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Abstract

The paper studies distribution of sum of random processes from Orlicz spaces of ex-
ponential type weighted by continuous functions, in particular, processes from spaces
Subϕ(Ω), SSubϕ(Ω) and class V (ϕ,ψ) are considered. Such spaces and classes of random
variables and corresponding stochastic processes provide generalizations of Gaussian and
sub-Gaussian random variables and processes and are important for various applications,
for example, in queuing theory and financial mathematics.

We derive the estimates for the distribution of supremum of weighted sum of such
processes deviated by a continuous monotone function using the entropy method. As
examples, weighted sum of Wiener and weighted sum of fractional Brownian motion pro-
cesses with different Hurst indices from classes V (ϕ,ψ) are considered. Corresponding
estimates of the probability of exceeding by trajectories of such weighted sums a positive
level determined by a linear function are obtained. In the insurance risk theory, such a
problem arises during estimating a ruin probability of the corresponding risk process with
a constant premium income, and in the communications theory, it appears for the buffer
overflow probability for a single server with a constant service rate.

Keywords: sub-Gaussian processes, supremum distribution, sum of weighted processes, gen-
eralized fractional Brownian motion, Wiener process, entropy method.

1. Introduction

This paper is devoted to the investigation of important classes of exponential type Orlicz
spaces of random variables, namely, ϕ-sub-Gaussian random variables and more general
classes V (ϕ,ψ). Recall that a random variable ξ is sub-Gaussian if its moment generating
function is majorized by that of a Gaussian centered random variable η, that is,

E exp{λξ} ≤ E exp{λη} = exp{σ2λ2/2},

where σ2 is the variance of η. Sub-Gaussian random variables were introduced by Kahane
(1960) and were further widely studied together with other general classes of random variables
and processes from Orlich spaces. For a comprehensive review, refer to the classic monograph
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by Buldygin and Kozachenko (2000). Kozachenko and Ostrovskii (1985) presented Banach
spaces of the sub-Gaussian type, namely spaces of ϕ-sub-Gaussian random variables and
processes that naturally generalize spaces of sub-Gaussian random variables. Subϕ(Ω) spaces
(spaces of ϕ-sub-Gaussian random variables) are spaces of centered random variables with
certain exponential moments. For a more in-depth understanding of these spaces, refer to the
book of Vasylyk, Kozachenko, and Yamnenko (2008). Additionally, Kozachenko and Vasylyk
(2001) introduced more general classes V (ϕ,ψ) of random processes.

Applying entropy methods for stochastic processes from these classes allows one to investi-
gate the behavior of their extrema, to derive estimates for various functionals of such pro-
cesses and random fields, to treat their sample paths properties, see, for example, Dozzi,
Kozachenko, Mishura, and Ralchenko (2018); Yamnenko (2017); Hopkalo and Sakhno (2021);
Sakhno (2022).

Here we generalize results obtained by Kozachenko and Yamnenko (2014) for weighted sum
of independent processes from such classes. Our main interest is focused on studying the
distribution of the following functionals

sup
t∈T

(
n∑
i=1

wi(t)Xi(t)− f(t)

)
, inf

t∈T

(
n∑
i=1

wi(t)Xi(t)− f(t)

)
,

where f(t) is a continuous function which, for example, can describe intensity of queue serving
or premium income for an insurance company.

The results obtained are applied to weighted sum of fractional Brownian motion (FBM) pro-
cesses. It is well-known that long-range dependence and self-similarity properties make the
FBM process a popular model in various problems of queuing theory and financial mathe-
matics.

The paper is organized as follows. Section 2 is devoted to the general theory of random vari-
ables and processes from Orlicz spaces of exponential type and based on the works Buldygin
and Kozachenko (2000); Kozachenko and Vasylyk (2001); Vasylyk et al. (2008); Vasylyk and
Yamnenko (2007); Yamnenko, Kozachenko, and Bushmitch (2014). Section 3 contains a gen-
eralization of results from the papers Kozachenko and Yamnenko (2014) and the last section
contains applications to generalized Wiener and FBM processes from classes V (ϕ,ψ).

2. Preliminaries

Let (Ω,F ,P) be a standard probability space and (T, ρ) a pseudometric space equipped with
pseudometric ρ. Note that a pseudometric possesses all the properties of a metric except the
following one: if ρ(t, s) = 0, then t = s. This means that the set {(t, s): ρ(t, s) = 0} can be
wider than the diagonal {(t, s): t = s} (see Buldygin and Kozachenko (2000) for more details).

Recall that the metric entropy with regard to pseudometric ρ, or just metric entropy is a
function

H(u) = HT (u) =

{
logN(u), if N(u) < +∞
+∞, if N(u) = +∞ ,

where N(u) = NT (u) denotes the least number of closed ρ-balls with radius u covering space
(T, ρ).

A continuous even convex function ϕ is said to be an Orlicz N-function if it is strictly increasing
for x > 0, ϕ(0) = 0 and

ϕ(x)

x
→ 0 as x→ 0 and

ϕ(x)

x
→∞ as x→∞.

Condition Q. We say that an N-function ϕ satisfies condition Q if lim inf
x→0

ϕ(x)
x2

= α > 0.

Note that α can be infinite as well.
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Definition 2.1. Let ϕ be an Orlicz N-function satisfying condition Q. The random variable ξ
belongs to the space Subϕ(Ω) (a space of ϕ-sub-Gaussian random variables), if it is centered,
i.e. Eξ = 0, the moment generating function E exp{λξ} exists for all λ ∈ R and there exists
a constant a > 0 such that the following inequality

E exp (λξ) ≤ exp (ϕ(aλ)) (1)

holds for all λ ∈ R.

Theorem 2.1. The space Subϕ(Ω) is a Banach space with respect to the norm

τϕ(ξ) = inf{a ≥ 0: E exp (λξ) ≤ exp(ϕ(aλ)), λ ∈ R}

and the inequality
E exp(λξ) ≤ exp(ϕ(λτϕ(ξ))) (2)

holds for all λ ∈ R. Moreover, for all r > 0 there exists constant cr > 0 such that

(Eξr)1/r ≤ crτϕ(ξ). (3)

When ϕ(x) = x2/2 the space Subϕ(Ω) is actually the space of sub-Gaussian random variables
and is denoted by Sub(Ω).

Theorem 2.2. Let ξ ∈ Subϕ(Ω). Then for all ε > 0 the following inequality holds true

P {|ξ| > ε} ≤ 2 exp

{
−ϕ

(
ε

τϕ(ξ)

)}
.

A random process X = {X(t), t ∈ T} is called a ϕ-sub-Gaussian process if X(t) ∈ Subϕ(Ω)
for all t ∈ T .

Definition 2.2. A family of random variables ∆ from the space Subϕ(Ω) is called strictly
Subϕ(Ω), if there exists a constant C∆ > 0 such that for arbitrary finite set I : ξi ∈ ∆, i ∈ I,
and for any λi ∈ R the following inequality takes place

τϕ

(∑
i∈I

λiξi

)
≤ C∆

(
E

(∑
i∈I

λiξi

)2
)1/2

. (4)

If ∆ is a family of strictly Subϕ(Ω) random variables, then linear closure ∆ of the family
∆ in the space L2(Ω) is also strictly Subϕ(Ω) family of random variables. Linearly closed
families of strictly Subϕ(Ω) random variables form a space of strictly ϕ-sub-Gaussian random
variables. This space is denoted by SSubϕ(Ω).

When ϕ(x) = x2/2 the space SSubϕ(Ω) is called the space of strictly sub-Gaussian random
variables and is denoted as SSub(Ω). The space of jointly Gaussian random variables belongs
to the space SSub(Ω) and τ2(ξ) = Eξ2, i.e. C∆ = 1.

A random process X = {X(t), t ∈ T} is a strictly ϕ-sub-Gaussian process if the corresponding
family of random variables belongs to the space SSubϕ(Ω).

Example 2.1. We call the process BH = (BH(t), t ∈ T ) strictly ϕ-sub-Gaussian generalized
fractional Brownian motion (GFBM) with Hurst index H ∈ (0, 1), if BH is a strictly ϕ-sub-
Gaussian process with stationary increments and the following covariance function

RH(t, s) =
(
t2H + s2H − |s− t|2H

)
/2. (5)

Consider a sequence of independent strictly ϕ-sub-Gaussian random variables {ηn, n = 1, 2, . . .}
for which Eηn = 0, Eη2

n = 1, and ϕ is such an N-function, that function ϕ(
√
·) is convex and
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τϕ(ηn) ≤ τ < +∞. Then the process BH(t) =
∞∑
n=1

λnηnψn(t) is a centered strictly ϕ-sub-

Gaussian random process with covariance function RH from (5), if λn are eigenvalues and
ψn are corresponding eigenfunctions of the following integral equation

ψ(s) = λ−2
∫ T

0
RH(t, s)ψ(t) dt.

N-function ϕ is subordinated by an Orlicz N-function ψ (ϕ ≺ ψ) if there exist such numbers
x0 > 0 and k > 0 that ϕ(x) < ψ(kx) for x > x0.

Definition 2.3. Let ϕ ≺ ψ be two Orlicz N-functions. Random process X = {X(t), t ∈ T}
belongs to class V (ϕ,ψ) if for all t ∈ T the random variable X(t) is from Subψ(Ω) and for all
s, t ∈ T increments (X(t)−X(s)) belong to the family Subϕ(Ω).

Example 2.2. Sub-Gaussian random processes belong to the class V (ϕ,ϕ) with ϕ(x) = x2/2.

Example 2.3. Let

X(t) = ξ0 +
∞∑
k=1

ξkfk(t),

where ϕ is such an Orlicz N-function that ϕ(
√
·) is a convex function. Let ξ0 be a ψ-sub-

Gaussian random variable and {ξk, k = 1, 2, . . .} be a sequence of ϕ-sub-Gaussian random

variables such that
∞∑
k=1

τϕ(ξk)|fk(t)| <∞. Then the process X(t) belongs to the class V (ϕ,ψ).

Condition F . A continuous function f = {f(t), t ∈ T} satisfies condition F if

|f(u)− f(v)| ≤ δ(ρ(u, v)),

where δ = {δ(s), s > 0} is some monotonically increasing nonnegative function.

Let B ⊂ T be a compact set.

Condition Σ. We say that independent separable random processes Xi = {Xi(t), t ∈ B},
i = 1, n, from classes V (ϕi, ψi) satisfy condition Σ if norms γi(u) = τψ(Xi(u)) <∞ and there
exist such continuous monotone increasing functions {σi(h), h ≥ 0} that σi(h) → 0 when
h→ 0, sup

ρ(t,s)≤h
τϕi(Xi(t)−Xi(s)) ≤ σi(h), and σ(h) = sup

1≤i≤n
σi(h) <∞.

For example, if Xi(t) are continuous processes in corresponding norms τϕi(·) then σi(h) =
sup

ρ(t,s)≤h
τϕi(X(t)−X(s)) satisfies condition Σ.

Condition R. Let r = {r(u), u ≥ 1} be a continuous function such that r(u) > 0 when
u > 1 and function s(t) = r(exp{t}), t ≥ 0, is convex. We say that independent separable
random processes Xi = {Xi(t), t ∈ B} from classes V (ϕi, ψi) satisfy condition R if they satisfy
condition Σ and the following entropy integral is finite for all p ∈ (0, 1)

Iσ(β, p) =
1

βp

βp∫
0

r
(
NB(σ(−1)(u))

)
du <∞, (6)

where β > 0 is such a number that β ≤ σ
(

inf
s∈B

sup
t∈B

ρ(t, s)

)
.

The next result is a slightly reformulated version of Theorem 6 in Kozachenko and Yamnenko
(2014).
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Theorem 2.3. Let independent separable random processes Xi = {Xi(t), t ∈ B} from classes
V (ϕi, ψi) satisfy Condition R and a continuous function f = {f(t), t ∈ T} satisfy Condition
F . Then for all p ∈ (0; 1) and x > 0 the following inequalities hold true

P

{
sup
t∈B

(
n∑
i=1

Xi(t)− f(t)

)
> x

}
= P

{
inf
t∈B

(
n∑
i=1

Xi(t)− f(t)

)
< −x

}
≤ Zr(p, β, x),

P

{
sup
t∈B

∣∣∣∣∣
n∑
i=1

Xi(t)− f(t)

∣∣∣∣∣ > x

}
≤ 2Zr(p, β, x),

where θψ(λ, p) = sup
u∈B

(
(1− p)

n∑
i=1

ψi
(
λγi(u)
1−p

)
− λf(u)

)
and Zr(p, β, x) = r(−1) (Iσ(β, p))×

× inf
λ>0

exp

{
θϕ(λ, p) + p

n∑
i=1

ϕi
(
λβ

1−p

)
+ λ

( ∞∑
k=2

δ
(
σ(−1)(βpk−1)

)
− x

)}
.

The following example can be easily obtained as a partial case of Theorem 10 in Yamnenko
et al. (2014)

Example 2.4. Let Xi = (Xi(t), t ∈ [a, b]), i = 1, n, be independent strictly ϕi-sub-Gaussian
generalized FBM processes with Hurst parameter H ∈ (0, 1), C > 0 be some constant. Then

for all numbers a, b (0 ≤ a < b < ∞), p ∈ (0, 1), β ∈
(

0,
(
b−a

2

)H]
and λ > 0 the following

inequality holds true

P

{
sup
a≤t≤b

(
C−1

∆

n∑
i=1

Xi(t)− Ct
)
> ε

}
≤ (b− a)

(
e

βp

)1/H

×

× exp

{
−λε+

λC(βp)1/H

1− p1/H
+ p

n∑
i=1

ϕi

(
λβ

1− p

)
+ (1− p)θϕ(λ,C, p)

}
,

where θϕ(λ,C, p) = sup
a≤u≤b

(
n∑
i=1

ϕi
(
λuH

1−p

)
− λCu

1−p

)
and C∆ is maximum defining constant of all

the spaces SSubϕi(Ω).

It should be noted that GFBM processes were firstly introduced in Kozachenko, Vasylyk, and
Sottinen (2002) as weakly self-similar stationary increment SSubϕ(Ω)-processes.

3. Main results

Our next results are based on generalization of Theorem 2.3 from Kozachenko and Yamnenko
(2014).

Condition WΣ. We say that independent separable random processes Xi = {Xi(t), t ∈
B}, i = 1, n, from classes V (ϕi, ψi) weighted by continuous functions {wi(t), t ∈ B} satisfy
condition WΣ if norms γi(u) = τψ(Xi(u)) < ∞ and there exist such continuous monotone
increasing functions {σi(h), h ≥ 0} that σi(h)→ 0 when h→ 0,

sup
ρ(t,s)≤h

τϕi(wi(t)Xi(t)− wi(s)Xi(s)) ≤ σi(h),

and σ(h) = sup
1≤i≤n

σi(h) <∞.

Condition RWΣ1. Let r = {r(u), u ≥ 1} be a continuous function such that r(u) > 0 when
u > 1 and function s(t) = r(exp{t}), t ≥ 0, is convex. We say that independent separable
random processes Xi = {Xi(t), t ∈ B} from classes V (ϕi, ψi) satisfy condition RWΣ if they
satisfy condition WΣ and the entropy integral (6) is finite.
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Theorem 3.1. Let independent separable random processes Xi = {Xi(t), t ∈ B} from classes
V (ϕi, ψi) weighted by continuous functions {wi(t), t ∈ B} satisfy Condition RWΣ1 and a
continuous function f = {f(t), t ∈ B} satisfy Condition F . Then for all p ∈ (0; 1) and x > 0
the following inequalities take places

P

{
sup
t∈B

(
n∑
i=1

wi(t)Xi(t)− f(t)

)
> x

}
≤ Zr(p, β, x),

P

{
inf
t∈B

(
n∑
i=1

wi(t)Xi(t)− f(t)

)
< −x

}
≤ Zr(p, β, x),

P

{
sup
t∈B

∣∣∣∣∣
n∑
i=1

wi(t)Xi(t)− f(t)

∣∣∣∣∣ > x

}
≤ 2Zr(p, β, x),

where θψ(λ, p) = sup
u∈B

(
(1− p)

n∑
i=1

ψi
(
λwi(u)γi(u)

1−p

)
− λf(u)

)
and Zr(p, β, x) = r(−1) (Iσ(β, p))×

× inf
λ>0

exp

{
θψ(λ, p) + p

n∑
i=1

ϕi
(
λβ

1−p

)
+ λ

[ ∞∑
k=2

δ
(
σ(−1)(βpk−1)

)
− x

]}
.

Proof. Let Vεk denote a set of the centers of closed balls with radii εk, which forms minimal
covering of the space (B, ρ). Number of elements in the set Vεk is equal to NB(εk). It follows
from theorem 2.2 and condition WΣ that for any ε > 0

P {|wi(t)Xi(t)− wi(s)Xi(s)| > ε}

≤ 2 exp

{
−ϕi

(
ε

τϕi(wi(t)Xi(t)− wi(s)Xi(s))

)}
≤ 2 exp

{
−ϕi

(
ε

σi(ρ(t, s))

)}
.

Therefore wi(t)Xi(t) is continuous in probability and the weighted sum of processes with a

drift X(t) =
n∑
i=1

wi(t)Xi(t) − f(t) is continuous in probability as well. Hence the set V =

∞⋃
k=1

Vεk is a set of separability of the process X and with probability one

sup
t∈B

X(t) = sup
t∈V

X(t). (7)

Consider a mapping αm = {αm(t),m = 0, 1 . . .} of the set V =
⋃
Vεk into the set Vεm , where

αm(t) is such a point from the set Vεm that ρ(t, αm(t)) < εm. If t ∈ Vεm then αm(t) = t. If
there exist several such points from the set Vεm that ρ(t, αm(t)) < εm then we choose one of
them and denote it αm(t). The family of mappings {αm,m ≥ 0} is called the α-procedure for
choosing points in Vk (see Buldygin and Kozachenko (2000), p. 94).

It follows from theorem 2.1 and condition ΣW that there exists such a constant c2 > 0 that

P
{
|wi(t)Xi(t)− wi(αm(t))Xi(αm(t))| > p

m
2

}
≤ E[wi(t)Xi(t)− wi(αm(t))Xi(αm(t))]2

pm
≤
c2

2τ
2
ϕ(wi(t)Xi(t)− wi(αm(t))Xi(αm(t)))

pm

≤ c2
2σ

2
i (εm)

pm
≤ c2

2σ
2(εm)

pm
= c2

2β
2pm.

This inequality implies that
∞∑
m=1

P
{
|wi(t)Xi(t)− wi(αm(t))Xi(αm(t))| > p

m
2

}
< ∞. There-

fore it follows from the Borel-Kantelli lemma that wi(t)Xi(t) − wi(αm(t))Xi(αm(t)) → 0 as
m→∞ with probability one. Since f is a continuous function then X(t)−X(αm(t))→ 0 as
m→∞ with probability one as well. Since the set V is countable, then X(t)−X(αm(t))→ 0
as m→∞ for all t simultaneously.
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Let t be an arbitrary point from the set V . Denote by tm = αm(t), tm−1 = αm−1(tm), . . . ,
t1 = α1(t2) for any m ≥ 1. Since for all m ≥ 2

X(t) = X(t1) +
m∑
k=2

(X(tk)−X(tk−1)) +X(t)−X(αm(t))

we have

sup
t∈V

X(t) ≤ max
u∈Vε1

X(u) +
m∑
k=2

max
u∈Vεk

(X(u)−X(αk−1(u)) +X(t)−X(αm(t)). (8)

It follows from (7) and (8) that with probability one

sup
t∈T

X(t) ≤ lim
m→∞

inf

(
max
u∈Vε1

X(u) +
m∑
k=2

max
u∈Vεk

(X(u)−X(αk−1(u)))

)
. (9)

Let {qk, k = 1, 2, . . .} be such a sequence that qk > 1 and
∞∑
k=1

q−1
k ≤ 1. It follows from the

Hölder’s inequality, the Fatou’s lemma and (9) that for all λ > 0

E exp

{
λ sup
t∈T

X(t)

}

≤
(

E exp

{
q1λ max

u∈Vε1
X(u)

}) 1
q1
∞∏
k=2

(
E exp

{
qkλ max

u∈Vεk
(X(u)−X(αk−1(u)))

}) 1
qk

. (10)

Some details are omitted here since the same derivation can be found also in Kozachenko and
Yamnenko (2014).

Consider each of the factors in the right-hand side of inequality (10) separately. It follows
from (2) that E exp{q1λwi(u)Xi(u)} ≤ exp{ψi(q1λwi(u)γi(u))} and

E exp{qkλ[wi(u)Xi(u)− wi(αk−1(u))Xi(αk−1(u))]} ≤ exp{ϕi(qkλσi(εk−1))}.

Therefore, (
E exp

{
q1λ max

u∈Vε1
X(u)

})1/q1

≤
( ∑
u∈Vε1

E exp
{
q1λ

n∑
i=1

wi(u)Xi(u)
}

exp
{
− q1λf(u)

})1/q1

≤
( ∑
u∈Vε1

n∏
i=1

E exp
{
q1λwi(u)Xi(u)

}
exp

{
− q1λf(u)

})1/q1

≤
(
NB(ε1)

)1/q1
exp

{
1

q1
sup
u∈B

(
n∑
i=1

ψi(q1λwi(u)γi(u))− q1λf(u)

)}
. (11)

Since |f(u)− f(v)| ≤ δ(ρ(u, v)) due to Condition F , we obtain that(
E exp

{
qkλ max

u∈Vεk
(X(u)−X(αk−1(u)))

})1/qk

≤
(
NB(εk) max

u∈Vεk
E exp

{
qkλ

n∑
i=1

[wi(u)Xi(u)− wi(αk−1(u))Xi(αk−1(u))]
}

× exp
{
− qkλ(f(u)− f(αk−1(u)))

})1/qk
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≤
(
NB(εk)

)1/qk

(
max
u∈Vεk

exp

{
n∑
i=1

ϕi(qkλσ(εk−1)) + qkλδ(ρ(u, αk−1(u)))

})1/qk

≤
(
NB(εk)

)1/qk
exp

{
q−1
k

n∑
i=1

ϕi(qkλβp
k−1) + λδ

(
σ(−1)(βpk−1)

)}
. (12)

From (10) after substitution of qk = p1−k/(1− p), k ≥ 1, we have

E exp

{
λ sup
t∈B

X(t)

}

≤ exp

{ ∞∑
k=2

(1− p)pk−1
n∑
i=1

ϕi

(
λβ

1− p

)
+ λ

∞∑
k=2

δ
(
σ(−1)(βpk−1)

)}

× exp

{
θψ(λ, p) +

∞∑
k=1

(1− p)pk−1HB
(
σ(−1)(βpk)

)}
. (13)

And finally in the same way as in theorem 3.5 in Vasylyk, Kozachenko, and Yamnenko (2005)
we obtain

exp

{ ∞∑
k=1

(1− p)pk−1HB
(
σ(−1)(βpk)

)}
≤ r(−1) (Iσ(β, p)) . (14)

So, from the Chebyshev’s inequality and (10)–(14) we obtain the assertion of the theorem.

Condition RWΣ2. Let r = {r(u), u ≥ 1} be a continuous function such that r(u) > 0 when
u > 1 and function s(t) = r(exp{t}), t ≥ 0, is convex. We say that independent separable
random processes Xi = {Xi(t), t ∈ B} from classes V (ϕi, ψi) satisfy condition RWΣ if they
satisfy condition WΣ and the following entropy integral is finite for all p ∈ (0, 1)

Jσ(β, p) =
1

p(1− p)

βp2∫
0

r(N(σ(−1)(u)))

φ(−1)(lnN(σ(−1)(u)))
du

where φ(u) = sup
1≤i≤n

ϕi(u).

Theorem 3.2. Let independent separable random processes Xi = {Xi(t), t ∈ B} from classes
V (ϕi, ψi) weighted by continuous functions {wi(t), t ∈ B} satisfy Condition RWΣ2 and a
continuous function f = {f(t), t ∈ B} satisfy Condition F . Then for all p ∈ (0; 1) and x > 0
the following inequalities take places

P

{
sup
t∈B

(
n∑
i=1

wi(t)Xi(t)− f(t)

)
> x

}
≤ Zr(p, β, x),

P

{
inf
t∈B

(
n∑
i=1

wi(t)Xi(t)− f(t)

)
< −x

}
≤ Zr(p, β, x),

P

{
sup
t∈B

∣∣∣∣∣
n∑
i=1

wi(t)Xi(t)− f(t)

∣∣∣∣∣ > x

}
≤ 2Zr(p, β, x),

where

Zr(p, β, x) = inf
λ>0

(
r(−1) (λJσ(β, p))

)n+1

× exp

{
W (λ, p, β) + npϕ

(
λβ

1− p

)
+ λ

( ∞∑
k=2

δ
(
σ(−1)

(
βpk−1

))
− x

)}
,

W (λ, p, β) = inf
v≥(1−p)−1

(
1

v
H(σ(−1)(βp)) + sup

u∈B

(∑n
i=1 ψi(λwi(u)γi(u)v)

v
− λf(u)

))
.
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Proof. The proof of theorem 3.1 is repeated until the selection of the sequence qk in (13).
After substituting (11) and (12) in (13) we obtain

E exp

{
λ sup
t∈B

X(t)

}

≤ exp

{ ∞∑
k=2

1

qk

[
H(εk) +

n∑
i=1

ϕi
(
qkλβp

k−1
)]}

exp

{
λ
∞∑
k=2

δ
(
σ(−1)(βpk−1)

)}

× exp

{
1

q1

[
H(ε1) + sup

u∈B

(
n∑
i=1

ψi (q1λwi(u)γi(u))− q1λf(u)

)]}
. (15)

Let q1 = v, where v is such a number that v ≥ 1
1−p and

qk =
1

λβpk−1
φ(−1)

(
φ

(
λβ

1− p

)
+ H(εk)

)
, k = 2, 3 . . . (16)

where φ(u) = sup
1≤i≤n

ϕi(u). Since

1

qk
≤ λβpk−1

φ(−1)
(
φ
(
λβ

1−p

)) = pk−1(1− p)

as k = 2, 3 . . ., then
∞∑
k=1

1
qk
≤
∞∑
k=1

pk−1(1− p) = 1.

For the sequence qk defined in (16) consider

Z̃ =
∞∑
k=2

1

qk

[
H(εk) +

n∑
i=1

ϕi
(
qkλβp

k−1
)]

=
∞∑
k=2

H(εk)

qk
+
∞∑
k=2

1

qk

n∑
i=1

ϕi

λβpk−1
φ(−1)

(
φ
(
λβ

1−p

)
+ H(εk)

)
λβpk−1


≤

∞∑
k=2

H(εk)

qk
+
∞∑
k=2

nH(εk)

qk
+ nφ

(
λβ

1− p

) ∞∑
k=2

1

qk
≤ (n+ 1)

∞∑
k=2

H(εk)

qk
+ nφ

(
λβ

1− p

)
p.

Consider

exp

{
(n+ 1)

∞∑
k=2

1

qk
H
(
σ(−1)(βpk)

)}

=

(
r(−1)

(
r

(
exp

{ ∞∑
k=2

q−1
k lnN

(
σ(−1)(βpk)

)})))n+1

≤
(
r(−1)

( ∞∑
k=2

q−1
k s

(
lnN

(
σ(−1)(βpk)

))))n+1

≤
(
r(−1)

(
λ
∞∑
k=2

βpk−1 r(N(σ(−1)(βpk)))

φ(−1)(lnN(σ(−1)(βpk)))

))n+1

. (17)

Using convexity of the function s(t) = r(exp{t}) from Condition RWΣ2 it can be shown (see,
for example, Kozachenko and Vasylyk (2001)) that

∞∑
k=2

βpk−1 r(N(σ(−1)(βpk)))

φ(−1)(lnN(σ(−1)(βpk)))
≤ 1

p(1− p)

βp2∫
0

r(N(σ(−1)(u)))

φ(−1)(lnN(σ(−1)(u)))
du. (18)

Therefore the assertion of the theorem follows from (15) – (18) and the Chebyshev’s inequality.
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4. Applications to Wiener and FBM processes

As an example let’s consider a weighted sum of generalized Wiener processes and then frac-
tional Brownian motions from classes V (ϕi, ψi). Recall that BH = (BH(t), t ∈ T ) is a
generalized fractional Brownian motion process from the class V (ϕ,ψ) if BH is strictly ψ-
sub-Gaussian process with stationary strictly ϕ-sub-Gaussian increments and the covariance
function as in (5), where ϕ ≺ ψ are two subordinated Orlicz N-functions.

Theorem 4.1. Let Bi = (Bi(t), t ∈ [a, b]), i = 1, n, 0 < a < b <∞ be independent generalized
Wiener processes from the class V (ϕi, ψi) and let c > 0 be a constant. Let wi = {wi(t), t ∈
[a, b]} be continuous weighting functions such that |wi(t)t1/2 − wi(s)s1/2| ≤ νi(t − s) where
νi(u) is some continuous monotone increasing function, νi(0) = 0, νi(h) ≤ ηih

1/2, ηi > 0 be
some constants. Then for all x > 0 the following inequality holds true

P

{
sup
a≤t≤b

(
n∑
i=1

wi(t)Bi(t)− ct
)
> x

}
= P

{
inf

a≤t≤b

(
n∑
i=1

wi(t)Bi(t)− ct
)
< −x

}

≤ inf
p∈(0,1); λ>0; 0<β≤D( b−a2 )

1/2
(b− a)

(
eD

βp

)2

×

× exp

{
λc(βp)2

D2(1− p2)
+ p

n∑
i=1

ϕi

(
λβ

1− p

)
+ (1− p)θψ(λ, p)− λx

}
,

where

θψ(λ, p) = sup
a≤u≤b

(
n∑
i=1

ψi

(
λwi(u)uH

1− p

)
− λcu

1− p

)
,

C∆ is the maximal constant from definition 2.2 of the space SSubϕi(Ω), Wi = supt∈[a,b]wi(t)

and D = C∆ max
1≤i≤n

(
ηi + b1/2

a1/2
W 2
i

)
.

Proof. Recall that Wiener process is also known as Brownian motion (or FBM with Hurst
index H = 0.5) and EBi(t)Bi(s) = min{t, s}. Using Euclidean metrics ρ(t, s) = |t − s|
consider for s < t

τϕi(wi(t)Bi(t)− wi(s)Bi(s)) ≤ C∆

(
E(wi(t)Bi(t)− wi(s)Bi(s))2

) 1
2

= C∆

(
E(w2

i (t)Z
2
i (t)− 2wi(s)wi(t)Zi(t)Zi(s) + w2

i (s)Z
2
i (s))

) 1
2

= C∆

(
w2
i (t)t− 2swi(s)wi(t) + w2

i (s)s
) 1

2

= C∆

(
(wi(t)t

1/2 − s1/2wi(s))
2 + 2s1/2wi(s)wi(t)(t

1/2 − s1/2)
) 1

2

≤ C∆

(
ν2
i (t− s) + 2b1/2W 2

i (t− s)/(t1/2 + s1/2)
) 1

2

≤ C∆

(
ν2
i (t− s) +

b1/2

a1/2
W 2
i (t− s)

) 1
2

≤ C∆

(
ηi +

b1/2

a1/2
W 2
i

)
(t− s)

1
2 .

Let’s apply theorem 3.1. Put γi(u) = C∆u
1/2 and σi(h) = C∆

(
ηi + b1/2

a1/2
W 2
i

)
(t− s)1/2, thus

σ(h) = Dh1/2, where D = C∆ max
1≤i≤n

(
ηi + b1/2

a1/2
W 2
i

)
, then 0 < β ≤ σ

(
b−a

2

)
= D

(
b−a

2

)1/2
.

Also we have that Condition F becomes valid for δ(h) = ch since |f(u)− f(v)| = |cu− cv| =
c|u− v|. Then

θψ(λ, p) = sup
a≤u≤b

(
n∑
i=1

ψi

(
λC∆wi(u)uH

1− p

)
− λcu

1− p

)
, (19)

∞∑
k=2

δ
(
σ(−1)(βpk−1)

)
=
∞∑
k=2

c

(
βpk−1

D

)2

=
c(βp)2

D2(1− p2)
. (20)
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Let’s choose r(u) = uα, u ≥ 1, 0 < α < 1/2 , as the respective function in Condition

RWΣ. Since the following bounds take place for metric entropy ln
(
max

{
b−a
2u , 1

})
≤ H(u) ≤

ln
(
b−a
2u + 1

)
, then for u ≤ β the following estimate is fulfilled

r
(
N
(
σ(−1)(u)

))
≤ r

(
b− a

2σ(−1)(u)
+ 1

)
=

(
b− a

2u2/D2
+ 1

)α
≤ (b− a)α

(u/D)2α
.

Since βp < β ≤ D
(
b−a

2

)1/2
then

r(−1) (Iσ(β, p)) ≤
(

1

βp

βp∫
0

(b− a)α

(u/D)2α
du

) 1
α

=
(b− a)D2

β2p2

(
1− 2α

)− 1
α . (21)

Infimum of the right side in (21) is attained as α → 0 and lim
α→0

(
1 − 2α

)− 1
α = e2. So, from

(19)-(21) we obtain the assertion of the theorem.

Theorem 4.2. Let Bi = (Bi(t), t ∈ [a, b]), i = 1, n, 0 < a < b < ∞ be independent
generalized fractional Brownian motion processes from classes V (ϕi, ψi) with Hurst indices
0 < H1 ≤ . . . ≤ Hn < 1 and let c > 0 be a constant. Let wi = {wi(t), t ∈ [a, b]} be continuous

weighting functions such that
∣∣∣wi(t)t2Hi − wi(s)s2Hi

∣∣∣ |wi(t) − wi(s)| ≤ νi(t − s) where νi(u)

is some continuous monotone increasing function, νi(0) = 0, νi(h) ≤ ηih
2Hi, and ηi > 0 be

some constants. Then for all x > 0 the following inequality holds true

P

{
sup
a≤t≤b

(
n∑
i=1

wi(t)Bi(t)− ct
)
> x

}
= P

{
inf

a≤t≤b

(
n∑
i=1

wi(t)Bi(t)− ct
)
< −x

}

≤ inf
p∈(0,1); λ>0; 0<β≤min

{
D( b−a2 )

1/H1 ,1

}(b− a)

(
eD

βp

)1/H1

×

× exp

{
λc(βp)1/H1

D1/H1(1− p1/H1)
+ p

n∑
i=1

ϕi

(
λβ

1− p

)
+ (1− p)θψ(λ, p)− λx

}
,

where

θψ(λ, p) = sup
a≤u≤b

(
n∑
i=1

ψi

(
λC∆wi(u)uHi

1− p

)
− λcu

1− p

)
,

C∆ is the maximal constant from definition 2.2 of the space SSubϕi(Ω), Wi = supt∈[a,b]wi(t)

and D = C∆ max
1≤i≤n

(
ηi +W 2

i

)1/2
.

Proof. Let’s again apply theorem 3.1 using Euclidean metrics ρ(t, s) = |t − s|. Taking into
account (5) and (4) put γi(u) = C∆u

Hi and consider the norm of weighted increments of a
process Bi(t)

τϕi(wi(t)Bi(t)− wi(s)Bi(s)) ≤ C∆

(
E(wi(t)Bi(t)− wi(s)Bi(s))2

) 1
2

= C∆

(
w2
i (t)EB

2
i (t)− 2wi(s)wi(t)EBi(t)Bi(s) + w2

i (s)EB
2
i (s)

) 1
2

≤ C∆

(∣∣∣wi(t)t2Hi − wi(s)s2Hi
∣∣∣ |wi(t)− wi(s)|+ wi(t)wi(s)|s− t|2Hi

) 1
2

≤ C∆

(
νi(|t− s|) +W 2

i |t− s|2Hi
) 1

2 ≤ C∆

(
ηi +W 2

i

) 1
2 |t− s|Hi .
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Put σi(h) = C∆

(
ηi +W 2

i

) 1
2 hHi and σ(h) = sup

1≤i≤n
σi(h) = DhH?(h), where H?(h) = H1 if

h ≤ 1 and H?(h) = HN if h ≥ 1. Then 0 < β ≤ D
(
b−a

2

)H?
. Also we have that |f(u)−f(v)| =

|cu−cv| = c|u−v|, i.e. δ(h) = ch. As function r(u) let’s choose r(u) = uα, u ≥ 1, 0 < α < H1.
If βp ≤ 1 then

θψ(λ, p) = sup
a≤u≤b

(
n∑
i=1

ψi

(
C∆λwi(u)uHi

1− p

)
− λCu

1− p

)
, (22)

∞∑
k=2

δ
(
σ(−1)(βpk−1)

)
=
∞∑
k=2

c
(
βpk−1/D

)1/H1
=
c(βp)1/H1

1− p1/H1
. (23)

Since ln
(
max

{
b−a
2u , 1

})
≤ H(u) ≤ ln

(
b−a
2u + 1

)
, then for u ≤ min{β, 1} the following esti-

mate is fulfilled

r
(
N
(
σ(−1)(u)

))
≤ r

(
b− a

2σ(−1)(u)
+ 1

)
=

(
b− a

2(u/D)1/H1
+ 1

)α
≤ (b− a)α

(u/D)
α
H1

.

Put β ≤ min

{(
D b−a

2

)H1
, 1

}
then βp ≤ 1 and

r(−1) (Iσ(β, p)) ≤
(

1

βp

βp∫
0

(b− a)α

(u/D)α/H1
du

) 1
α

=
(b− a)D1/H1

(βp)1/H1

(
1− α

H1

)− 1
α

. (24)

Infimum of the right side of estimate (24) equals to

lim
α→0

(b− a)D1/H1

(βp)1/H1

(
1− α

H1

)− 1
α

= (b− a)

(
eD

βp

) 1
H1
. (25)

Therefore from (22)-(25) we obtain the assertion of the theorem.
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