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Abstract

We focus on the gamma-Gompertz-Makeham model, and derive useful structural properties
for this mortality model. We provide the basic properties like moments, remaining life expectancy,
single life annuity, among many others, in closed form, and so it eliminates the need of evaluating
them through numerical integration directly. The estimation of the gamma-Gompertz-Makeham
model parameters is performed by using the maximum likelihood method under the traditional
discrete Poisson distribution, as well as under the recently introduced discrete Bell distribution,
which is an interesting alternative to the usual Poisson distribution, mainly in the presence of
overdispersion. We illustrate the performance of the gamma-Gompertz-Makeham model in a hu-
man mortality database, and compute, based on the Poisson and Bell distributions, the remaining
life expectancy, single life annuity and single assurance at ages 30, 55, and 80 in France, Italy,
Japan, and Sweden, from 1947 to 2020 males and females separately.
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1. Introduction

Let Z be the gamma-distributed frailty with parameters λ > 0 and ρ > 0, where E(Z) = λ/ρ and
VAR(Z) = λ/ρ2. It is common to assume that ρ = λ (see, for example, Canudas-Romo, Mazzuco,
and Zanotto 2018), and so E(Z) = 1 and VAR(Z) = 1/λ := σ2. Under the gamma-Gompertz-
Makeham mortality model, the mortality rate (or force of mortality) can be expressed as (Böhnstedt
and Gampe 2019; Böhnstedt, Putter, Ouellette, Claeskens, and Gampe 2019)

µx = αeβx

1 + σ2 α
β (eβx − 1) + γ,

where α > 0, β > 0, γ ≥ 0 and σ2 > 0. According to Böhnstedt and Gampe (2019) and Böhn-
stedt et al. (2019), the parameter σ2 describes the heterogeneity of frailty in the gamma-Gompertz-
Makeham model, as well as in the gamma-Gompertz model (γ = 0). If σ2 is not close to zero, then
there is heterogeneity in the risk of death and selection of the most robust individual will occur. On
the other hand, σ2 ≈ 0 (i.e. very close to zero) may indicate that there is no heterogeneity and the
force of mortality is increasing exponentially, such that µx = αeβx +γ. Böhnstedt and Gampe (2019)
have discussed about this issue and, in addition, some statistical properties of the ML estimators are
derived.
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Let λ = 1/σ2, and so

µx = γ + αeβx

1 + α
λβ (eβx − 1) = γ +

βλ α
βλ−αeβx

1 + α
βλ−αeβx

.

The gamma-Gompertz-Makeham survival function for a life aged x is

S(x) = e−γx
[1 + α

βλ−α eβx

1 + α
βλ−α

]−λ

,

and

S(x + t) = e−γxe−γt
[1 + α

βλ−α eβ(x+t)

1 + α
βλ−α

]−λ

.

Hence,

tpx := S(x + t)
S(x) = e−γt

1 + α
βλ−αeβ(x+t)

1 + α
βλ−αeβx

−λ

.

To simplify the notation, let α = abk/(1 + a), β = b, γ = c, and λ = k. Hence, it follows that

µx = c + kbaebx

1 + aebx
, S(x) = e−cx

[
1 + aebx

1 + a

]−k

, tpx = e−ct

[
1 + aebxebt

1 + aebx

]−k

.

We can see that if there is no heterogeneity, i.e. k → ∞, then kba → α and a → 0. In this case, µx →
γ + αeβx, which is the mortality rate under the Gompertz-Makeham mortality model. On the other
hand, if there is the heterogeneity, i.e. k is finite (k < ∞), we have that limx→∞ µx = c+kb < ∞. In
this case, the model behaves like a generalized logistic model. It is worth emphasizing that the notation
used here and in the next sections (e.g., S(x), E[X], etc.) is standard in statistics. It is also worth
mentioning that actuarial science has developed its own notation, International Actuarial Notation,
that encapsulates the probabilities and functions of greatest interest and usefulness to actuaries. We
refer the reader to Dickson, Hardy, and Waters (2019) for a detailed description.

According to Souza (2022), a special topic that has been drawing the attention of researchers from
different fields to date is related to deriving closed-form analytical expressions, depending on special
mathematical functions, for some basic properties of the well-known mortality models like Gom-
pertz and Gompertz-Makeham mortality models. For example, Jodrá (2009) derived a closed-form
expression for the quantile function of Gompertz-Makeham model, Lenart (2014) derived explicit
closed-form expressions for the moment generating function and central moments of the Gompertz
model, Bowie (2021) provided closed-form expressions for annuities based on Makeham-Bread mor-
tality laws, Castellares, Patrício, and Lemonte (2020) provided closed-form expressions to Gompertz-
Makeham life expectancies, and Castellares, Patrício, and Lemonte (2022) provided analytical expres-
sions for some statistical and actuarial properties regarding the Gompertz-Makeham model and also
studied the estimation of the Gompertz-Makeham model parameters through Poisson and Bell distri-
butions. Finally, a good historical note regarding closed-form expressions to Gompertz-Makeham life
expectancies is provided by Souza (2022).

In this paper, we shall derive some statistical properties, as well as actuarial properties regarding the
gamma-Gompertz-Makeham model, which are useful in practical applications. It is worth stress-
ing that all properties we derive under the gamma-Gompertz-Makeham model are expressed in closed
form. In particular, some structural properties depend on the Gaussian hypergeometric function, which
is implemented in common statistical and mathematical software facilitating the use of the analyti-
cal expressions derived in this paper. It is worthwhile mentioning that the Gaussian hypergeometric
function has long date and has been extremely studied and applied in several areas. Consequently,
the computational implementaion of it is quite relable in statistical and mathematical software, and so
the numerical result obtained from it may be more accurate computationally than the numerical result
obtained from numerical integration directly, which may be prone to rounding off errors, for example.
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On the other hand, as pointed out by an anounymous referee, modern computational methods have
moved beyond hypergeometric functions and, hence, numerical integration may also be applied to
compute the quantities studied in this paper. Here, instead of it, we express the structural properties
in terms of the Gaussian hypergeometric function that, beyond it mathematical elegance, provides an
easy way of computing the analytical expressions derived in this paper with minimal effort in sta-
tistical and mathematical software. Furthermore, the estimation of the gamma-Gompertz-Makeham
model parameters by using the maximum likelihood method will also be addressed in this paper.
In particular, we shall consider the traditional discrete Poisson distribution to do so, as well as the
recently introduced discrete Bell distribution. The latter has the advantage of dealing with overdisper-
sion, unlike the Poisson distribution. Finally, based on the human mortality database, we compute the
remaining life expectancy, single life annuity and single assurance at ages 30, 55, and 80 in France,
Italy, Japan, and Sweden, from 1947 to 2020 males and females separately.

2. Basic properties
Let 2F1(m, p; q; z) be the Gaussian hypergeometric function (see, for instance, Rainville 1960; Exton
1978; Andrews, Askey, and Roy 1999), which is defined in the form

2F1(m, p; q; z) =
∞∑

n=0

(m)n(p)n

(q)n

zn

n! , |z| < 1,

where (m)n is the (rising) Pochhammer symbol defined by (m)0 = 1, and (m)n = m(m+1) · · · (m+
n − 1) for n ≥ 1. We have also that (m)n = Γ(m + n)/Γ(m), where Γ(·) denotes the complete
gamma function, and 2F1(m, p; q; z) = 2F1(p, m; q; z). We have the following theorem.

Theorem 1. If |z| < 1 and Re(q) > Re(p) > 0, then

2F1(m, p; q; z) = Γ(q)
Γ(p)Γ(q − p)

∫ 1

0
up−1(1 − u)q−p−1(1 − zu)−mdu.

Proof. The proof can be found in Rainville (1960, p. 47).

2.1. Statistical properties

In this section, we provide explicit closed-form expressions of some statistical properties of the
gamma-Gompertz-Makeham model.

Characteristic function

We have the following proposition.

Proposition 1. The characteristic function of the gamma-Gompertz-Makeham model is given by

φ(s) = c

bk + c − is
2F1

(
k, 1; k + 1 + c − is

b
; 1
1 + a

)
+ kab

(1 + a)(bk + c − is) 2F1

(
1 + k, 1; k + 2 + c − is

b
; 1
1 + a

)
,

where s ∈ R, and i =
√

−1 is the imaginary unit.

Proof. We have that

φ(s) =
∫ ∞

0
eisxµxS(x)dx

=
∫ ∞

0
eisx

(
c + kbaebx

1 + aebx

)
e−cx

[
1 + aebx

1 + a

]−k

dx

= c

∫ ∞

0
e−(c−is)x

[
1 + aebx

1 + a

]−k

dx + kba

1 + a

∫ ∞

0
e−(c−is−b)x

[
1 + aebx

1 + a

]−k−1

dx.
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Making the change of variable u = 1 − e−bx, the result follows by using Theorem 1.

Corollary 1. If c = 0, we obtain the characteristic function of the gamma–Gompertz model, which
has the form

φ(s) = kab

(1 + a)(bk − is) 2F1

(
1 + k, 1; k + 2 + −is

b
; 1
1 + a

)
,

where s ∈ R, and i =
√

−1 is the imaginary unit.

Proposition 2. The moment generating function of the gamma-Gompertz-Makeham model is given
by

M(s) = c

bk + c − s
2F1

(
k, 1; k + 1 + c − s

b
; 1
1 + a

)
+ kab

(1 + a)(bk + c − s) 2F1

(
1 + k, 1; k + 2 + c − s

b
; 1
1 + a

)
, s ∈ R.

Proof. We have that

M(s) =
∫ ∞

0
esxµxS(x)dx

=
∫ ∞

0
esx

(
c + kbaebx

1 + aebx

)
e−cx

[
1 + aebx

1 + a

]−k

dx

= c

∫ ∞

0
e−(c−s)x

[
1 + aebx

1 + a

]−k

dx + kba

1 + a

∫ ∞

0
e−(c−b)x

[
1 + aebx

1 + a

]−k−1

dx.

Making the change of variable u = 1 − e−bx, the result follows by using Theorem 1.

Corollary 2. The moment generating function of the gamma–Gompertz model reduces to

M(s) = kab

(1 + a)(bk − s) 2F1

(
1 + k, 1; k + 1 − s

b
; 1
1 + a

)
, s ∈ R.

Proposition 3. The Laplace transform of the gamma-Gompertz-Makeham model takes the form

L(s) = c

bk + c + s
2F1

(
k, 1; k + 1 + c + s

b
; 1
1 + a

)
+ kab

(1 + a)(bk + c + s) 2F1

(
1 + k, 1; k + 2 + c + s

b
; 1
1 + a

)
, s > 0.

Proof. We have that

L(s) =
∫ ∞

0
e−sxµxS(x)dx

=
∫ ∞

0
e−sx

(
c + kbaebx

1 + aebx

)
e−cx

[
1 + aebx

1 + a

]−k

dx

= c

∫ ∞

0
e−(c+s)x

[
1 + aebx

1 + a

]−k

dx + kba

1 + a

∫ ∞

0
e−(c+s−b)x

[
1 + aebx

1 + a

]−k−1

dx.

Making the change of variable u = 1 − e−bx, the result follows by using Theorem 1.

Corollary 3. The Laplace transform of the gamma–Gompertz model is

L(s) = kab

(1 + a)(bk + s) 2F1

(
1 + k, 1; k + 2 + s

b
; 1
1 + a

)
, s > 0.
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Moments

We have the following proposition.

Proposition 4. Let X be gamma-Gompertz-Makeham distributed. The n-th moment of X is

E[Xn] = n!
bn

∞∑
m=n−1

T (m, n − 1)
m! B(m + 1, k + c/b)×

2F1

(
k, m + 1; k + m + 1 + c

b
; 1
1 + a

)
,

where T (q, p) is Stirling numbers of the first kind, and B(·, ·) is the beta function.

Proof. We have that

E[Xn] = n

∫ ∞

0
xn−1S(x)dx = n

∫ ∞

0
xn−1e−cx

[
1 + aebx

1 + a

]−k

dx.

Let u = 1 − e−bx, and so

E[Xn] = n

∫ 1

0

1
bn

[− ln(1 − u)]n−1(1 − u)c/b+k−1
[
1 − u

1 + a

]−k

dx.

Also,

[− ln(1 − u)]n−1 = (n − 1)!
∞∑

m=n−1

1
m!T (m, n − 1)um, |u| < 1.

Hence,

E[Xn] = n!
bn

∞∑
m=n−1

1
m!T (m, n − 1)

∫ 1

0
um(1 − u)c/b+k−1

[
1 − u

1 + a

]−k

dx.

Let z = 1/(1 + a) in the above integral. Hence, the result follows by using Theorem 1.

Corollary 4. Let X be gamma–Gompertz distributed. The n-th moment of X reduces to

E[Xn] = n!
bn

∞∑
m=n−1

T (m, n − 1)
m! B(m + 1, k) 2F1

(
k, m + 1; k + m + 1; 1

1 + a

)
.

2.2. Actuarial properties

Here, some additional notation is in order. Let (x) denote a life aged x, where x ≥ 0. The death
of (x) can occur at any age greater than x, and we model the future lifetime of (x) by a continuous
random variable which we denote by Tx. This means that x + Tx represents the age-at-death random
variable for (x). Also, we are generally most interested in the expected value of the present value
random variable for some future payment. We refer to this as the expected present value (‘EPV’ for
shor). It is also commonly referred to as the actuarial value or the actuarial present value. Let δ be
the constant force of interest per year. We have assumed this constant force of interest per year in the
results derived in the following.

Single life annuities

We have the following proposition.

Proposition 5. The EPV of a whole life annuity that is payable continuously at a rate of 1 per year
subject to the gamma-Gompertz-Makeham mortality model is given by

āx = 1
bk + δ + c

2F1

(
k, 1; k + 1 + δ + c

b
; 1
1 + aebx

)
. (1)
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Proof. We have that

āx := E[āTx
] =

∫ ∞

0
e−δt

tpxdt,

where

tpx = e−ct

[
1 + aebxebt

1 + aebx

]−k

.

Note that

āx =
∫ ∞

0
e−δte−ct

[
1 + aebxebt

1 + aebx

]−k

dt

= [1 + aebx]k
∫ ∞

0
e−(δ+c)t[1 + aebxebt]−kdt.

Using the transformation u = 1 − e−bt, we obtain

āx = [1 + aebx]k
∫ 1

0
(1 − u)

δ+c
b

[
1 + aebx 1

(1 − u)

]−k du

b(1 − u)

= 1
b

[1 + aebx]k
∫ 1

0
(1 − u)

δ+c
b

+k−1[1 + aebx − u]−kdu.

After some algebra, it follows that

āx = 1
b

∫ 1

0
(1 − u)

δ+c
b

+k−1
[
1 − u

1 + aebx

]−k

du.

Thus, we obtain

āx = 1
b

∫ 1

0
u1−1(1 − u)

δ+c
b

+k−1 (1 − zu)−k du,

where
z = 1

1 + aebx
∈ (0, 1).

From Theorem 1, we have that∫ 1

0

u1−1

(1 − zu)k
(1 − u)( δ+c

b
+k+1)−1−1 du = 2F1

(
k, 1; k + 1 + δ + c

b
; z

)
b

bk + δ + c
.

Finally, it follows that

āx = 1
bk + δ + c

2F1

(
k, 1; k + 1 + δ + c

b
; 1
1 + aebx

)
,

and, therefore, the result holds.

Corollary 5. When δ = 0 in equation (1), we obtain the remaining life expectancy at age x in the
gamma-Gompertz-Makeham mortality model, which is given by

e̊x = 1
bk + c

2F1

(
k, 1; k + 1 + c

b
; 1
1 + aebx

)
.

Proposition 6. The actuarial present value of an n-year temporary life annuity for (x) and subject to
the gamma-Gompertz-Makeham mortality model is

āx:n = 1
bk + δ + c

2F1

(
k, 1; k + 1 + δ + c

b
; 1
1 + aebx

)
− npx e−δn 1

bk + δ + c
2F1

(
k, 1; k + 1 + δ + c

b
; 1
1 + aeb(x+n)

)
.
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Proof. We have that

āx:n := E
[
āmin{Tx,n}

]
=
∫ n

0
e−δt

tpxdt

=
∫ n

0
e−δte−ct

[
1 + aebxebt

1 + aebx

]−k

dt,

which can be reduced to
āx:n = āx − npx e−δn āx+n.

Hence, the result follows.

Single assurances

We have the following proposition.

Proposition 7. For the gamma-Gompertz-Makeham model, the EPV for whole life insurance benefit
payment with sum 1 is given by

Āx = c

bk + 2c + δ
2F1

(
k, 1; k + 1 + δ + 2c

b
; 1
1 + aebx

)
+ kbaebx

(1 + aebx)(bk + 2c + δ) 2F1

(
1 + k, 1; k + 1 + δ + 2c

b
; 1
1 + aebx

)
.

Proof. We have that

Āx := E[e−δTx ] =
∫ ∞

0
e−δt µx+t tpxdt

=
∫ ∞

0
e−δt

(
c + kbaeb(x+t)

1 + aeb(x+t)

)
e−ct

[
1 + aebxebt

1 + aebx

]−k

dt.

Making the change of variable u = 1 − e−bt, the result follows by using Theorem 1.

Corollary 6. For the gamma-Gompertz-Makeham model, the second moment (about zero) of the
present value for whole life insurance benefit payment with sum 1 is given by

2Āx := E[e−2δTx ] = c

bk + 2c + 2δ
2F1

(
k, 1; k + 1 + 2δ + 2c

b
; 1
1 + aebx

)
+ kbaebx

(1 + aebx)(bk + 2c + 2δ) 2F1

(
1 + k, 1; k + 1 + 2c + 2δ

b
; 1
1 + aebx

)
.

Corollary 7. For the gamma-Gompertz model, the EPV for whole life insurance benefit payment with
sum 1 takes the form

Āx = kbaebx

(1 + aebx)(bk + δ) 2F1

(
1 + k, 1; k + 1 + δ

b
; 1
1 + aebx

)
.

Corollary 8. For the gamma-Gompertz model, the second moment (about zero) of the present value
for whole life insurance benefit payment with sum 1 is given by

2Āx = kbaebx

(1 + aebx)(bk + 2δ) 2F1

(
1 + k, 1; k + 1 + 2δ

b
; 1
1 + aebx

)
.

Remark 1. The variance of the present value of a unit benefit payable immediately on death is given
by VAR[e−δTx ] := E[e−2δTx ]−{E[e−δTx ]}2 = 2Āx − (Āx)2; see, for example, Dickson et al. (2019).



8 Gamma–Makeham

Joint life annuity

The Appell function (see, for example, Appell 1880; Slater 1966; Exton 1978), which is an extension
of the Gauss hypergeometric function for two variables, is defined for |x| < 1 and |y| < 1 by the
double series

F1(a, b1, b2; c; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m(b2)n

(c)m+nm!n! xmyn.

The Appell function converges if these arguments lie within the unit circle. Picard (1881) found out
that Appell function can be expressed as a one-dimensional Euler-type integral, and so we have the
following theorem.

Theorem 2. If |x| < 1, |y| < 1 and Re(q) > Re(m) > 0, then

F1(m, k1, k2, q; z1, z2) = Γ(q)
Γ(m)Γ(q − m)

∫ 1

0
tm−1(1 − t)q−m−1 (1 − z1t)−k1

(1 − z2t)k2
dt.

Proof. This representation can be verified by means of Taylor expansion of the integrand, followed
by termwise integration; see Picard (1881).

Similar to the single life annuity issued to a life aged x for the gamma-Gompertz-Makeham mortality
model, the following proposition provides a closed-form expression for computing āxy in the gamma-
Gompertz-Makeham mortality model.

Proposition 8. Assume that Tx and Ty are gamma-Gompertz-Makeham distributed with parameters
(a1, b, c1, k1) and (a2, b, c2, k2), respectively. Let Tx and Ty be independent. We have that

āxy = κ F1

(
1, k1, k2,

δ + c1 + c2
b

+ k1 + k2 + 1; 1
1 + a1ebx

,
1

1 + a2eby

)
, (2)

where
κ = 1

δ+c1+c2
b + k1 + k2

.

Proof. We have that

āxy =
∫ ∞

0
e−δt

tpxydt

where
tpxy = tpxtpy

tpxy = e−(c1+c2)t
[

1 + a1ebxebt

1 + a1ebx

]−k1 [1 + a2ebyebt

1 + a2eby

]−k2

.

Note that

āxy = [1 + a1ebx]k1 [1 + a2eby]k2

∫ ∞

0
e−(δ+c1+c2)t [1 + a1ebxebt]−k1

[1 + a2ebyebt]k2
dt.

Using the transformation u = 1 − e−bt, and after some algebra, we obtain

āxy = 1
b

∫ 1

0
(1 − u)

δ+c1=C2
b

+k1+k2−1
[
1 − u

1 + a1ebx

]−k1 [
1 − u

1 + a2eby

]−k2

du.

Thus, we obtain

āxy = 1
b

∫ 1

0
u1−1(1 − u)

δ+c1+c2
b

+k1+k2−1 (1 − z1u)−k1 (1 − z1u)−k1 du,

where
z1 = 1

1 + a1ebx
, z2 = 1

1 + a2eby
.
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From Theorem 2, we have that∫ 1

0
u1−1(1 − u)q−1−1(1 − z1u)−k1(1 − z2u)−k2du = b

q − 1F1(1, k1, k2, q; z1, z2),

where
q = δ + c1 + c2

b
+ k1 + k2 + 1.

Therefore, it follows that

āxy = κ F1

(
1, k1, k2,

δ + c1 + c2
b

+ k1 + k2 + 1; 1
1 + a1ebx

,
1

1 + a2eby

)
,

where
κ = 1

δ+c1+c2
b + k1 + k2

.

Corollary 9. When δ = 0 in equation (2), we obtain the remaining life expectancy of Txy =
min{Tx, Ty} in the gamma-Gompertz-Makeham model, which is given by

e̊xy = 1
c1+c2

b + k1 + k2
F1

(
1, k1, k2,

c1 + c2
b

+ k1 + k2 + 1; 1
1 + a1ebx

,
1

1 + a2eby

)
.

Also, e̊xy := E [Txy] = e̊x + e̊y − e̊xy.

Corollary 10. Assume that Tx and Ty are gamma-Gompertz-Makeham distributed with parameters
(a1, b, c1, k1) and (a2, b, c2, k2), respectively. Let Tx and Ty be independent. We have that āxy =
āx + āy − āxy; see, for example, Dickson et al. (2019).

Corollary 11. Assume that Tx and Ty are gamma-Gompertz-Makeham distributed with the same
parameters (a, b, c, k). Let Tx and Ty be independent. We have that

āxy = 1
δ+2c

b + 2k
F1

(
1, k, k,

δ + 2c

b
+ 2k + 1; 1

1 + aebx
,

1
1 + aeby

)
.

3. Maximum likelihood estimation

Let Dx be the number of deaths in a given age interval [x, x + 1) for x = 0, . . . , m. Also, let
Ex denote the number of person-years with age x exposed to the risk of dying (see, for example,
Brillinger 1986; Macdonald, Currie, and Richards 2018). Also, define D = (D0, D1, . . . , Dm)′ and
E = (E0, E1, . . . , Em)′. In addition, let θ = (α, β, γ, σ2)′ be the parameter vector that characterizes
the force of mortality at age x, which is given by

µx = αeβx

1 + σ2 α
β (eβx − 1) + γ.

Finally, we assume that the number of deaths and the number of person-years exposed to the risk of
dying can be observed.

3.1. Poisson distribution

The standard approach to estimate mortality models was presented by Brillinger (1986), where a
Poisson distribution is assumed for the number of deaths Dx with E(Dx) = VAR(Dx) = µxEx.
Thus, the probability mass function of the random variable Dx is

PrP [Dx = z] = e−µxEx(µxEx)z

z! , z = 0, 1, 2, . . . .
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By considering the standard assumption on the death count, the likelihood function for the parameter
vector θ = (α, β, γ, σ2)′ is given by

LP(θ) ≡ LP(θ|D, E) =
∏
x

e−µxEx(µxEx)Dx

Dx! ,

and the log-likelihood function, unless constant terms, takes the form

ℓP(θ) ≡ ℓP(θ|D, E) = ln(LP(θ)) =
∑

x

[Dx ln(µxEx) − µxEx].

The maximum likelihood (ML) estimator θ̂ = (α̂, β̂, γ̂, σ̂2)′ of θ = (α, β, γ, σ2)′ is obtained by
maximizing the log-likelihood function with respect to the model parameters. The score functions
can be expressed as

∂ℓP(θ|D, E)
∂α

=
∑

x

δP
x

(
β2eβx

(ασ2(eβx − 1) + β)2

)
,

∂ℓP(θ|D, E)
∂β

=
∑

x

δP
x

 αxeβx

1 + σ2 α
β (eβx − 1) −

eβx
[
βxeβx − (eβx − 1)

]
[

β
ασ

(
1 + σ2 α

β (eβx − 1)
)]2

 ,

∂ℓP(θ|D, E)
∂γ

=
∑

x

δP
x ,

∂ℓP(θ|D, E)
∂σ2 =

∑
x

δP
x

 α2eβx(eβx − 1)

β
(
σ2 α

β (eβx − 1) + 1
)2

 ,

where δP
x ≡ δP

x (θ) = [Dx/µx − Ex]. By equating these likelihood equations to zero and solv-
ing simultaneously the resulting system of equations, we can also obtain the ML estimator of θ =
(α, β, γ, σ2)′. There is no closed-form expression for the ML estimator θ̂; therefore, its computation
must be performed numerically using a nonlinear optimization algorithm. The maximization of the
log-likelihood function can be performed, for example, using the R programming language (Team
2023), specifically applying the optim function or the Differential Evolution Optimization algorithm
(Ardia, Boudt, Carl, Mullen, and Peterson 2011).

3.2. Bell distribution

In the presence of overdispersion, an alternative to the Poisson distribution is the Bell distribution
(Castellares, Ferrari, and Lemonte 2018). A discrete random variable Z has a Bell distribution if its
probability mass function is given by

PrB(Z = z) = exp{1 − exp(W0(λ))}W0(λ)zBz

z! , z = 0, 1, . . . ,

where λ > 0, W0(·) is the Lambert function (Corless, Gonnet, Hare, Jeffrey, and Knuth 1996),
and Bz are the Bell numbers (Bell 1934a,b) defined by Bz = (1/e)

∑∞
k=0 kz/k!, which is the z-th

moment of a Poisson distribution with a parameter equal to 1. We have that E(Z) = λ < λ[1 +
W0(λ)] = VAR(Z), which implies that the Bell distribution may be suitable for modeling count data
with overdispersion, unlike the Poisson distribution.

Here, we assume that the number of deaths Dx are generated by a Bell distribution. Hence, the
likelihood function for the parameter vector θ = (α, β, γ, σ2)′ assumes the form

LB(θ) ≡ LB(θ|D, E) =
∏
x

exp {1 − exp(W0(µxEx))} W0(µxEx)DxBDx

Dx! .

The log-likelihood function, unless constant terms, can be expressed in the form

ℓB(θ) ≡ ℓB(θ|D, E) = ln(LB(θ)) =
∑

x

[Dx ln(W0(µx(θ)Ex)) − exp{W0(µx(θ)Ex)}].
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In the usual manner, the ML estimator θ̂ = (α̂, β̂, γ̂, σ̂2)′ is obtained by maximizing the log-likelihood
function with respect to the model parameters, and the maximization can be performed by using the
optim function or the Differential Evolution Optimization algorithm, for example. Using the result
(see, for example, Corless et al. 1996)

dW0(z)
dz

= W0(z)
z[1 + W0(z)] , z ̸∈

{
0, −1

e

}
,

and the identity W0(z) exp(W0(z)) = z for z ̸= −1/e, the score functions can be expressed in the
forms

∂ℓB(θ|D, E)
∂α

=
∑

x

δB
x

(
β2eβx

(ασ2(eβx − 1) + β)2

)
,

∂ℓB(θ|D, E)
∂β

=
∑

x

δB
x

 αxeβx

1 + σ2 α
β (eβx − 1) −

eβx
[
βxeβx − (eβx − 1)

]
[

β
ασ

(
1 + σ2 α

β (eβx − 1)
)]2

 ,

∂ℓB(θ|D, E)
∂γ

=
∑

x

δB
x ,

∂ℓB(θ|D, E)
∂σ2 =

∑
x

δB
x

 α2eβx(eβx − 1)

β
(
σ2 α

β (eβx − 1) + 1
)2

 ,

where δB
x ≡ δB

x (θ) = [Dx/µx − Ex]/[1 + W0(µxEx)]. We can also obtain the ML estimator θ̂ =
(α̂, β̂, γ̂, σ̂2)′ by equating these likelihood equations to zero and solving simultaneously the resulting
system of equations. Since there is no closed-form expression for the ML estimator, the computation
has to be performed numerically using a nonlinear optimization algorithm.

4. Human mortality database analysis

In this section, we apply the gamma–Makeham mortality model in a real database. To estimate the
gamma-Gompertz-Makeham model parameters, we apply the ML method presented in the previous
section under both discrete Poisson and Bell distributions. We estimate the model parameters from
the Human Mortality Database (http://www.mortality.org) using raw death counts and exposures after
age 30. Based on the ML estimates obtained from these two discrete distributions, we compute the
remaining life expectancy, single life annuity and single assurance at ages 30, 55, and 80 in France,
Italy, Japan, and Sweden, from 1947 to 2020 males and females separately. To perform the esti-
mation procedure, we use the R programming language (Team 2023) with the optimization of the
log-likelihood functions obtained by using the Differential Evolution Optimization algorithm (Ardia
et al. 2011) through the package DEoptim (Mullen, Ardia, Gil, Windover, and Cline 2011).

4.1. Parameter estimates

The ML estimates of α, β, γ and σ2 and their respective 95% confidence intervals are presented in
Figures 1, 2, 3, and 4, respectively. The assumption of the Bell and Poisson distributions for the death
counts leads to similar results regarding the ML estimates of the parameter α (Figure 1) and parameter
β (Figure 2). From these figures, note that the Bell distribution provides wider confidence intervals
for the parameters α and β than the Poisson distribution, mainly to Sweden. Both distributions lead to
similar conclusions on the over-time pattern of the parameters α and β. The initial risk of senescence,
represented by the parameter α, presents a log-linear trend for the female populations. We observe the
same pattern for the male populations after year 1980. The rate of deterioration with age, represented
by the parameter β, seems to be increasing with time in all the populations, except the French female
and the Japanese male populations, where it seems to be constant since the years 2000 and 2010,
respectively.
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Figure 1: Estimates using the Bell and Poisson distributions of the parameter α for the gamma-
Gompertz-Makeham model, applied to the populations of France, Italy, Japan, and Sweden, are pre-
sented in the columns, ordered from left to right. The first row represents estimates for females, while
the second row corresponds to males. The analysis focuses on the post-1947 period and considers the
population aged 30 and above.
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Figure 2: Column-wise presentation of β estimates in the gamma-Gompertz model using the Bell
and Poisson distributions, applied to populations of France, Italy, Japan, and Sweden. The first row
features estimates for females, while the second row pertains to males. The analysis concentrates on
the post-1947 period and includes the population aged 30 and above.
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Note that the Bell and Poisson distributions also lead to similar results regarding the parameter γ
(Figure 3), with a slight difference for Italy males from 1970 to 1990. However, for the parameter
σ2 (Figure 4), it does not, especially in recent years and among the male populations. In the gamma-
Gompertz-Makeham setting, the parameter σ2 captures the unobserved individual heterogeneity (Vau-
pel, Manton, and Stallard 1979), which implies in a levelling-off on the population’s mortality rates
at the oldest ages (see, for example, Missov and Vaupel 2015; Barbi, Lagona, Marsili, Vaupel, and
Wachter 2018). Therefore, the difference between the estimates of σ2 under the Bell and the Poisson
assumptions may be due to three main aspects of the mortality data: (i) the number of people alive at
the oldest ages is small; therefore, the mortality rates at those ages present a high variability around
the mortality plateau (Barbi et al. 2018), which the Poisson distribution cannot accommodate; (ii) the
number of males alive at the oldest ages is much smaller than the number of females (see, for exam-
ple, Alvarez, Villavicencio, Strozza, and Camarda 2021; Dang, Camarda, Meslé, Ouellette, and Vallin
2023), which also increases uncertainty on σ̂2; and (iii) the postponement of mortality (Vaupel 2010)
implicates on a postponement of the mortality deceleration, and since the deaths after age 110 are
grouped at age 110, the leveling-off of the risk of dying cannot be seen in all the recent populations
(Dang et al. 2023). Finally, the difference between the estimates for σ2 observed in Figure 4 also
leads to different mortality plateaus. As the estimates of β and γ are similar under the assumption of
both distributions, estimating a lower σ2 assuming the Poisson distribution than when we assume the
Bell distribution implicates in different mortality plateau levels, i.e. γ + β/σ2.
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Figure 3: Estimates of the γ parameter, quantifying extrinsic mortality, in the gamma-Gompertz-
Makeham model using the Bell and Poisson distributions for populations in France, Italy, Japan, and
Sweden, which are organized in columns from left to right. The first row details estimates for females,
and the second row corresponds to males. The analysis centers on the post-1947 period, covering the
population aged 30 and above.

As above-mentioned, the mortality data presents overdispersion at the oldest ages. Furthermore, Hilbe
(2011) and Dean and Lundy (2016) have shown that the standard errors of ML estimates are under-
estimated under the Poisson distributions in the presence of overdispersion. It explains the smaller
standard errors under the Poisson distribution, and also smaller confidence intervals. On the other
hand, the Bell distribution “corrects” the standard errors in the presence of overdispersion, providing
more reliable results. Remembering that the Bell distribution is suitable to deal with overdispersion.
Consequently, these results confirm that the Bell distribution can be an interesting alternative to the
Poisson distribution in the context of ML estimation of the gamma-Gompertz-Makeham model pa-
rameters.
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Figure 4: Unobserved heterogeneity estimates using both the Bell and Poisson distributions in the
gamma-Gompertz-Makeham model (i.e. estimates of σ2) are presented for populations in France,
Italy, Japan, and Sweden, which are arranged in columns from left to right. The first row presents the
estimates for females, while the second row pertains to males. The analysis centers on the post-1947
period and for the population aged 30 and above.

4.2. Single life annuity, remaining life expectancy, and single assurance

The closed-form expressions for the single life annuity at age x (āx), remaining life expectancy at age
x (̊ex), and single assurance at age x (Āx) are provided in Proposition 5, Corollary 5 and Proposition
7, respectively. In the following, we shall compute these measures based on the ML estimates of the
gamma-Gompertz-Makeham model parameters under the discrete Poisson and Bell distributions; that
is, after computing the ML estimates, we obtain these quantities by replacing the unknown parameters
with their respective ML estimates. The force of interest used to compute these actuarial values was
δ = 0.05.

The estimated remaining life expectancies at ages 30, 55, and 80 are presented in Figures 5, 6, and 7,
respectively. Also, the actual remaining life expectancies in these figures were obtained from the life
tables provided by the Human Mortality Database (http://www.mortality.org). These figures show that
the remaining life expectancies obtained from the Poisson and Bell distributions are similar. It was
expected since the ML estimates obtained from these two discrete distributions are (approximately)
the same in most cases. Over time, the estimated remaining life expectancies follow the same pattern
as the actual remaining life expectancy. However, in some cases, the estimated e̊x presents a lower
value than the observed one. The estimated values of āx and Āx (with x = 30, 55 and 80) are provided
in Appendix for the years 1950, 1960, 1970, 1980, 1990, 2000 and 2010; see Tables 1, 2, 3 and 4.
As both Poisson and Bell distributions provide similar ML estimates for the gamma–Makeham model
parameters, the estimated values for āx and Āx are similar under both distributions.

Finally, to measure how close the actual and estimated remaining life expectancies under the gamma-
Gompertz-Makeham law are, we present the difference between them. Figures 8, 9, and 10 show this
difference at ages 30, 55, and 80, respectively. The confidence intervals are also presented. At ages
30 and 50 (Figures 8 and 9), both Poisson and Bell distributions provide an estimated e̊x about 0.5
year lower than the actual. At age 80, however, this difference is smaller, and, for some populations,
the actual remaining life expectancies are within the confidence boundaries under the Bell distribution
assumption (Figure 10). In short, the gamma–Makeham model, especially under the Bell distribution,
provides proper results to deal with human mortality in practice, and so the recently introduced Bell
distribution can be an interesting alternative to the usual Poisson distribution in estimating the gamma-
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Figure 5: Comparison of the actual and estimated remaining life expectancy at age 30 using Bell and
Poisson distributions after the year 1947. Results are presented for populations in France, Italy, Japan,
and Sweden, organized in columns from left to right. The first row provides estimates for females,
while the second row for males.
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Figure 6: Comparison of the actual and estimated remaining life expectancy at age 55, utilizing Bell
and Poisson distributions post-1947. Results are shown for France, Italy, Japan, and Sweden, orga-
nized in columns from left to right. The first row presents estimates for females, while the second row
provides for males.

Gompertz-Makeham model parameters.
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Figure 7: Analysis of the actual and estimated remaining life expectancy at age 80, employing Bell
and Poisson distributions post-1947. Results are displayed for populations in France, Italy, Japan, and
Sweden, organized in columns from left to right. The first row provides estimates for females, while
the second row details estimates for males.
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Figure 8: Discrepancy and its associated confidence interval (in years) between the actual and esti-
mated remaining life expectancy at age 30 for the Bell and Poisson distributions post-1947. Values
close to zero signify accurate estimations of the remaining life expectancies at age 30 (̊e30). Results
are presented for populations in France, Italy, Japan, and Sweden, arranged in columns from left to
right. The first row presents estimates for females, while the second-row details estimates for males.
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Figure 9: Discrepancy and its corresponding confidence interval (in years) between the actual and
estimated remaining life expectancy at age 55 for the Bell and Poisson distributions after the year
1947. Values close to zero suggest accurate estimations of the remaining life expectancies at age 55
(̊e55). Results are displayed for populations in France, Italy, Japan, and Sweden, organized in columns
from left to right. The first row provides estimates for females, while the second row details estimates
for males.
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Figure 10: Disparity and its corresponding confidence interval (in years) between the actual and es-
timated remaining life expectancy at age 80 for the Bell and Poisson distributions post-1947. Values
approaching zero indicate precise estimations of the remaining life expectancies at age 80 (̊e80). Find-
ings are presented for populations in France, Italy, Japan, and Sweden, organized in columns from left
to right. The first row shows estimates for females, while the second-row presents the estimates for
males.



18 Gamma–Makeham

5. Concluding remarks

We have derived several structural properties of the gamma-Gompertz-Makeham model in statistics,
demography, and actuarial sciences. All the structural properties we have derived are expressed in
closed form, depending only on special mathematical functions like hypergeometric functions. The
estimation of the gamma-Gompertz-Makeham model parameters was performed by using the maxi-
mum likelihood procedure based on the discrete Poisson and Bell distributions. The latter is useful
to deal with overdispersion, unlike the Poisson distribution. We have considered both discrete distri-
butions for estimating the gamma-Gompertz-Makeham model parameters using actual mortality data
from the Human Mortality Database (HMD 2012). We have noted that the two discrete distributions
work almost equally well, the ML estimates obtained from the Bell distribution having a slight ad-
vantage, mainly in the presence of overdispersion. As a result, the Bell distribution we propose here
to estimate the gamma-Gompertz-Makeham model parameters can be an interesting alternative to the
Poisson distribution in practice.
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Appendix: Single life annuity and assurance
Tables 1 and 2 presents the estimated single life annuity for females and males, respectively, and
Tables 3 and 4 presents the estimated single assurance for females and males, respectively.

Table 1: Single life annuity at age x for females

Poisson distribution Bell distribution
Country Year ā30 ā55 ā80 ā30 ā55 ā80
France 1950 17.1022 12.4887 4.8155 17.1044 12.4850 4.8248
France 1960 17.4587 12.9585 5.0693 17.4604 12.9523 5.0845
France 1970 17.6417 13.3852 5.4943 17.6438 13.3738 5.5113
France 1980 17.8577 13.9035 5.9257 17.8600 13.8871 5.9453
France 1990 18.0751 14.4536 6.5261 18.0736 14.4351 6.5326
France 2000 18.1899 14.8346 7.0179 18.1917 14.8135 7.0296
France 2010 18.3232 15.1744 7.6283 18.3299 15.1501 7.6307
Italy 1950 17.1765 12.4601 4.7012 17.1777 12.4585 4.7024
Italy 1960 17.4557 12.8237 4.8413 17.4557 12.8204 4.8513
Italy 1970 17.6350 13.1634 5.2030 17.6354 13.1564 5.2150
Italy 1980 17.8334 13.5881 5.5237 17.8329 13.5784 5.5349
Italy 1990 18.0594 14.1676 6.1954 18.0605 14.1618 6.2080
Italy 2000 18.2400 14.6568 6.7644 18.2400 14.6443 6.7761
Italy 2010 18.3977 15.0814 7.2309 18.4005 15.0604 7.2458
Japan 1950 16.3081 11.6664 4.3816 16.3084 11.6653 4.3819
Japan 1960 17.1321 12.3221 4.5669 17.1326 12.3196 4.5744
Japan 1970 17.5192 12.9327 4.9448 17.5184 12.9280 4.9533
Japan 1980 17.9245 13.8233 5.6633 17.9243 13.8163 5.6767
Japan 1990 18.1805 14.5408 6.5222 18.1819 14.5298 6.5347
Japan 2000 18.3551 15.1093 7.5550 18.3578 15.0982 7.5662
Japan 2010 18.4783 15.4943 8.0131 18.4822 15.4814 8.0185

Sweden 1950 17.3003 12.4925 4.5913 17.2972 12.4800 4.5928
Sweden 1960 17.5757 12.9577 4.8778 17.5779 12.9557 4.9099
Sweden 1970 17.7652 13.5003 5.5415 17.7694 13.4947 5.5638
Sweden 1980 17.8942 13.8316 5.8803 17.8918 13.8141 5.8931
Sweden 1990 18.0450 14.1945 6.2452 18.0427 14.1702 6.2536
Sweden 2000 18.1778 14.4679 6.6005 18.1768 14.4352 6.5962
Sweden 2010 18.3213 14.7877 6.9270 18.3219 14.7703 6.9262
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Table 2: Single life annuity at age x for males

Poisson distribution Bell distribution
Country Year ā30 ā55 ā80 ā30 ā55 ā80
France 1950 16.3721 11.1269 4.1926 16.3711 11.1206 4.1968
France 1960 16.5934 11.3065 4.3242 16.5947 11.3069 4.3245
France 1970 16.7008 11.5404 4.6052 16.7009 11.5401 4.6044
France 1980 16.8693 11.8850 4.8866 16.8694 11.8783 4.8874
France 1990 17.1136 12.5576 5.3396 17.1125 12.5485 5.3397
France 2000 17.3764 13.0487 5.7413 17.3793 13.0350 5.7413
France 2010 17.6580 13.6442 6.3599 17.6622 13.6232 6.3536
Italy 1950 16.7213 11.7376 4.4404 16.7206 11.7292 4.4426
Italy 1960 16.8323 11.6674 4.4272 16.8344 11.6690 4.4341
Italy 1970 16.9202 11.7513 4.6091 16.9186 11.7501 4.6054
Italy 1980 17.0268 11.8787 4.6344 17.0299 11.8816 4.6338
Italy 1990 17.3282 12.5927 5.1688 17.3291 12.5979 5.1632
Italy 2000 17.6297 13.2351 5.5788 17.6292 13.2338 5.5749
Italy 2010 17.9443 13.9083 6.0877 17.9448 13.9023 6.0930
Japan 1950 15.8293 10.6028 3.8437 15.8330 10.6136 3.8306
Japan 1960 16.5496 11.0855 3.9095 16.5481 11.0828 3.9050
Japan 1970 16.8629 11.6113 4.2092 16.8632 11.6118 4.2112
Japan 1980 17.3016 12.4781 4.8315 17.3020 12.4743 4.8467
Japan 1990 17.5713 13.0536 5.4248 17.5711 13.0493 5.4303
Japan 2000 17.7061 13.4755 6.0147 17.7061 13.4693 6.0150
Japan 2010 17.8947 13.9294 6.3231 17.8950 13.9199 6.3274

Sweden 1950 17.0598 12.0322 4.4037 17.0592 12.0285 4.4030
Sweden 1960 17.1777 12.1503 4.5177 17.1752 12.1499 4.5108
Sweden 1970 17.2043 12.3250 4.8779 17.2049 12.3313 4.8820
Sweden 1980 17.1971 12.3133 4.8376 17.1952 12.3095 4.8385
Sweden 1990 17.4620 12.7992 5.1111 17.4634 12.8010 5.1140
Sweden 2000 17.7413 13.3796 5.4833 17.7405 13.3731 5.4862
Sweden 2010 17.9564 13.8978 5.9601 17.9559 13.8912 5.9583
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Table 3: Single assurance at age x for females

Poisson distribution Bell distribution
Country Year Ā30 Ā55 Ā80 Ā30 Ā55 Ā80
France 1950 0.1367 0.3641 0.7523 0.1367 0.3645 0.7519
France 1960 0.1225 0.3453 0.7423 0.1225 0.3459 0.7417
France 1970 0.1137 0.3243 0.7210 0.1138 0.3253 0.7204
France 1980 0.1031 0.2986 0.6993 0.1033 0.2998 0.6986
France 1990 0.0927 0.2715 0.6692 0.0929 0.2727 0.6690
France 2000 0.0868 0.2520 0.6439 0.0869 0.2534 0.6436
France 2010 0.0808 0.2360 0.6138 0.0807 0.2377 0.6142
Italy 1950 0.1339 0.3667 0.7589 0.1339 0.3670 0.7589
Italy 1960 0.1229 0.3526 0.7542 0.1230 0.3529 0.7538
Italy 1970 0.1153 0.3375 0.7371 0.1155 0.3381 0.7366
Italy 1980 0.1060 0.3170 0.7214 0.1062 0.3177 0.7210
Italy 1990 0.0951 0.2885 0.6879 0.0951 0.2889 0.6874
Italy 2000 0.0862 0.2641 0.6593 0.0863 0.2649 0.6589
Italy 2010 0.0784 0.2429 0.6359 0.0785 0.2443 0.6355
Japan 1950 0.1651 0.3910 0.7661 0.1651 0.3910 0.7661
Japan 1960 0.1369 0.3749 0.7665 0.1370 0.3751 0.7662
Japan 1970 0.1204 0.3481 0.7495 0.1205 0.3484 0.7492
Japan 1980 0.1013 0.3049 0.7142 0.1014 0.3054 0.7136
Japan 1990 0.0886 0.2691 0.6709 0.0887 0.2698 0.6704
Japan 2000 0.0800 0.2407 0.6189 0.0801 0.2415 0.6186
Japan 2010 0.0737 0.2211 0.5954 0.0737 0.2220 0.5954

Sweden 1950 0.1303 0.3688 0.7667 0.1307 0.3697 0.7667
Sweden 1960 0.1181 0.3475 0.7533 0.1181 0.3478 0.7519
Sweden 1970 0.1088 0.3206 0.7200 0.1089 0.3213 0.7191
Sweden 1980 0.1026 0.3042 0.7030 0.1029 0.3053 0.7026
Sweden 1990 0.0954 0.2866 0.6850 0.0958 0.2881 0.6848
Sweden 2000 0.0896 0.2741 0.6680 0.0899 0.2761 0.6685
Sweden 2010 0.0828 0.2586 0.6520 0.0829 0.2597 0.6523
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Table 4: Single assurance at age x for males

Poisson distribution Bell distribution
Country Year Ā30 Ā55 Ā80 Ā30 Ā55 Ā80
France 1950 0.1764 0.4375 0.7870 0.1764 0.4378 0.7868
France 1960 0.1695 0.4336 0.7832 0.1692 0.4333 0.7830
France 1970 0.1638 0.4215 0.7689 0.1637 0.4214 0.7688
France 1980 0.1558 0.4048 0.7551 0.1559 0.4053 0.7551
France 1990 0.1396 0.3656 0.7287 0.1398 0.3662 0.7288
France 2000 0.1271 0.3417 0.7088 0.1272 0.3428 0.7091
France 2010 0.1136 0.3126 0.6780 0.1138 0.3142 0.6788
Italy 1950 0.1574 0.4047 0.7731 0.1575 0.4052 0.7731
Italy 1960 0.1568 0.4146 0.7775 0.1565 0.4143 0.7770
Italy 1970 0.1537 0.4120 0.7693 0.1536 0.4118 0.7693
Italy 1980 0.1486 0.4060 0.7683 0.1484 0.4058 0.7682
Italy 1990 0.1316 0.3676 0.7398 0.1313 0.3670 0.7399
Italy 2000 0.1164 0.3351 0.7189 0.1163 0.3351 0.7191
Italy 2010 0.1011 0.3020 0.6937 0.1012 0.3024 0.6935
Japan 1950 0.1886 0.4458 0.7952 0.1885 0.4455 0.7960
Japan 1960 0.1661 0.4378 0.8004 0.1662 0.4380 0.8007
Japan 1970 0.1517 0.4127 0.7859 0.1517 0.4127 0.7858
Japan 1980 0.1327 0.3730 0.7566 0.1327 0.3733 0.7559
Japan 1990 0.1203 0.3457 0.7277 0.1203 0.3459 0.7274
Japan 2000 0.1132 0.3240 0.6977 0.1133 0.3244 0.6977
Japan 2010 0.1031 0.3001 0.6813 0.1032 0.3008 0.6812

Sweden 1950 0.1433 0.3934 0.7770 0.1432 0.3935 0.7770
Sweden 1960 0.1388 0.3893 0.7723 0.1389 0.3893 0.7727
Sweden 1970 0.1369 0.3799 0.7538 0.1367 0.3793 0.7534
Sweden 1980 0.1377 0.3810 0.7561 0.1380 0.3814 0.7562
Sweden 1990 0.1244 0.3565 0.7422 0.1243 0.3564 0.7421
Sweden 2000 0.1112 0.3284 0.7241 0.1112 0.3287 0.7239
Sweden 2010 0.1005 0.3025 0.7002 0.1006 0.3029 0.7003
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