geometric distribution from Devi et al. (Devi, Gupta, and Kumar
(2017)) is given by

g(t;p) =p(1—p)~ 1t =1,2,3..,0<p<1 (2)

The mean and variance of the zero-truncated Geometric distribution are as follows

1
Mean = —
p

1—p
p2

Variance =

To account for large number of ones in the dataset, inflated models based on the zero-truncated
distributions have been investigated. One-inflation in zero-truncation is when there are ex-
cessive number of ones than predicted in the observed data. Accommodating one inflation
in zero-truncation is crucial in situations where the event occurrence is limited, and there
are several reasons, such as avoidance or behavioral changes, stigma, and heterogeneity, that
lead to only a single instance of the event. Modelling one-inflation in such cases allows us
to capture scenarios where an event happens only once, and subsequent events become less
likely due to these reasons. Accommodating one inflation acknowledges the possibility that
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the individuals may be willing to report an event only once, and subsequent events might go
unreported. As is the case related to the drunk driving dataset, the majority of the arrests
happen as a result of police stopping and questioning every passing motorist. However, be-
cause drunk driving carries a stigma, there might be a strong behavioral reaction after the
initial arrest, leading to some people leaving the population of drunk drivers. One-inflation
is justified by the possibility that the subject will learn to avoid being observed again, which
we term avoidance ability.

Several zero-truncated models, inflated at “1”, have been recently attracted by several re-
searchers like Godwin and Bohning (2017) proposed the one-inflated positive Poisson model
to deal with phenomena of excess 1’s. Godwin (2017, 2019) proposed a one-inflated zero-
truncated Negative Binomial (OIZTNB) model and a positive Poisson mixture model, re-
spectively, and used them as truncated distributions in the Horvitz—Thompson estimation of
unknown population size. They also analyzed the various applications in different fields to
check the model’s adaptability. Tajuddin et al. (Tajuddin, Ismail, and Ibrahim (2021)) inves-
tigated the parameter estimation techniques of one-inflated positive Poisson distribution and
compared different estimation methods in terms of unbiasedness, consistency, efficiency, and
deficiency and found that all the estimators are consistent and asymptotically normal. They
also developed a one-inflation index and analyzed the presence of excess ones in the dataset.
Some of the recent works regarding the inflation aspect in count data are by Skinder et al.
(Skinder, Ahmad, and Elah (2023)) and Wani and Ahmad (2023). Tajuddin et al. (Tajuddin,
Ismail, and Ibrahim (2022)) introduced the count model called one-inflated positive Poisson
Lindly distribution to estimate the population size of criminals. Kaskasamkul and Bohning
(2017) proposed the inflated count model based on the Geometric distribution to estimate
population size.

For positive count data, most of the data comes from the count “1” because “0” counts
remain unobserved and it is believed that excessive number of “1” counts can contribute to
the dispersion (over or under) in the data. Although statistical modelling in this subject has
come a long way, new models are still required from time to time. These new models were
inspired by the emerging trends that frequently occur in our count data. As a result, we
have developed a simple and flexible two-parametric probability model that can handle the
statistical dispersion (over and under-dispersion) and the excess of “1” counts in the data.
The model developed may be used as an alternative to some other distributions mentioned
in the application section as it provides better fitting as compared to them.

The remainder of the paper is organized as follows. In section 2, the proposed model, and its
probability mass function (pmf) and cumulative distribution function (cdf) are introduced.
Further, reliability characteristics and generating functions are also presented in this section.
In section 3, we have obtained the various structural properties including mean, variance,
dispersion index, skewness, and kurtosis. In section 4, we discuss the estimation of the
parameters of the proposed model by the maximum likelihood method. A rigorous simulation
study is also discussed in this section. In section 5, different test procedures are applied for
examination to check the significance of the inflation parameter. Certain real-life applications
are considered in section 6 from various domains for highlighting the functionality of the
model. Lastly, the conclusion is discussed in section 7 itself.

2. Methodology

By combining the ZTG distribution with a point mass m, a distribution is obtained that
accounts for the inflated frequency at one. Take an experiment into consideration that led to
the following two processes:

o The first process generates only one count with probability 7, 0 < 7w < 1.

o The second process is governed by ZTGD with probability (1 — ).
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Also, suppose that the experiment is repeated a number of times independently. Assume that
the first process occurs with probability © and the second process occurs with probability
(1-m). Now, take a count variable, say Z, into consideration that takes some distribution
which allows for frequent one-valued observations. When the first process occurs, Z is set
at Z=1; when the second process occurs i.e., the counts are generated according to ZTGD
random variable.

Thus, for Z=1, which could be from the occurrence of either process first with probability 7
or process second with probability (1-7). We could have

PZ=1)=n+(1—-mp jz=1

For Z > 1, the pmf of Z follows the ZTGD written as

P(Z=2)=1-m)p(l—-p)*"! 12 =2,3,4,..,

Hence, the pmf of count variable Z is obtained by combining the above two equations and is
given as

T+ (1 —7)p; z=1
P(Z=z)=¢ (1-mp(1—-p)*~ Y 2=234,.., (3)
0; otherwise,

where 0<7<1 and 0 < p < 1. Equation (3) is known as one-inflated zero-truncated Geometric
distribution. To prove that equation (3) is a proper pmf, consider

LTI P
z=1 ot

(=13 p(1—p) !
z=1

(™) gle).
z=1

where g(z)=p(1 — p)*~! is the pmf of the ZTGD in terms of “t” in equation (2). Thus,
2219(2) =1

Clearly, when 7 = 0, the distribution reduces to ZTGD with pmf given in (2).

The pmf plots in figure (1) for different combinations of parametric values indicate that
the OIZTGD (3) is uni-modal. Further, the mode is at one for different combinations of
parameters. Moreover, the tail shows a rapid decrease as the value increases for different
combinations of parameters.

2.1. Cumulative distribution function (cdf)
Theorem 1. If Z ~ OIZTGD (=, p), then its cdf is given as

F(Z)=[1-(1-p)*(1—m) (4)
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Figure 1: The PMF Plots of OIZTGD
Proof. 1f Z~ OIZTGD (7, p), then its cdf is as follows
F(Z)=P(Z < 2z2)
z
=Y P(Z=t)
t=1
4
=m+(1-mp) (1-p)'"
t=1
1—(1—-p)*
=7m+(1—mn) [ (1=p) }
p
=+ (-7l —-(1-p)]
Hence proved. 0

The cdf plots of OIZTGD (7, p) with different combinations of parameters of 7 and p are
provided in figure (2).
2.2. Reliability characteristics along with generating functions

In this part, various reliability characteristics like survival analysis, hazard function, and
reverse hazard function are discussed along with generating functions. Further, the distribu-
tional properties are also discussed.

Survival function (SF)

The probability that a system will survive beyond a certain time period is called survival
function. It is also called reliability or survivor function and is denoted by “S". Further, the

47



48 A Positive Inflated Geometric Distribution
o 1=0.01, p=0.1 1=0.1,p=0.2
= pee90tP0ttTeTs o
_ S
— © — -
ONI=Ty ORI
T r o
~ _
3 rﬂﬁm -] ﬂﬂ
e T T T S T T T
0 10 20 30 40 0 10 20 30 40
z z
o m=0.4,p=0.5 o
& T 300009000000008008008008000000050¢ S o
— —
- o 7]
s g s £
- o LS .
’ X -
o o
~ e
o T I I I |
0 10 20 30 40 0 10 20 30 40
z z

Figure 2: The CDF plots of OIZTGD

survival plots are also shown in figure (3).
If Z ~ OIZTGD (m, p), then its survival function is as follows:

S(Z)=1-FZ)=1-[r+(1-mI -1 -p=[1-m)1-p)]

Hazard rate function (HRF')

Let z1, 29, 23, ..., 2, be a random sample from OIZTGD (m,p) as given by equation (3).
Suppose Y is the number of z/s taking the value one. Then equation (3) can be written as
follows:

[+ (1 —m)p"[(1 —m)p(1 —p)*~ 'Y
[(1—m)(1—p)7]

Reverse hazard rate (RHR)

The reverse hazard rate is defined as the ratio of the probability mass function to the distri-
bution function and is denoted as
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Figure 3: The survival plots of OIZTGD

_ [71' + (1 — ﬂ)p]y[(l _ F)p(l _ p)z—l]l_y
7+ (1—m)[1—(1-p)? :

Mill’s ratio

Mill’s ratio is defined as the ratio of the survival function to the probability mass function
and is denoted as

1 S(z)
") = HE) T Pl
(1 - ™)1~ p)]

[+ (1 —=m)pY[(1 = m)p(1 — p)=~ =Y

2.3. Probability generating function (pgf)

Theorem 2. If Z ~ OIZTGD (w, p), then its pgf, P,(t) is given as

P.,(t) =tr+ (1 — w)tpm

Proof. 1f Z ~ OIZTGD (m, p), then its pgf is as follows

P.(t) = itzP(Z =z)
z=1
Po(t) =Y ¢ [(m + (1 =m)p) + (1 = m)p(1 = p)* ']
z=1

_ (1—71')]) - z z—
Pz(t)—tﬁ—i—wzz_lt(l—p) !
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P,(t) =tr+ (1 — ﬂ)tpm

Hence proved. 0

Remark 1. Putting t = €' in equation (6), the moment generating function, M,(t) of
OIZTGD(w,p) is defined as

1

M.(t)=¢é'n+(1-m)e'p—F—~
(t) =e'm+ ( w)ep(l—et—etp)

Remark 2. Puttingt = €' in equation (6), the characteristic function, 1. (t) of OIZTGD(r,p)
is defined as

1

zt: it 1— ’it%
¢() €7T+( 7T)€ p(l_ezt_eztp)

3. Distributional properties

3.1. Moments
Theorem 3. If Z ~ OIZTGD (r, p), Then its r' order moment about zero is as follows:

=BG =+ (1= m) s (- ) (7)

Proof. If Z ~ OIZTGD (m, p), then the rth order moment about zero is

. =E(Z")
= erp(ﬂ,p)
PN .
:7T+(1—7T)(1_p>2;z (1-p)
=m+(1- W)ﬁlﬂ.—r(l —p) [ gzr(l —p)*=Li(1-p)|,

where Liy(x) is the polylogarithm function of order n and argument x.

Hence proved. O

In particular, the first four raw moments of the proposed model are obtained by putting r=1,
2,3, 4.
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py =1+ (1 —m)

(14p? — p® — 36p + 24)

p4

Therefore, Variance(c?) of the proposed model is given as

1+ p?n 4 2pn? — 72 — p(1 + 7 + pr?)
o = iy — (4)? = | g L

Index of dispersion

If Z ~ OIZTGD (7, p), then its index of dispersion (v) is as follows:

_ Variance 1+ 2pm? 4 pPrn — w2 — p(1 + 7 + pr?)
7T TMean p(pr+1—m)
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Figure 4: Index of dispersion plot of OIZTGD

As can be seen from figure (4), the proposed model is both over-dispersed as well as under-
dispersed. At lower values of w and p, the model is over-dispersed, and for higher values
of m and p, the model is under-dispersed. So, we can say that the model shows over and
under-dispersion for different combinations of parameters. This is also shown in table 1.

Table 1: Statistical measures of dispersion

m  Over-dispersion Equi-dispersion

Under-dispersion
0.2 p<0.4948974 p=0.4948974 p>0.4948974
0.5 p<0.4691016 p=0.4691016 p>0.4691016
0.9 p<0.3035678 p=0.3035678 p>0.3035678
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Coefficient of skewness

If Z ~ OIZTGD (m, p), then the Pearson’s coefficient of skewness is as follows:
13 [ph — Buhuy + 2uf)?
13 [y — p??

C[PPr+ (0 —m)@* —6p+6) —3(p*r+ (1 —m)(2—p)(pr+1—7) +2(pr +1— 7))
a [1+ 2pn2 + p?m — w2 — p(1 + 7 + pr?)]?
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Figure 5: Skewness plot of OIZTGD

From figure (5), it can be observed that frequencies are lowest at the lower values and they
rapidly increase as the value increases, which means that the model is negatively skewed and
has an inverse j-shaped curve.

Coefficient of kurtosis
If Z ~ OIZTGD (m, p), then the Pearson’s coefficient of kurtosis is as follows:

A Lk T 6ot — 3uy']
T3 [y — p?)?
2 Ho — H7

pir+ (1 —m)(14p* — p® — 36p + 24) — 4 ((p°m + (1 — 7)(p* — 6p + 6)(pm + 1 — p)))
+6((pP2r+(1—m)(2—p)(pr+1—7)2) —3(pr+1—m)*
[1+2pn2 + p?m — 72 — p(1 + 7 + pr?)]?

Furthermore, from figure (6), it can be observed that the OIZTGD is platykurtic i.e., the
proposed model has a flat peak.

4. Parametric estimation

The parameters m and p of equation (3) can be obtained by using the maximum likelihood
method of estimation as follows:
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Figure 6: Kurtosis plot of OIZTGD

Let 21, 29, 23, ..., 2, be a random sample from OIZTGD, as given in equation no.(3) and let
i=1,2, ..., n

1 5 if z=1
Wi =

0 ; otherwise

Then, for i=1, 2, 3, .., n, equation no.(3) can be written in the following form
P(Z = z) =[x+ (1= mpl[(1 - mp(1 = p)* 1)1

Hence the likelihood function will be L=L(m, p; 21, 22, ..., 2n)

L= ﬁ (1—mp [(1 —m)p(1 - p)zl_l} T

.
—_

=[r+1—7)p ﬁ {1—71' p)zi_lri,
]

where ¢; = 1 —w;, n; = >.i*; w;. Note that n; represents the number of ones (1s) in the
sample. Therefore,

InL =nylnr + (1 —m)p] + (n —n1)ln(l — ) + (n — n1)lnp + z”: ¢iziln(1 —p) — (n —nq)In(1 — p)
i=1

olnL  ni(1—p) (n—mny)

or  [m+(1-mp (A—m) ®)
OlnL ni(l—m) (n—mnp) };11 cisi (n—mny)

» mrA-mp »  (-p (-p



54 A Positive Inflated Geometric Distribution

Now, let alaLWL:O. Then from equation (8)

= [(n1 —nip)(1 = 7) = (n —n1)(m +p—7p)] =0

(np — 1)

= q=
n(p—1)

Now, let %LPL:O. Then from equation (9)

OlnL _ ni(l—m) n (n—mnq
dp  [r+ (1 —m)p] p (1-p)

n n n
p? nlw—nl—ZCizi—FWZqzi +p n—ﬂ'Zcizi—nﬂ' +m(n—ny1)=0. (10)

i=1 i=1 i=1
2i#1 271 2;#1

Now, substituting the value of 7 in equation (10). Equation (10) reduces to

n n
p? nnl—n%—nlzqzi +p nlzcl-zi+n1—nn1 +n1(n1—n) =0 (11)

=1 =1
zi#1 z#1

Since equation (11) is in quadratic form. Therefore, the estimated value of the parameter p
can be obtained by solving the above quadratic equation, i.e.

—b+ Vb% — 4ac

ﬁ =
2a
where
n n
b:nlz cizi +n1—nniy, a=nn —n% —nlz ¢izi, c=mni(ng —n)
i=1 =1
271 2;#1
Therefore,
n n 2 n
— Y cizi+nr—nny | £ [(md =y cizi + 1 —nng)? —4(nng —nf —niy i cizi)ni(ng —n)
N 2 #1 2;#1 zi#1
p =
2 n
2 (nm —ny—niy, = cm)
2%

(ZZLI cizi+1— n) + \/(271 ¢izi)?+145n%—2n+ (n1 —3n+2)Y"t_1 cizi —4n1(2n + ny)
2;#1 2 #1 2;#1

2 (n —ny— > Ci2i>
zi#1

After solving the above quadratic equation, we get the estimated value of p.
Therefore, the second-order differentials with respect to m and p can be obtained as

p=

d*logL n1(1 —p)? (n—mn1)

or? — [r+(1-mp?  (1-m)?
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Similarly,
d%logL o om(l- 7)? _(n— ny)? B Zzii_l cisi (n—mnq)
op? [r+ (1= m)pl? p 1-p?  (1-p)?
Similarly,
d*logL B ny -l -md-p)
ondp [+ (1-mp] |7+ (1-m)p

4.1. Simulation

In this section, we carry out a simulation study to investigate the finite sample behaviour
of the maximum likelihood estimators for different sample sizes (n=25,75,100,300,600) on
various parameter settings through the use of discrete variant of the inverse CDF technique.
The procedure was repeated 1000 times in R-software (RCore (2016)) for calculation of Bias,
Variance, Mean Square Error (MSE), and Mean Relative Estimate (MRE) and the results
are given in Table (2).

1 1 1
BiaSZ—Zﬁ—p Variance:Zﬁ2—<Zﬁ>
N¢:1 Nizl Nz‘:l
1 N 1 Nﬁ
MSE = —> (p—p)* MRE ==Y %
N N=p

here, p is the estimate of p and N=1000, is the number of replications. It can be seen from
the table 2, that as the sample size increases, the Variance and MSE decreases and are close
to zero for large sample sizes. Also, MRE tends to be 1 as the sample size increases. These
results suggest that maximum likelihood estimates are consistent and therefore can be used
in estimating the unknown parameters of the proposed model.

5. Hypothesis testing

In this part, we have checked the significance of the inflation parameter () by likelihood ratio
test and Wald’s test.

5.1. Likelihood ratio test

In order to test the significance of the inflation parameter 7w of the OIZTGD, the likelihood
ratio test is carried out to distinguish between ZTGD (p) and OIZTGD (m,p). Here, the null
hypothesis is

H, : ™ =0 Vs the alternative hypothesis Him # 0
In case of likelihood ratio test, the test statistic is given by
—2In& = 2(l; — 1), (12)
where, I1 = InL(®; z), Where @ is the maximum likelihood estimator for w = (7, p) without

limitation, and lp = InL(@*, z), in which &* is the maximum likelihood estimator for w under
the null hypothesis H,.
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Table 2: Simulation table of MLE’s for proposed model

Sample 7 =0.01,p = 0.02 T =0.02,p=0.1
Size(n)  Parameter Bias Variance MSE MRE Bias Variance MSE MRE
o5 s 0.01456 0.00069 0.00090 2.45569 0.03299 0.00247 0.00356 2.64935
P -0.00034 0.00052 0.00050 0.98277 0.01091 0.00070 0.00082 1.10909
75 s 0.00437 0.00029 0.00031 1.43704 0.00050 0.00039 0.00039 1.02479
D -0.00037 0.00049 0.00050 0.98168 0.00259 0.00011 0.00012 1.02589
100 ks -0.00248 0.00006 0.00007 0.75180 -0.00338 0.00041 0.00043 0.83096
P 0.00035 0.00035 0.00041 1.01740 -0.00089 0.00004 0.00004 0.99115
300 s -0.00048 0.00004 0.00004 0.95192 -0.00645 0.00013 0.00017 0.67741
p 0.00009 0.00021 0.00032 1.00441 0.00059 0.00001 0.00001 1.00593
600 ks -0.00024 0.00005 0.00005 0.97585 0.00023 0.00019 0.00019 1.01143
P -0.00008 0.00011 0.00001 0.99614 0.00113 0.00002 0.00002 1.01130
Sample 7 =0.03,p = 0.05 7 = 0.04,p = 0.06
Size(n)  Parameter Bias Variance MSE MRE Bias Variance MSE MRE
o5 s -0.00171 0.00231 0.00231 0.94312 -0.01318 0.00162 0.00180 0.67038
p 0.00131 0.00010 0.00010 1.02621 0.00096 0.00011 0.00011 1.01607
75 ks -0.00650 0.00057 0.00061 0.78330 -0.00419 0.00123 0.00125 0.89530
P 0.00283 0.00003 0.00004 1.05661 0.00278 0.00003 0.00004 1.04638
100 s -0.00800 0.00025 0.00031 0.73349 -0.00796 0.00027 0.00033 0.80090
p -0.00019 0.00002 0.00002 0.99620 0.00138 0.00002 0.00003 1.02296
300 ks 0.00140 0.00027 0.00028 1.04683 -0.00153 0.00030 0.00030 0.96174
P 0.00042 0.00001 0.00001 1.00848 0.00024 0.00001 0.00001 1.00400
600 s 0.00052 0.00008 0.00008 1.01717  -0.00077 0.00026 0.00026 0.98084
D 0.00013 0.00001 0.00001 1.00265 0.00050 0.00001 0.00001 1.00834
Sample ©=0.04,p=0.1 m=0.4,p=0.4
Size(n)  Parameter Bias Variance MSE MRE Bias Variance MSE MRE
o5 ks 0.01541 0.00240 0.00264 1.38527 0.02866 0.06687 0.06769 1.07166
P 0.00061 0.00016 0.00016 1.00614 0.03359 0.01142 0.01255 1.08397
75 s -0.00240 0.00106 0.00106 0.93989 -0.05451 0.00961 0.01258 0.86372
0 p 0.00211 0.00015 0.00016 1.02113 0.00614 0.00250 0.00254 1.01535
100 ks 0.00570 0.00101 0.00104 1.14242 -0.01553 0.00529 0.00553 0.96116
P -0.00179 0.00004 0.00004 0.98207 0.00392 0.00143 0.00145 1.00980
300 s -0.00811 0.00034 0.00040 0.79735 0.00842 0.00166 0.00173 1.02106
P -0.00089 0.00002 0.00002 0.99112 -0.00535 0.00071 0.00074 0.98662
600 ks 0.00432 0.00022 0.00024 1.10797 0.00774 0.00092 0.00098 1.01936
P -0.00056 0.00002 0.00002 0.99442 -0.00427 0.00030 0.00032 0.98930

Table 3: Calculated value of test statistic in case of likelihood ratio test

Test statistic

Bootstrap-p value

Dataset 1

20.88

<0.0001

Dataset 2

27.84

<0.0001
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5.2. Wald’s test

Here for testing the significance of the inflation parameter 7 of OIZTGD, we assess Wald’s
test. To test the null hypothesis

Hy : m =0 Vs the alternative hypothesis Hy : m # 0

In case of Wald’s test, the test statistic is given by

7%2

T = W(ﬁ)’ (13)

Where Var(7) represents the diagonal element of Fisher information matrix at 7 = 7 and
p =D

Table 4: Calculated value of test statistic in case of wald’s test

Test statistic Bootstrap-p value
Dataset 1 34.74 <0.0001
Dataset 2 72.38 <0.0001

5.3. Parametric bootstraping

In this part, we have written the parametric bootstrap procedure to obtain bootstrap p-value
in case of likelihood ratio and wald’s test, as both the tests are asymptotic tests. Following is
the algorithm of parametric bootstrap procedure to evaluate the p-value of the test statistics:

(i) Based on the original data of size n, say z1,z2,--- ,2,, compute the value of the test
statistic, say S = S(x1,--- ,x,), and estimate p,.

(ii) Generate j =1, ..., B bootstrap samples X f .-+, XJ by independently sampling from a
truncated estimated T'G(py,).

(iii) On the basis of each bootstrap sample compute the observed value of the test statistic,
Siboot — §(X{ ... X}),j=1,..,B.

(iv) Then the ppoo-value is given by

B
Proot = % Z I (Sj,boot > Sobs)
j=1

In the above algorithm, the test statistics S° considered here are —2logé and W, for the
likelihood ratio test and Wald’s test respectively. We compute test statistics values for both
datasets and the parametric bootstrap ppoot-value is also given in the above tables. In both
the datasets for both the tests, the ppoot- value is very low as compared to significance level
0.05. Hence we reject the null hypothesis that the data comes from Zero-truncated Geometric
distribution.

6. Applications

In this part, we study the practical significance of one-inflated zero-truncated Geometric
distribution. Two real-life datasets are taken to compare OIZTGD with few other distribu-
tions like zero-truncated Geometric distribution (ZTGD), zero-truncated Negative Binomial
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distribution (ZTNBD), zero-truncated Poisson Lindly distribution (ZTPLD), zero-truncated
Discrete Lindly distribution (ZTDLD), zero-truncated two parameter discrete Lindly distri-
bution (ZTTPDLD), zero-truncated Poisson distribution (ZTPD), one-inflated positive Pois-
son distribution (OIPPD), and one-inflated zero-truncated Negative Binomial distribution
(OIZTNBD) to check the performance measures of the proposed model. R-software was used
to perform all the computations, and the fitdistr plus command in R-software was used to
estimate the parameters of the distribution.

Here, we consider two datasets, the first dataset shown in Table (6) has been taken from
Williams (1943) and has been recently used by Hassan and Ahmad (2009). The dataset
is related to the number of publications in the review of applied entomology. The second
dataset shown in Table (8) has been taken from Heijden et al. (Van Der Heijden, Cruyff, and
Van Houwelingen (2003)) and has been recently used by Tajuddin et al. (2021). The dataset
is related to the frequency of a person being arrested for drunk driving and it reveals the
details of five selected police regions in Dutch among 25 police regions for analyses. These
two datasets are used to demonstrate and analyze the performance of various matrices. We
have fitted OIZTGD, ZTGD, ZTNBD, ZTPLD, ZTDLD, ZTTPDLD, ZTPD, OIPPD, and
OIZTNBD to both datasets for comparison. To check the suitability of the model, we have
computed expected frequencies, the values of maximized log-likelihood, x? statistic along with
associated p-value, Akaike’s Information Criteria (AIC), and Bayesian Information Criteria
(BIC) shown in Tables (7) and (9).

From Table (7) and (9), it has been revealed that OIZTGD provides the best fit compared
to existing models — ZTGD, ZTNBD, ZTPLD, ZTDLD, ZTTPDLD, ZTPD, OIPPD, and
OIZTNBD as our proposed model has lowest AIC and BIC values, and also has the highest
p-value in both datasets. Since OIZTNBD has no p-value because, all degrees of freedom got
lost in the dataset related to the number of persons arrested for drunk driving.

Here, we have also adopted the likelihood ratio test and wald’s test for testing the significance
of the inflation parameter w. In the case of likelihood ratio test, the computed value for both
datasets shown in Table (3) are 20.88 and 27.84. In the case of wald’s test, the computed
value for both datasets shown in Table (4) are 34.74 and 27.84. The null hypothesis is re-
jected in all cases of likelihood ratio test and wald’s test as the value for both the datasets is
greater than py.o-value. Hence, we conclude that 7, the additional parameter in the model
is significant, as discussed in Section 5.

Here, we have also plotted the estimated pmfs for both datasets. From the figures (7) and
(8), it can be seen that the OIZTGD yields better fit to both datasets compared to all the
existing models considered in the paper. This also supports the suitability of the proposed
model to the given datasets.

Table 5: Descriptive features of both datasets

Mean Variance Coefficient of variation Index of Dispersion
Dataset 1 1.5961  1.5740 0.7860 0.9862
Dataset 2 1.0650  0.0782 0.2626 0.0734

Table 6: Dataset related to the number of Publications in the Review of Applied Entomology
by Williams (1943)

Claims 1 2 3 4 5 6 7 8 9 10
frequency 285 70 32 10 4 3 3 1 2 1
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Table 7: Expected frequencies and x? values for fitted models along with AIC and BIC

Claims Observed Count OIZTGD ZTGD ZTNBD ZTPLD ZTDLD ZTTPDLD ZTPD OIPPD OIZTNBD

1 285 285 258 257 256 251 258 236 285 285
2 70 65 96 97 98 103 96 121 88 65
3 32 31 36 36 36 38 36 41 29 32
4 10 15 13 13 13 13 13 10 7 15
5 4 7 5 5 5 4 5 2 1 7
6 3 4 2 2 2 1 2 0 0 4
7 3 2 1 1 1 0 1 0 0 2
8 1 1 0 0 0 0 0 0 0 1
9 2 1 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0
Degrees of Freedom 3 3 2 2 3 3 2 1 2
ML Estimates #=0.3688 0=0.6265 p=0.3590 H=2.1333 0=1.2945 p=0.3731 0=1.0213 &4=0.2660 &=0.3797
$=0.5142 #=1.1110 £=0.0010 6=0.9990 7=1.1112
$=0.4735
x2-value 4.65 15.50 17.13 16.92 33.01 11.00 54.11 35.99 6.05
p — value 0.198 0.001 <0.001  <0.001  <0.001 0.004 <0.001  <0.001 0.04
—logl 423.03  433.47  434.50  435.71 441.36 433.47 475.83 465.10 423.21
AIC 850.06 868.94  873.00  873.42 884.73 870.94 953.67 934.20 852.43
BIC 858.10 872.96 881.04  877.44  884.73 878.98 957.69 942.23 864.48

Table 8: Dataset related to number of persons arrested for drunk driving by Van Der Heijden
et al. (2003)

Claims 1 2 3 4 5
Observed 8877 481 51 8 1
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Figure 7: Fitted frequency plots of OIZTGD corresponding to dataset 1

Table 9: Expected frequencies and x? values for fitted models along with AIC and BIC

Claims Observed Count OIZTGD ZTGD ZTNBD ZTPLD  ZTDLD ZTTPDLD ZTPD  OIPPD OIZTNBD
1 8877 8877 8843 8831 8843 8844 8840 8843 8877 8877
2 481 479 540 563 542 540 548 540 477 479
3 52 56 33 24 33 33 30 33 59 56
4 8 6 2 1 2 2 2 2 5 6
5 1 1 0 0 0 0 0 0 0 1
Degrees of freedom 1 1 0 1 1 0 1 1 -
ML Estimates #=0.5032 0=0.9388 p=0.0580 0=16.2159 0=3.18677 p=0.0610 0=0.1274 4&=0.6682 &=0.5119
$=0.8841 7=1.1110 B=0.0010 6=0.3696 7=1.1110
$=0.1119
x2-value 0.86 42.01 26.31 25.88 34.62 25.89 64.02 3.51 0.8654
p — value 0.352 <0.001  <0.001 <0.001 <0.001 <0.001 <0.001 0.060 -
—logl 2293.39  2307.31 2307.99  2307.41 2312.05 2307.31  2326.18  2294.26  2293.42
AIC 4590.79  4616.63  4619.98  4616.83 4626.11 4618.63  4654.37  4592.52  4592.83
BIC 4605.10  4623.78  4634.28  4623.98 4633.26 4632.93  4661.52  4606.82  4614.28
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7. Conclusions

A new one-inflated version of truncated distribution is proposed in this paper namely one-
inflated zero-truncated Geometric distribution (OIZTGD). Key statistical properties of the
distribution including generating functions, reliability characteristics, and moments have been
derived. For parametric estimation purpose, the maximum likelihood method of estimation
has been used. A simulation study has been done to evaluate the proficiency of the estimation
measures considered in this paper. Further, the procedure of the likelihood ratio test and
wald’s test are carried out to test the significance of the inflation parameter. Two real-life
datasets are reviewed to demonstrate the practicality of the proposed model juxtaposed to
the existent models ZTGD, ZTNBD, ZTPLD, ZTDLD, ZTTPDLD, ZTPD, OIPPD, and
OIZTNBD. We can see that OIZTGD in terms of Chi-square value and p-value gives the best
fit as the existent models do not show the best fit. The information measures like Akaike
Information Criteria (AIC) and Bayesian Information Criteria (BIC) have lowest values among
all other competing distributions in terms of numerical value, revealing that OIZTGD can be
considered as a suitable model in comparison to other models discussed in this paper.
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