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Abstract

The modified Kies flexible generalized family is developed. It can incorporate bimodal
and bathtub shapes, and its properties are derived from those of the exponentiated-G
class. Within this family, a special case is discussed in terms of its properties and a
regression model. The parameters are estimated using the maximum likelihood method,
and some simulations are carried out to check their consistency. The usefulness of the
proposals is proven by means of three real data sets.
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1. Introduction

The development of statistical distributions is a crucial area of research that aims to pro-
vide more suitable models for analyzing real-world data. Several flexible families have been
proposed in recent years to overcome the limitations of existing models. Notable contribu-
tions in this field include the works of Marshall and Olkin (1997), Gupta, Gupta, and Gupta
(1998), Eugene, Lee, and Famoye (2002), Zografos and Balakrishnan (2009), Cordeiro and
de Castro (2011), Alexander, Cordeiro, Ortega, and Sarabia (2012), Cordeiro, Ortega, and
Cunha (2013), Alzaatreh, Lee, and Famoye (2013), Bourguignon, Silva, and Cordeiro (2014),
Alizadeh, Emadi, Doostparast, Cordeiro, Ortega, and Pescim (2015), Chipepa, Oluyede, and
Makubate (2019), Baharith and Alamoudi (2021), and Tlhaloganyang, Sengweni, and Oluyede
(2022), among many others.

Tahir, Hussain, and Cordeiro (2022) defined the cumulative distribution function (cdf) of the
flexible generalized family (FGF) from the baseline cdf G(x) = G(z;€), which requires no
additional parameters (for = € R)

H(z) = H(w;€) =1 - G(x)"")

where G(z) = 1 — G(z) and £ represents the vector of parameters of G(-).

The cdf of the modified Kies flexible generalized (MKF-G) family is defined from the Transformed-
Transformer (T-X) class (Alzaatreh et al. 2013) and the two-parameter modified Kies cdf
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(Kumar and Dharmaja 2017) with scale A > 0 and shape 8 > 0 as (for x € R)

F(z) =1 — exp {—)\ [Gla)=6e) - 1}6} , (1)

where its probability density function (pdf) reduces to

fla) = ABg(x) Gla) 5@ [1 - ()] l
X exp {—)\ [@(a:)_G(x) — l}ﬁ} , (2)

where g(x) = d G(x)/dx. The hazard rate function (hrf) associated with (2) follows easily by
hz) = f(x)/[1 = F(x)].

Henceforth, let X ~ MKF-G(\, 3, €) be a random variable with pdf (2). The main motivation
for introducing the MKF-G family is its greater flexibility compared to the Kumaraswamy-G
and beta-G classes. Specifically, the MKF-G family can accommodate bimodal and bathtub
shapes in its baseline distributions as illustrated in Figures 1, 2, and 3. This feature allows
this family to model real-world data that exhibits these complex shapes more effectively as
demonstrated in Section 6.

The article presents the following topics. Section 2 discusses three special models of the new
family. Section 3 describes its main properties. Section 4 provides some properties and a
regression model for a special case of the new family. Simulations are reported in Section
5. Section 6 presents three applications to real data, and some conclusions are addressed in
Section 7.

2. Some special models

The densities of three models belonging to the new family are presented. All plots are pro-
duced in R (R Core Team 2023).

2.1. The modified Kies flexible Weibull (MKFW)

Considering the Weibull baseline with shape a > 0 and scale 7 > 0, the MKFW density has
the form

f@)=ABar %z e @/ oxp {5 [1 - e_(x/T)a} (."L‘/T)a}

X [1 — exp {— [1 — e_(”/T)a] (m/T)O‘Hﬁil {{e(“’c/T)a — 1} + (x/T)O‘}
X exp {_)\ {e(lfe*(z/f)u)(x/T)o‘ _ 1}6} ‘ 3)

2.2. The modified Kies flexible Kumaraswamy (MKFKw)

For the Kumaraswamy (Kw) baseline with positive shape parameters a and b, the MKFKw
density can be expressed from (2) as

_Bl1—(1—z2)? —(1—ga)b]y B~
f(z) = ABabz® 11—z} [(l—x“)b} shi-a )]{1— {(1_1@)1)}[1 < )]} !

X {[(1 —z) 7t - 1} —blog(1— x“)} exp {—)\ H(l - xa)b} Sl 1]5} )
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Figure 1: Density and hrf of MKFW (A, 8, a, 7)
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Figure 2: Density and hrf of MKFKw(A\, 3, a,b)

2.3. The modified Kies flexible normal (MKFN)

The MKFN density follows from the normal baseline N(u,02) (for 4 € IR, and o > 0) as

fla) = A80 () 1= @ G {1 -0 @POY T {25 <ol - 0]

« exp{—/\ (11— ()% - 1)5} L rER,

where z = (x—p) /o, and ¢(-) and ®(-) are the pdf and cdf of the standard normal, respectively.

Figures 1, 2, and 3 report density shapes and hrfs for three selected models. These pdfs
can accommodate right-skewed, left-skewed, decreasing-increasing-decreasing, and particu-
larly bimodal data, while their hrfs exhibit decreasing, increasing, and bathtub shapes.
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Figure 3: Density and hrf of MKFN(), 3, u, 02)

3. Properties

3.1. Linear representation

The exponentiated-G (exp-G) class has been widely researched in the past three decades.
Several distributions belonging to this class have been proposed as those reported in Table
1 by Tahir and Nadarajah (2015). Its density for an arbitrary cdf G(z) with power § > 0 is
75 = 0 g(x) G(x)? L.

Notable examples include the exp-exponential (Gupta and Kundu 2001), exp-Weibull (Mud-

holkar and Srivastava 1993), exp-Fréchet (Nadarajah and Kotz 2003), and exp-gamma (Nadara-
jah and Gupta 2007) distributions.

Initially, the generalized binomial expansion (for |v|< 1, and ¢ € R) holds
(L —v) = (-1) (?)m , )
j=0 J

where (§) =1 and (%) = %Hizl(q —n+1), for j > 1.

Equation (1) can be rewritten as

[1 - Ga)e@)”

F(z)=1—exp{q—A\ G (2)Pe@ (5)
Next, applying (4) in Equation (5), since G(z)¢®) € (0,1),
F(z) =1— exp {—)\ i(—w’ (f) [1- G(;c)]“—ﬁ)G(x)} : (6)
=0

The Taylor series expansion of (1 — v)PY at v =0 (for any real p) is

(I—v)PV => o™, |v|<1, (7)
n=0
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where ¢y = 1,¢1 = 0,c0 = —p, c3 = —p/2, cs = (3p*> — 2p)/6, c5 = (2p* — p)/4, etc. By
inserting (7) in Equation (6),

F(z)=1-— exp —)\ij G(z) }
§=0
where

by = by(8) = S (1) (5> ¢,

i=0 v

and the coefficients ¢;’s follow from (7) by taking p = (i — ). Thus, Theorem 25 of Munir
(2013) gives

r)=1-) a;G(x), (8)
§=0

where ag = exp(—Abg) and a; = (=A/j) Zizl kbya;_y for j > 1. By differentiating (8), it
follows the MKF-G density

o0
) =Y pjami(z), 9)
=0
where ;11 = —aj41, and 711 () is the exp-G density with power j+ 1. Equation (9) reveals

that the MKF-G density is an infinite linear combination of exp-G densities, which determines
some of its properties.

3.2. Moments
The rth moment of X, say IE(X") = [0 2" f(z) dz, can be written from (9) as

00 1 )
z Z%HE( 7i) =X i [ Qo) wau, (10)
=0

where Yj;1 is the density of the random variable exp-G(j + 1).

The rth incomplete moment of X, say m,(z) = [*__ 2" f(x) dz, comes from (9) as

G(2)

z) = Z@jﬂ/ a"mi1 (@ Z j+ 1 e Qc(u) v du. (11)
J=0 - J=0

The Bonferroni and Lorenz curves for a given probability v are B(v) = mi(q)/vp) and
L(v) = mi(q)/ 1y, respectively, where ¢ satisfies F(¢) = v with F(-) coming from (1).

3.3. Estimation

For a set of independent and identically distributed (iid) observations z1,- - , , from the pdf
(2), the log-likelihood function for @ = (), 3,€) " has the form

0(6) = n [1og(N) + 1og(B)] + > log glas) — B3 Gl log [1 - G(ay)

i=1 i=1

+(B-1) znjlog {1 —[1-G(z )]G(il'z } + Zlog (15;(5()) log [1 — G(:m)])
i=1

SAY {1 - Gl -1} (12)

=1



30 The Modified Kies Flexible Generalized Family

The maximum likelihood estimate (MLE) of @ can be found by maximizing (12) numerically

using statistical software such as R, Ox or SAS.

4. Main MKFW properties

The rth moment of X with pdf (3) can be determined by employing (10) and the findings of
Nadarajah and Gupta (2005) (for r > —a«)

o J 0 r [
/ (D) G+1)7" (] (7“ )
= = D —+1),
a jz:%gz:;) (0 +1)att ) PG

where I'(+) is the complete gamma function. Figure 4 displays the skewness and kurtosis plots
of X for some parameter values. Both measures increase when 3 increases.
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Figure 4: Skewness and kurtosis of MKFW (A, 5, a, 7)

The rth incomplete moment of the MKFW distribution can be obtained from Equation (11)

as (for r > —a)

N O R L AV z]®
mr(Z)_jz—%z; 1+0att \¢ %Hry(a+1’(€+1) M )

where ~y(+, ) is the lower incomplete gamma function. Figure 5 illustrates the Bonferroni and
Lorenz curves for X given a probability v for some values of A and 8, with 7 = 0.2 and
a=0.3.

For iid observations z1, - - -
6 = (\B,7,a)" reduces to

, Zpn, from the MKFW distribution, the log-likelihood function for

£(8) = n [10g(Y) + Log(5) + log(a) — alog(r) ] + (o — 1) 3. log(z) — 3 (/)"

+ zn: {5 {1 - e_(l’i/T)a:| (ZL',L/T)Q} + Zn:]Og { [e(mi/r)a _ 1} + (xl/T)a}
=1 i=1
#(0- 1 Y tog[1-esp{ - [1 e )
i=1
[ e e ’
)\; 1
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Figure 5: Bonferroni and Lorenz curves of MKFW (A, 5, o, 7)

Maximizing numerically (13) gives the MLE of 6.

4.1. Regression model

The log-modified Kies flexible Weibull (LMKFW) distribution is obtained by the transforma-
tion Y = log(X), where X has pdf (3). Its density, reparameterized in terms of @ = 1/0 and
7 = e#, has the form

-1 ,yeR, (14)

where A, 8,0 > 0 and p € IR. The density of Z = (Y — p1)/o can be written as

s =rpe e [ (1 - ) e {1 e [ (1o ) e} (¢ 1) 4o
X exp {—)\ [e(lfefez)ez — 1}5} , 2€R. (15)

Equation (15) represents the standard LMKFW density. A regression model can be con-
structed based on (14) to link the response variable y; to the explanatory variable vector
T T
,Vip)  as

v, = (vi1,- -

yi:'UzTTI‘f‘UZn /L‘:]-u'”)n) (16)

where p; = 'v;r n,n =, - ,np)T is the vector of parameters of the regression model, and

z; denotes the random error with density (15).

The log-likelihood function for ¢ = (\,3,0,n")" from Equations (15) and (16), can be
derived by considering y; = min(Y;, C;), where Y; and C; are independent random variables

31
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representing the lifetime and non-informative censoring time, respectively. For right-censored
data, it takes the form

((¢) = d[log(A) +log(B) — log(e) ]+ >z — Y e + 8 (1—e )™

ieF ieF i€l
—i—(ﬁ—l)Zlog{l—exp[— (1—e*ezi) ”—1—Zlog[( )—i—ezl}
el
A [l ] oy [l eZi_l]ﬁ, a7
el ieC

where d is the number of failures, z; = (y; — u;) /o, and F and C denote the sets of lifetimes
and censoring times, respectively. The MLE of ¢ is found by numerically maximizing (17).

5. Simulations

To evaluate the accuracy of the MLEs derived from the MKFW distribution, random samples
of sizes n = 50, 100, 200, and 500 are generated under three distinct scenarios using the
Newton-Raphson algorithm. One thousand Monte Carlo replicates are conducted, and the
average estimates (AEs), biases, and mean squared errors (MSEs) are computed. To optimize
Equation (13), the Broyden-Fletcher-Goldfarb-Shannon (BFGS) numerical method is used.
This method is implemented using the Optim function of the R statistical software, with the
true values of the parameters as initial inputs.

To generate MKFW variates, the Newton—-Raphson algorithm involves the steps:

1. Set \, 3, a, 7, and 2.
2. Generate u ~ Uniform(0, 1).

3. Update z° by using Newton’s formula

@)
where F(-) is the MKFW cdf obtained from (1), and f(-) is the pdf (3).

4. While | 2° — 2* | > €, where € is a small tolerance limit, set 2° = 2* and return to step
3. Otherwise, set 20 = 2* as a variable from the MKFW distribution.

5. The steps 2-4 are repeated n times to generate variates from the MKFW distribution.

The numbers in Table 1 reveal that the estimators of the MKFW parameters are consistent
since the AEs approach their true values and the biases and MSEs approach zero with in-
creasing sample size. Further, the last two quantities vary across scenarios, thus indicating
that the accuracy of the estimators may be affected by the selected parameters, especially for
smaller sample sizes.

The accuracy of the MLEs in the regression model is evaluated using 1,000 Monte Carlo
replicates for n = 50, 100, 200, and 500 under the acceptance-rejection method, and A =
0.5, =04,0 =4.0,n9 = 1.5, n; = 2.5. The censoring times cy, - -- , ¢, are generated using
a uniform distribution (0, b), where b determines the censoring percentage (0%, 10%, 30%).
Equation (17) is optimized using the Nelder-Mead numerical method run with the Optim
function in R, with the true values of the parameters serving as initial inputs.

The simulation process is described as (for i = 1,...,n):

1. Generate v;; ~ Uniform (0, 1) and set u; = 1o + mvi1-

2. Generate t; from w(t;) = (1/0) exp{(ti — pi)/o —exp [(t; — pi)/o]}.
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Table 1: Simulations from the MKFW distribution
(1.2, 0.5, 0.8, 0.3) (0.2, 0.7, 1.2, 0.1) (0.5, 0.6, 0.9, 0.2)

n 0 AE Bias MSE AE Bias MSE AE Bias MSE
50 A 1.4569 0.2569 1.0763 0.6197 0.4197 0.6025 0.9047 0.4047 0.7605
5 0.4047 -0.0952 0.1864 0.5979 -0.1020 0.4436 0.4790 -0.1209 0.1940
o 1.6468 0.8468 1.6589 2.5546 1.3546 5.9504 1.9010 1.0010 2.7889
7 0.3882 0.0882 0.0823 0.1492 0.0492 0.0075 0.2985 0.0985 0.0456
100 A 1.4018 0.2018 0.8253 0.4916 0.2916 0.3056 0.7944 0.2944 0.4787
5 0.4625 -0.0374 0.1401 0.6047 -0.0952 0.1560 0.5216 -0.0783 0.1167
o 1.3343 0.5343 0.9112 2.0227 0.8227 2.6646 1.4982 0.5982 1.3301
T 0.3693 0.0693 0.0650 0.1372 0.0372 0.0053 0.2714 0.0714 0.0319
200 A\ 1.3247 0.1247 0.4777 0.3845 0.1845 0.1550 0.6856 0.1856  0.2835
5 0.4874 -0.0125 0.1055 0.6361 -0.0638 0.1252 0.5508 -0.0491 0.0661
o 1.1109 0.3109 0.4389 1.6274 0.4274 0.8270 1.2230 0.3230 0.5455
7 0.3450 0.0450 0.0387 0.1267 0.0267 0.0030 0.2462 0.0462 0.0204
500 A 1.2551 0.0551 0.2281 0.2894 0.0894 0.0383 0.5806 0.0806 0.0884
5 0.4982 -0.0017 0.0560 0.6573 -0.0426 0.0210 0.5770 -0.0229 0.0293
o 09606 0.1606 0.1971 1.3915 0.1915 0.1878 1.0314 0.1314 0.1545
7 0.3210 0.0210 0.0193 0.1155 0.0155 0.0012 0.2206 0.0206 0.0085

3. Generate u ~ Uniform (0, 1).

4. If u < f(t;)/Mw(t;), then y; = t;, where f(-) comes from (15) and (16), and M =
max [f(t;)/w(t;)]. Otherwise, return to step 2.

5. Generate ¢; ~ Uniform (0, b).

6. The observed times are y; = min(y;, ¢;), where the censoring indicator §; = 1 if y; < ¢;
and §; = 0, otherwise.

The results in Table 2 demonstrate the consistency of the estimators in the regression model,
where the AEs converge to the true parameters, and the biases and MSEs approach zero
when n increases. However, the last two quantities also increase if the censoring percentage
grows, thus highlighting the impact of censoring on reducing the accuracy of the estimators.
All simulations are implemented in R.

6. Applications

6.1. COVID-19 data in Pernambuco (Brazil)

The emergence of the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2), in late 2019 led to the rapid spread of COVID-19, a highly contagious
respiratory disease, in early 2020. This unforeseen pandemic has resulted in a significant loss
of life and has prompted governments around the world to implement unprecedented measures
to protect their citizens.

In the state of Pernambuco (located in the northeastern region of Brazil), the COVID-19
situation has presented significant challenges. A substantial number of infections and deaths
have been confirmed in the state, which is the seventh most populous in Brazil and has the
tenth highest gross domestic product (GDP) in the country. In addition, Pernambuco has
the highest GDP per capita among the states of the Northeast region. Recently, the state

33
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Table 2: Simulations from the LMKFW regression model

0% 10% 30%
n ¢ AE Bias MSE AE Bias MSE AE Bias MSE
50 A 0.6686 0.1686 0.1651 0.6565 0.1565 0.2669 0.7146 0.2146  0.7711
8 03615 -0.0384 0.0665 0.3646 -0.0353 0.0692 0.4070 0.0070  0.4421
o 3.4504 -0.5495 3.5255 3.4843 -0.5156 4.3816 3.8639 -0.1360 29.0084
Mo 2.0666 0.5666 3.5561 2.0950 0.5950 3.2851 1.9851 0.4851 = 3.5426
m 27161 0.2161 3.0472 2.7842 0.2842 4.7793 3.0638 0.5638  7.7924
100 A 0.6098 0.1098 0.0882 0.6069 0.1069 0.0782 0.6053 0.1053  0.1373
8 03739 -0.0260 0.0194 0.3628 -0.0371 0.0201 0.3703 -0.0296 0.0721
o 3.6758 -0.3241 1.7010 3.5610 -0.4389 1.7200 3.6258 -0.3741 5.8014
no 1.8203 0.3203 2.3751 1.9147 0.4147 2.5261 1.9031 0.4031  2.7891
n 2.6385 0.1385 2.4440 2.7517 0.2517 4.2041 2.7369 0.2369 4.3922
200 A 0.5751 0.0751 0.0561 0.5804 0.0804 0.0564 0.5749 0.0749  0.0535
g 03783 -0.0216 0.0106 0.3759 -0.0240 0.0120 0.3743 -0.0256  0.0236
o 3.7630 -0.2369 1.1339 3.7240 -0.2759 1.1799 3.7139 -0.2860 2.1106
no 1.7642 0.2642 1.9917 1.7141 0.2141 1.8125 1.7155 0.2155 1.9066
m  2.5264 0.0264 2.0362 2.7578 0.2578 4.3331 2.7520 0.2520  3.9626
500 0.5327  0.0327 0.0234 0.5344 0.0344 0.0239 0.5385 0.0385  0.0267

A

B 0.3921 -0.0078 0.0050 0.3909 -0.0090 0.0057 0.3867 -0.0132 0.0096
o 39220 -0.0779 0.6030 3.9051 -0.0948 0.6263 3.8642 -0.1357 0.9965
no 1.5848 0.0848 1.0907 1.5424 0.0424 0.9666 1.5597 0.0597  1.1011
m  2.5043 0.0043 1.1630 2.6405 0.1405 2.9303 2.6786 0.1786  3.1722

has seen an increase in the number of cases, along with an increase in the test positivity rate.
Despite this increase in numbers, most cases are classified as mild.

In this context, the data set under consideration comprises the recovery times (in days) of 248
individuals diagnosed with COVID-19 in the year 2022 within the state, which can be accessed
at https://github.com/alexaaf31/The-Modified-kies-Flexible-Generalized-Family.
The data set reveals an average recovery time of 28.915 days and a standard deviation of
20.419. The skewness and kurtosis are 0.606 and 2.376, which suggest that the data are
right-skewed and platykurtic.

The MKFW distribution is fitted with other well-established distributions, such as the Kw
Weibull (KwW) (Cordeiro, Ortega, and Nadarajah 2010), beta Weibull (BW) (Lee, Famoye,
and Olumolade 2007), Weibull Weibull (WW) (Bourguignon et al. 2014), Lomaxr Weibull
(LW) (Cordeiro, Afify, Ortega, Suzuki, and Mead 2019), gamma Weibull (GW) (Nadarajah,
Cordeiro, and Ortega 2015), and Weibull (W).

Table 3 reports the MLEs and standard errors (SEs) (in parentheses) of the distributions
fitted to these data, where all of them (except BW) have accurate estimates. The results
in Table 4 demonstrate that the MKFW distribution outperforms the other distributions, as
evidenced by the lower values of Cramér-von Mises (W*), Anderson-Darling (A*), Akaike
information criterion (AIC), consistent AIC (CAIC), Bayesian information criterion (BIC),
Hannan-Quinn IC (HQIC), and Kolmogorov-Smirnov (KS) along its corresponding p-value.
The statistics W* and A* are defined by Chen and Balakrishnan (1995).

Considering only the distributions with accurate estimates, the generalized likelihood ratio
(GLR) test (Vuong 1989) compares the MKFW model with the KwW (GLR = 11.842), WW
(GLR = 22.452), LW (GLR = 16.997), GW (GLR = 13.618), and WE (GLR = 16.475) models
at a significance level of 5%. The results of the GLR tests indicate that the MKFW model
provides a superior fit to the current data compared to the alternatives. Figure 6 confirms
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Table 3: Results for COVID-19 data in Pernambuco
Model MLEs (SEs)

MKFW(\, B, a,¢) 1554  0.164  3.835  46.605
(0.099)  (0.009)  (0.059)  (0.048)

KwW (a, b, o, §) 0.149  1.961  7.208  81.476
(0.010)  (0.183)  (0.015)  (0.015)
BW(a, b, a, ¢) 0385  0.718 2633  43.132
(0.165)  (0.539)  (0.899)  (20.364)
WW(A, 8, a, ¢) 0.007 0510  0.302 0.019
(0.002)  (0.112)  (0.022)  (0.006)
LW(X, 8, o, ¢) 0.088  6.528  1.013 2.322
(0.007)  (2.592)  (0.010)  (0.005)
GW(a,a, ) 0332  3.022 58171
(0.145)  (1.024)  (7.820)
WE(a, ¢) 0.032  1.383

(0.002)  (0.071)

this fact visually through the close correspondence between the pdf and cdf estimated by the
model and the histogram and empirical cdf of the data.

All previous results are done with the AdequacyModel (Marinho, Silva, Bourguignon, Cordeiro,
and Nadarajah 2019) script in R package with the BFGS algorithm.

Table 4: Adequacy measures for COVID-19 data in Pernambuco

Model W A* AIC CAIC BIC HQIC KS p-value

MKFW  0.071  0.520  2119.820  2119.985  2133.874  2125.478  0.045 0.693
KwW 0.114  0.848  2126.131  2126.295  2140.184  2131.788  0.059 0.352

WW 0.247  1.723  2146.838  2147.002  2160.891  2152.495  0.063 0.269
Lw 0.373 2307  2153.241  2153.406  2167.295  2158.899  0.083 0.060
GW 0.1564  1.079  2130.354  2130.453  2140.895  2134.597  0.067 0.206
WE 0.190 1.217  2134.018  2134.067  2141.045  2136.847  0.057 0.376

6.2. Stress data

The bimodal capability of the MKFW distribution is explored by comparing it with other
flexible models capable of exhibiting this shape. These models include the Kw flexible Weibull
(KwFW) (M.A.El-Damcese, Mustafa, B.S.El-Desouky, and M.E.Mustafa 2016), generalized
odd log-logistic Weibull (GOLLW) (Cordeiro, Alizadeh, Ozel, Hosseini, Ortega, and Altun
2017), Weibull Marshall-Olkin Weibull (WMOW) (Korkmaz, Cordeiro, Yousof, Pescim, Afify,
and Nadarajah 2019), and extended Weibull log-logistic (EWLL) (Abouelmagd, Hamed, Al-
mamy, Ali, Yousof, Korkmaz et al. 2019) models.

Accelerated life testing is a technique used to estimate the useful life of a product by subjecting
it to more severe levels of stress than it would suffer in normal use. This speeds up the failure
process, allowing researchers to collect failure data in a shorter period of time compared
to its use under normal conditions. Thus, this analysis shows the flexibility of the MKFW
distribution to fit the data set 12.2 from Murthy, Xie, and Jiang (2004), which refers to the
accelerated life testing of 40 items (with a change in stress from 100 to 150 at ¢ = 15). The
data are: 0.13, 0.62, 0.75, 0.87, 1.56, 2.28, 3.15, 3.25, 3.55, 4.49, 4.50, 4.61, 4.79, 7.17, 7.31,
7.43, 7.84, 8.49, 8.94, 9.40, 9.61, 9.84, 10.58, 11.18, 11.84, 13.28, 14.47, 14.79, 15.54, 16.90,
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Figure 6: Estimated pdfs (a) and cdfs (b) for COVID-19 data in Pernambuco
17.25, 17.37, 18.69, 18.78, 19.88, 20.06, 20.10, 20.95, 21.72, 23.87.

Table 5: Results for stress data
Model MLEs (SEs)

MKFW(X, 8,0, 4) 0908  0.142  3.687  12.154
(0.155)  (0.018)  (0.011)  (0.011)

KwFW (a, b, o, 8) 0.244  0.119  0.151 1.822
(0.101)  (0.020)  (0.002)  (0.003)

GOLLW(a,6,a,b)  0.640 0236 5845  17.721
(0.105)  (0.055)  (0.140)  (0.119)

WMOW (o, B,7,0) 4348  0.883  1.141  6.207
(4.915)  (0.638)  (0.968)  (5.108)

EWLL(\, a, 3) 0.232  0.681  6.477
(0.088)  (0.094)  (2.237)

The skewness (0.220) and kurtosis (1.810) support that the data are right-skewed and platykur-
tic. Table 5 reports the MLEs and SEs for the fitted models, which are also obtained using
the AdequacyModel package in R with the BFGS algorithm. The estimates for the MKFW,
KwFW, GOLLW, and EWLL distributions are accurate. The MKFW distribution has the
lowest values of the adequacy measures given in Table 6. The GLR tests comparing the
MKFW model against the KwFW (GLR = 2.561), GOLLW (GLR = 2.767), WMOW (GLR
= 4.311), and EWLL (GLR = 5.107) models for a significance level of 5% validate the best fit
of the MKFW model to the data. Figure 7 illustrates that the estimated pdf and cdf of the
MKFW distribution are closest to the histogram and the empirical cumulative distribution.

6.3. COVID-19 data in Rondonépolis, Brazil

Like Pernambuco, the city of Rondonépolis in the state of Mato Grosso (center-west region of
Brazil) has endured significant challenges during the COVID-19 pandemic, with a considerable
number of infections and deaths attributed to the virus. Located about 210 km from the cap-
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Table 6: Adequacy measures for stress data

Model W A* AIC CAIC BIC HQIC KS p-value

MKFW 0.023  0.151  260.654 261.797  267.409  263.096  0.079 0.945
KwFW 0.070  0.409 264.360 265.503 271.115  266.802  0.096 0.811
GOLLW  0.032 0.184 261.400 262.543 268.155  263.842  0.086 0.899
WMOW  0.060 0.458 269.131 270.274  275.886 271.573  0.088 0.882
EWLL 0.096 0.683 269.831 270.497 274.897 271.663  0.087 0.893

(a) (b)
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Figure 7: Estimated pdfs (a) and cdfs (b) for stress data

ital of Cuiaba, Rondonépolis is a significant economic hub, holding the second-highest GDP
in Mato Grosso. Its strategic position at the intersection of the BR-163 and BR-364 highways
designates it a crucial link between Brazil’s northern and southern regions, facilitating the
transportation of both agricultural and industrial goods to major cities and ports nationwide.
This data set contains the lifetime (in days) of 370 individuals diagnosed with COVID-19
in Rondonépolis during 2020, which can be accessed at https://github.com/alexaaf31/
The-Modified-kies-Flexible-Generalized-Family/blob/main/RONCOVID.csv.

The response variable y; denotes the time between the onset of symptoms and the death
of the patient due to COVID-19. Approximately 60.27% of the observations are censored,
corresponding to patients who died from other causes or survived past the study period. The
variables (for i =1,---,370) are: ¢;: censoring indicator (0 = censored, 1 = observed lifetime),
v;1: age (in years), and vy : cardiovascular diseases (1 = yes, 0 = no or not informed). Figure
8(a) shows that individuals between the ages of 40 and 80 have the highest frequency of
hospitalizations. Figure 8(b) indicates that cardiovascular disease is associated with a higher
risk of death from COVID-19.

The regression model proposed for these data is
yi =no +muix +mevig + oz, 1 =1,---,370,

where z; has pdf (15). The findings are compared with those of the log-Kw Weibull (LKwW),
log-beta Weibull (LBW) (Ortega, Cordeiro, and Kattan 2013), and log- Weibull Weibull (LWW)
regressions. The MLEs, the corresponding SEs in parentheses, and the p-values in brackets
of the selected regression models are obtained using a script in R via the Optim function with
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Figure 8: Histogram for age (a) and Kaplan-Meier curves for cardiovascular disease (b) for
COVID-19 data in Rondonoépolis

the BFGS algorithm. Then, the numbers in Table 7 show that age and cardiovascular disease
significantly decrease the time to death at the 5% level because of the negative signs of 7;
and 7s.

The results of the GLR tests comparing the LMKFW regression with the LKwW (GLR =
55.130), LBW (GLR = 75.524), and LWW (GLR = 67.576) regressions, and the figures in
Table 8, show that the LMKFW regression exhibits a superior fit to the current data. The

quantile residuals (qrs) (Dunn and Smyth 1996) to analyze the fit of this regression are given
by

qr; = 11— exp -\ le(l_ee >e . 1] ,

where ®~!(-) is the standard normal quantile function, 2; = (y; — f1;)/6, and i = v/ 9.
According to Figure 9, the qrs are randomly distributed and follow approximately a standard
normal distribution. Hence, the LMKFW regression model explains the COVID-19 data in
Rondonépolis.

The computational routine implemented in R is available online at https://github.com/
alexaaf31/The-Modified-kies-Flexible-Generalized-Family.

7. Conclusions

This paper introduced the modified Kies flexible generalized (MKF-G) family, which expands
the modeling capabilities of its baseline distributions by incorporating bimodal and bathtub
shapes. A special case of this family, the modified Kies flexible Weibull distribution, is
examined in detail. We explored its properties and developed a regression model for censored
data. The simulations proved the consistency of the maximum likelihood estimators. The
models in the new family outperformed those from the well-known Kumaraswamy-G, beta-G,
and Weibull-G classes for three real data sets, thus providing a new tool for modeling bimodal
and bathtub shape data.
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Table 7: Results for COVID-19 data in Rondonépolis

Model A I} o 70 m 72
2.403 0.219 0.231 5.083 -0.016 -0.310
LMKFW  (0.587)  (0.015)  (0.006)  (0.004) (0.001)  (0.105)
[<0.001] [<0.001]  [0.003]
1.331 0.551 0.630 4.182 -0.016 -0.302
LKwW (0.561)  (1.648)  (0.202)  (1.568) (0.003)  (0.128)
[0.007]  [<0.001] [0.019]
1.401 1.152 0.671 4.574 -0.017 -0.296
LBW (0.729)  (2.725)  (0.237)  (1.391) (0.003)  (0.129)
(0.001]  [<0.001] [0.022]
0.030 4.022 3.443 3.934 -0.016 -0.267
LWW (0.062)  (1.674)  (1.343)  (1.125) (0.003)  (0.113)
[<0.001] [<0.001] [0.018]

Table 8: Adequacy measures for COVID-19 data in Rondonépolis

Model AIC CAIC BIC HQIC
LMKFW  524.285  524.684  547.766  533.612
LKwW 524.843  525.241 548.324  534.170
LBW 524.892  525.291  548.373  534.219
LWW 528.605  529.004  552.086  537.932
(a) (b)
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Figure 9: Index plot (a) and normal probability plot (b) for COVID-19 data in Rondonépolis
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